
HAL Id: hal-00893856
https://hal.science/hal-00893856

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing inbreeding coefficients quickly
B Tier

To cite this version:
B Tier. Computing inbreeding coefficients quickly. Genetics Selection Evolution, 1990, 22 (4), pp.419-
430. �hal-00893856�

https://hal.science/hal-00893856
https://hal.archives-ouvertes.fr

Original article

Computing inbreeding
coefficients quickly

B Tier

University of New England, Animal Genetics and Breeding Unit
*

Arnaidade, NSW, Australia

(Received 13 June 1988; accepted 12 September 1990)

Summary - An algorithm for computing inbreeding coefficients (F) for all animals of
large populations is described. The technique relies on the subset of the numerator

relationship matrix (A) required to compute its diagonal, which contains F. A simple
example illustrates that this subset is a very small part of A.

inbreeding coefficients / fast algorithm

Résumé - Calcul rapide des coefficients de consanguinité. On présente un algorithme
pour calculer rapidement les coefficients de consanguinité de tous les anirrcaux, dans une
grande population. La méthode fait seulement intervenir le sous-ensemble de la matrice
des coefficients de parenté qui est nécessaire au calcul de sa diagonale, qui contient les
coefficients de consanguinité. Un exemple simple illustre que ce sous-ensemble n’est qu’une
petite partie de la matrice des coefficients de parenté. L’algorithme est précisé sous la forme
d’un codage symbolique.
coefficients de consanguinité / calcul rapide

INTRODUCTION

Wright’s (1922) coefficient of inbreeding (F) describes the probability that 2 alleles
at any locus are identical by descent. Inbred offspring result from mating two
animals which have one (or more) common ancestors. Breeders of livestock perceive
inbreeding as being deleterious and consequently try to avoid mating close relatives.
The relationship between prospective mates can be computed to determine the
degree of inbreeding of the resulting offspring from such a mating.

For inbred populations, inbreeding coefficients are required to compute A-1
directly using Henderson’s (1975) rules. Henderson (1976) showed the relationship
between the inbreeding coefficients of an animal’s parents and the &dquo;contributions&dquo;

* AGBU is a joint venture between the University of New England and NSW Department
of Agriculture and Fisheries.

that each animal’s pedigree makes to !4 !. For the ith animal with parents j and
k, the following contributions are added to A-1:

where dii = 1.0 - 0.25(a!! + akk).
Two algorithms are commonly used to compute inbreeding coefficients. Origi-

nally they were calculated using the path coefficient method (Wright, 1922). While
this method is easy to use for computing F for animals which have few ancestors
and are only slightly inbred, it is a very complex method for animals with many
common ancestors. A simpler approach is to generate the numerator relationship
matrix (A) using the tabular method as attributed to Lush by Emik and Terrill
(1949, cited by Hudson et al, 1982). Inbreeding coefficients can be computed from
the diagonal elements of A : Fi = aii - 1. This paper describes an efficient imple-
mentation of the tabular method.

COMPUTING INBREEDING COEFFICIENTS
USING THE TABULAR METHOD

To compute A by the tabular method animals in the population must be numbered
from 1 to N so that parents precede their progeny. The pedigrees of all animals
must be stored in memory. A zero in the pedigree denotes an unknown parent. The
upper triangle of A can be computed on a row by row basis in consecutive order
working from first to last. Diagonal elements are computed using the formula:

The remainder of the row (to the right of the diagonal) can be computed by applying
the formula:

where p and q are the parents of the jth animal and i < j. If either parent is
unknown (p or q = 0) then aoi = 0. When a row is complete the corresponding
column in the lower triangle can be completed by symmetry. Because A is symmetric
it is only necessary to store the upper (or lower) triangle. Table II illustrates A for
the sample population shown in table I.

The storage required to compute A is proportional to the square of the numbers
of animals and so limits the size of the population for which A can be computed.
Using the technique of Hudson et al (1982) memory is only required to store the non-
zero elements of A and it can be computed for larger populations. When inbreeding
coefficients only are required then it is not necessary to compute A completely, nor
all its non-zero elements.

THE RECURSIVE PEDIGREE METHOD

This is an adaptation of the tabular method and depends upon computing the
subset of A required to compute its diagonal.

