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Summary - A method of variance component estimation in univariate mixed linear mod-
els based on the exact or approximate posterior distributions of the variance components
is presented. From these distributions, posterior means, modes and variances can be cal-
culated exactly, via numerical methods, or approximately, using inverted X2 distributions.

Although particular attention is given to a Bayesian analysis with $at priors, informa-
tive prior distributions can be used without great additional difficulty. Implementation of
the exact analysis can be taxing from a numerical point of view, but the computational
requirements of the approximate method are not greater than those of REML.
variance components / maximum likelihood / Bayesian methods

Résumé - Estimation des composantes de la variance à partir de vraisemblances
intégrées. Cet article présente une méthode d’estimation des composantes de la variance,
pour des modèles linéaires mixtes univariés, qui est fondée sur des expressions exactes
et approchées de la distribution a posteriori de ces composantes. On peut calculer les
espérances, modes et variances de ces distributions, de façon exacte par des méthodes
numériques ou de façon approchée en utilisant des lois de X2 inverses. Bien que l’attention
soit centrée sur une analyse bayésienne faisant intervenir des a priori uniformes, le recours
à des lois a priori informatives est envisageable sans difficulté notoire additionnelle. La
mise en &oelig;uvre de l’analyse exacte peut être contraignante d’un point de vue numérique,
mais la méthode approchée ne demande pas plus de calculs que la résolution du REML.

composantes de la variance / maximum de vraisemblance / méthodes bayésiennes.

INTRODUCTION

Harville and Callanan (1990) noted that likelihood-based methods of variance com-
ponent estimation have gained favor among quantitative geneticists. In particu-
lar, the procedure known as "restricted maximum likelihood", or REML for short
(Thompson, 1962; Patterson and Thompson, 1971), is now widely regarded in ani-
mal breeding as the method of choice. The approach is based on maximizing with



respect to the variances only the part of the likelihood function (normality is as-
sumed) that does not depend on fixed effects. In so doing, Patterson and Thompson
(1971) obtained an estimator that &dquo;accounts for the degrees of freedom lost in the
estimation of fixed effects&dquo; which, according to their reasoning, is not accomplished
by full maximum likelihood (ML’. With balanced data, the REML estimating equa-
tions reduce to those used in estimation by analysis of variance (ANOVA) so that
if the ANOVA estimates are within the parameter space, these are REML as well.

The basic idea underlying REML is obtaining a likelihood-based estimator (thus
retaining the usual asymptotic properties) while reducing the bias of ML. However,
REML estimators are biased as well and because these are constructed from a

partial likelihood, one should expect larger variance of estimates than with ML. A
more reasonable comparison is in terms of a loss function such as mean-squared
error, but Monte Carlo studies (for example, Swallow and Monahan, 1984) have
given ambiguous results. In fact, in a purely fixed model with a single location
parameter and 1 variance component, the ML estimator has smaller mean-squared
error than REML throughout the whole parameter space, ie, REML is inadmissible
under quadratic loss for this model. Lacking evidence to the contrary, a similar
sampling behavior can be expected at least in some other models. Searle (1988)
puts it concisely : &dquo;It is difficult to be anything but inconclusive about which of ML
and REML is the pneferred method&dquo;.
The 2 procedures have the same asymptotic properties (although their asymp-

totic variance is different) and unknown small sample distributions, a feature shared
by all sampling theory estimators of variance components. Although ML and REML
estimates are defined inside the appropriate parameter space, their asymptotic dis-
tribution (normal) can generate interval estimates that include negative values.
This potentially embarrassing phenomenon is often overlooked in discussions of
likelihood based methods.

Harville (1974) showed that REML corresponds to the mode of the marginal
posterior density of the variance components in a Bayes analysis with flat priors for
fixed effects and variance components. The fixed effects (0) are viewed in REML
as nuisance parameters and, therefore are eliminated from the full likelihood by
integration so that the restricted likelihood is a marginal likelihood (Dawid, 1980),
seemingly a more appropriate term. This likelihood does take into account the
error incurred in estimating ,0 because it can be viewed as a weighted average of
likelihoods of variance components evaluated at all possible values of ,Q, the weight
function being the posterior density of the fixed effects (proportional to the marginal
likelihood of ,0 in this context). Gianola et al (1986) gave a Bayesian justification of
REML when estimating breeding values with unknown variance components. The
same, by virtue of the symmetry of the Bayesian analysis, applies to estimation of
fixed effects.