As each animal’s pedigree is read, Equation 1 is used to identify the element
which describes the relationship between its parents. If the animal’s inbreeding
coefficient is already known and no new ancestral information is available it is
stored. If not, then the element (apq) is placed in the subset (flagged) to be
computed.

Equation 2 can now be applied to identify those elements required to compute
elements already flagged. This requires searching the matrix (upper triangle) from
bottom to top and from right to left. As each identified element is found the
two elements required to apply equation 2 can also be flagged. Because these two
elements lie to the left of the flagged element - animals are numbered so that parents
precede their progeny - searching A in this manner results in all the elements
required to compute the diagonal of A being identified.

The flagged subset can now be computed by applying equations 1 and 2 starting
with the first row, and proceeding sequentially to the last. Computation of each row
of A can be considered in 3 parts. Firstly, elements on the left of the diagonal have
already been computed - they were on the right of the diagonal in earlier rows.
Secondly, the off-diagonal element (ajk) required to compute the diagonal element
(aii) has already been computed (j, k < i) and aii can be computed by equation

1. Lastly, the flagged elements on the right of the diagonal can be computed using
equation 2.

Table III illustrates the recursive pedigree method for the sample population.
Firstly, off diagonal elements from (1) are identified and flagged. Because animals
1, 2 and 3 have at least 1 unknown parent they are not inbred and 1 is stored in
the corresponding diagonal element. The diagonal elements of animals 4, 5, 6 and 7
are represented by the letters P, Q, R and S respectively. The offdiagonal elements
required to compute them are represented by the same letter in lowercase. Other
elements identified by t, u, v and w are required to compute p, q, r and s.

As the rows are processed, elements that must be computed before the current
element can be computed are identified and flagged. aS6(s) is the first flagged
element to be found. It requires that a35(t) and a45(u) are known. Table IV
illustrates the identification and flagging of new elements as they were found using
the search procedure described above.

COMPUTATIONAL CONSIDERATIONS

To take advantage of the saving in space offered by this method it is necessary to
use a sparse storage technique to store the subset of A. In this case, elements in the
subset to the right of the diagonal in each row of A can be stored as a linked list.

Elements in a linked list are not stored in memory in any particular order but are
linked together in some sequence by pointers. There is a pointer to the location in
memory of the first element in each row. Each element in the list has an associated
pointer to the location in memory of the next element in the sequence. The pointer
associated with the last element in each row (list) is 0. To find any element in such
a list it is necessary to &dquo;follow&dquo; the pointers until the required element is found. As
new elements are stored in a list the pointers are adjusted to maintain the integrity
of the sequence (for a detailed explanation of linked lists see Knuth, 1968).

To expedite the searching phase, the elements in each row should be linked in
reverse column order (from highest to lowest, fig la). After the subset has been
identified the pointers can be adjusted so that the rows are linked in column order
(fig lb). For this application it is desirable to have a pointer (called RECENT in
the Appendix) to the most recently added element as well as a pointer (ROW)
to the first element in each list. As only the upper triangle is stored, elements on
the left of the diagonal appear in the column above the diagonal. These elements
must be added to the lists holding the rows above the diagonal. Because these
new elements will generally be adjacent to the previous addition to that row using
this pointer (RECENT) can avoid repeated searching through the lists. Similarly,
repeated searching for the same new elements (arising from animals having the
same parent) within a row and searching the row to the right of the current element
should also be avoided.

Diagonal elements can be stored in a separate vector (DIAG). This can be
used to point to the physical location in the linked list of the element required
to compute equation 1 until the diagonal element is determined. Because the
theoretical maximum for a diagonal element is 2.0, the first 2 elements in the linked
list must be reserved. Thus a value greater than 2 in the diagonal vector is a pointer,
one less than 3 is a diagonal element. As each diagonal element is determined it can
be stored in this vector. Subsequently, inbreeding coefficients can be derived from
this vector.
An efficient method for finding elements on the left of the diagonal for any row is

required. One way of doing this is to adjust the pointers so that after the elements in
each row have been computed the elements on the right of the diagonal are relinked

on a column basis in reverse row order (fig Ic). This requires a vector (COLUMN)
which points to the most recently added element of each column.

SIMULATION STUDY

For this example a population with the following characteristics was simulated.
Starting with a base population of 20 sires and 500 dams, 40 years of progeny
were generated. The adult population was held constant at 20 sires and 500 dams.
Sires were mated randomly to the dams, all of which had 1 calf. After each year
the oldest half of the sires were replaced and the oldest quarter of the dams were
culled. Yearlings (offspring from the previous &dquo;year&dquo;) were randomly selected to
replace the culled animals. As a result, some animals had up to 20 generations of
ancestors.

Three sets of inbreeding coefficients were computed for the animals, viz
- after each group of 10 years assuming that no inbreeding coefficients had been

calculated on this population before;
- for each decade assuming that inbreeding coefficients had been calculated in

the previous year ie only inbreeding coefficients for the latest group of calves were
unknown;

- for parents only when no inbreeding coefficients were known. A detailed algo-
rithm used to compute inbreeding is shown in the Appendix. These computations
were carried out on a GOULD NP1 computer and the results from this are shown
in table V.

For the population of 20 520 animals, the subset of A included 516 435 elements
out of a total of 421070 400 (0.123%). The population size which required com-
putation of the largest proportion of A (0.146%) was 10 520. When inbreeding
coefficients were known for all but the most recent group of calves, or were only
required for parents, a significantly smaller proportion of A was required.

DISCUSSION

The results in table V illustrate how very small a subset of A is required to
compute its diagonal for the simulated population. Although the subset is small as
a proportion of A, more than 6 Mbytes of memory were required to store the largest
subset (516 435 elements). Table Vb illustrates the computing resources required
when inbreeding coefficients are known for all but the most recent group of calves.
As this technique can make use of previously computed inbreeding coefficients,
problems that are too large for a computer can be divided into a series of smaller
problems. To avoid repeated computation of the same elements of A, subsets should
not be chosen on a chronological basis but rather on a related group, herd or family
basis. The technique could be readily adapted to compute any subset of A that is
of interest.

ACKNOWLEDGMENTS

The financial support of the Australian Meat and Livestock Corporation is grate-
fully acknowledged, as are helpful comments and encouragement .from colleagues
and referees.

REFERENCES

Henderson CR (1975) Rapid method for computing the inverse of a relationship
matrix. J Dairy Sci 58, 1727-1730
Henderson CR (1976) A simple method for computing the inverse of a numerator
relationship matrix used in prediction of breeding values. Biometrics 32, 69-83
Hudson GFS, Quaas RL, Van Vleck LD (1982) Computer algorithm for the recursive
method of calculating large numerator relationship matrices. J Dairy Sci 65, 2018-
2022 .

Knuth DE (1968) The art of Computer Programming. Tlol 1. Fundamental Algo-
rithms. Addison Wesley, Reading, Massachussets. 634 p
Wright S (1922) Coefficients of inbreeding and relationships. Am Nat 56, 330-338

APPENDIX

Algorithm for the recursive pedigree method. Table VI illustrates the state of the
storage at various stages of the algorithm.

The following variables and subroutine are required for this algorithm:

Integer scalars

N is the number of animals. LLSIZE is a pointer to the last element in the linked list
at any time ((LLSIZE+1) is empty). LARGE is the size of the vectors used to store
the lists. LASTEL holds the address of the last element passed to the subroutine.

Integer vectors

SIRE(0:N) and DAM(O:N) store parents (SIR.E(0)=DAM(0)=0). During the search-
ing phase, COLUMN(O:N) is used to keep a record of the flagged elements in a row;
during the computation phase it stores pointers to the first element in the columns
of elements above the diagonal. ROW(1:N) stores pointers to the first element
in each row on the right of the diagonal. RECENT(1:N) stores pointers to the
location of the elements preceding the most recently added element in each row.
NEXT(1:LARGE) stores pointers to the next element in each row. JAY(1:LARGE)
stores the column subscripts of the elements.

Real vectors

WORK(1:N) is used as workspace for computing a row. DIAG(1:N) stores pointers
to the apq’s of equation [1] initially, and subsequently the diagonal elements when
computed. AIJ(1:LARGE) stores the required elements of A.

Subroutine

RESERVE reserves space in the linked lists for the elements in the subset while
maintaining the integrity of the lists. A check to ensure that there is sufficient space
to complete the analysis could be included. RESERVE requires access to the global
variables LLSIZE, LASTEL, LARGE, ROW, RECENT, NEXT, JAY and AIJ.

(SUBROUTINE RESERVE(INI,INJ)
If (INI=0) or (INJ*0) RETURN
If (INI=INJ)RETURN

I=MIN(INI,INJ);J=MAX(INI,INJ);
L=RECENT (I);M=NEXT(L);
IF (JAY(M)<J) THEN

L--O;M=ROW(I)
Endif

If M=0 then

LLSIZE=LLSIZE+ l;JA Y(LLSIZE)=J;ROW(I)=LLSIZE;LAS1EL=LLSIZE
Else

While (M>0) and (JAY(M)>J) do

RECENT(I)=L;L=M;M=NEXT(M);Endwhile
If JAY(M)#J then

LLSIZE=LLSIZE+1;JAY(LLSIZE)=J;LASTEL=LLSIZE
IF L=0 Then

NEXT(LLSIZE)=ROW(I);ROW(I)=LLSIZE
Elseif M! then

NEXT(L)=LLSIZE
Else

NEXT(LLSIZE)=NEXT(L);NEXT(L)=LLSIZE
Endif

Else

LASTEL=M

Endif

Endif

ENDreserve)

Algorithm

Table VI illustrates the state of the vector during the algorithm for the sample
population. At the conclusion of the following steps DIAG contains the diagonal
of A:
1 Number animals 1 to N so that parents precede their progeny.
2 Reserve the first two locations in the linked list (LLSIZE=2).

3 Read and store the pedigrees in SIRE and DAM. (3a. Read any known inbreeding
coefficients, add 1 and store in DIAG (DIAG(I)=1+FI)).
4 Reserve space in the lists for parental relationships when both parents are known.
When either the sire or dam is unknown store 1.0 in DIAG.

(For 1=1 to N do

If D1AG(I)=0.0 then
If (SIRE(I)=0) or (DAM(I)=O) then

DIAG(I)=I.0
Else

CALL RESERVE(SIRE(I),DAM(I));DIAG(I)=LASTEL
Endif

Endif

Endfor)
5 Pass through each row from right to left starting with the Nth row and moving
upwards, examine each flagged element and reserve space in the linked lists for any
element that is required before the current element can be computed. Keep a record
of all flagged elements in the row (in COLUMN). Confine searching to the left of
the current element.

(For I=N downto 1 do

K=ROW(I); COLUMN(0)=I
While K#0 do

COLUMN(JAY(K))=I
K=NEXT(K);Endwhile

K=ROW(I)
While K#0 do

JKS=SIRE(JAY(K))
IF (COLUMN(JKS)!I) then

If (JKS>JAY(RECENT(K)))RECENT(I)=K
CALL RESERVE(JKS,I)

COLUMN(JKS)=I
Endif

JKD=DAM(JAY(K))
IF (COLUMN(JKD)!I) then

If (JKD>JAY(RECENT(K)))RECENT(I)=K
CALL RESERVE(JKD,I)

COLUMN(JKD)=I
Endif

K=NEXT(K);Endwhile
Endfor)

6 Adjust pointers so that the lists are linked in column order and reset COLUMN.
COLUMN. ’

COLUMN(0)=0

(For I=1 to N do

COLUMN(I)=0

K=ROW(I);NEW=0
WIIILE K>0 do

IOLD=NEXT(K); NEXT(K)=NEW; NEW=K; K=IOLD;
Endwhile

ROW(I)=NEW

Endfor)
7 Compute each row starting with the first.

[For I=1 to N do

a. Transfer elements on the left of the diagonal into WORK

(K=COLUMN(I)
While K#0 do

WORK(JAY(K))=AIJ(K);K=NEXT(K);Endwhile)
b. Compute the diagonal and store it in WORK.

(If!IAG(I»2.0) DIAG(I)=I+AIJ(DIAG(l))/2;
WORK(I)=DIAG(I))

c. Compute the elements on the right of the diagonal and store them in
WORK and AIJ. Adjust the pointers so that elements on the right of
the diagonal in the row are linked into columns.

(K=ROW(I)
While K#0 do

JK=JAY(K);WORK(JK)=[WORK(SIRE(JK))
+WORK(DAM(JK))]/2

AIJ(K)=WORK(JK);K2=K;K=NEXT(K);
NEXT(K2)=COLUMN(JK)

COLUMN(JK)=K2;JAY(K2)=I;Endwhile)
Endfor]