There are 2 aspects of REML that have not received sufficient discussion. First,
the method produces joint modes rather than marginal modes. If the loss function is
quadratic, the optimum Bayes estimator is the posterior mean, and marginal modes
provide better approximations to this than joint modes (O’Hagan, 1976). Second,
in some problems not all variance parameters have equal importance. For example,
suppose that there is interest in making inferences about the amount of additive
genetic variance in a population and that the statistical description of the problem



requires a model that, in addition to fixed effects, includes random herd, additive,
dominance, permanent environmental and temporary effects. In this situation, the
marginal or restricted likelihood of the variance components involves 5 dimensions,
1 for each of the variances, yet all components other than the additive one should be
regarded as nuisance parameters. Carrying the logic of Patterson and Thompson
(1971) 1 step further, REML would not take into account the error incurred in
estimating the nuisance variances and, therefore, only the part of the likelihood that
is a function of the additive genetic variance should be maximized. Construction of
this likelihood employing classical statistical arguments seems impossible.

The objective of this note is to present a new method of variance component
estimation in univariate mixed linear models based on the principle of finding
the marginal posterior density of each of the variances. From this, means, modes,
variances and higher order moments of the distribution of variance components can
be calculated exactly, using numerical methods, or analytically via approximations.
Particular attention is given to the Bayesian analysis with flat priors for fixed effects
and variance components.

MODEL AND DEFINITIONS

Model

Consider the mixed linear model:

where :
y: data vector; X, Zi: known incidence matrices. For i = c, Zi = I, an identity
matrix of appropriate order; (3: p x 1 vector of uniquely defined fixed effects (X
has full-column rank); ui: qi x 1 random vector distributed as N(O, Ai!2), where
Ai is a known square, positive-definite matrix and Q2 (i = 1, 2, ... , c) is a variance
component. It is assumed that all ui and Uj are mutually independent. For i = c,
A! is often taken to be an identity matrix of appropriate order; this will be assumed
in the present paper.

The marginal distribution:

gives rise to the &dquo;full&dquo; likelihood function, from which ML estimators of P and of
each of the variance components can be obtained.

Bayesian elements

In the Bayesian treatment of model (1), prior subjective uncertainty about P is
often described via the &dquo;flat&dquo; prior density:



and the normal distributions assigned independently to the ui’s are viewed as
prior probability distributions as well. To complete the model, assignment of prior
probability distributions to the variance components is necessary. In this paper,
and for the sole purpose of showing how a higher degree of marginalization can be
achieved than in REML, independent &dquo;flat&dquo; prior distributions are assigned to each
of the variances !2. With this formulation, the joint posterior density of P and of
variances becomes:

so that there is no information about fixed effects and variance parameters beyond
that contained in the likelihood function. If (4) is maximized jointly with respect to
(3, u!, !z ! ! ! ! ! u§ one obtains the maximum likelihood estimates of all parameters. If
(4) is integrated with respect to p, the marginal (restricted) likelihood function of
the variance components is obtained (Harville, 1974). This contains no information
about !3 and maximization of this marginal likelihood with respect to the variances
gives restricted maximum likelihood estimates of these parameters.

REPRESENTATION OF THE MARGINAL (RESTRICTED)
LIKELIHOOD

As shown by Gianola et al (1990a, 1990b), integration of (4) with respect to /3 gives:

where:

and

is the solution to Henderson’s mixed model equations. Although (5) is a posterior
density, it is strictly proportional to the marginal likelihood of the variance

components.



POSTERIOR DENSITY OF THE RESIDUAL VARIANCE
AND OF RATIOS OF VARIANCE COMPONENTS

Consider the one-to-one reparameterization from o,2,0-22,...,0,2 to

and

Because maximum likelihood estimates are invariant under one-to-one reparam-
eterizations, maximization of (5) with respect to the 0-2 or to the a-parameters
gives the same estimates. However, and arguing from a likelihood veiwpoint, it is
unclear how (5) can be factorized into separate components for each of the old or
new parameters. Hence, estimates of a particular uf or ai from (5) are obtained in
the presence of the remaining or 21 or a’s. To the extent that these are viewed as
nuisance parameters, REML would not take into account the &dquo;degrees of freedom
lost&dquo; in the estimation of such parameters.

In the Bayesian approach parameters are viewed as random variables, so a change
from a a2 to an a-parameterization must be made using theory of transformation
of random variables. The absolute value of the determinant of the Jacobian matrix
of the transformations indicated in (6a) and (6b) is:

Using this in (5) gives as joint posterior density of the a’s:

The range of the a’s depends on the model in question. The a! parameter is
always larger than 0. In an &dquo;animal&dquo; model with 2 variance components, the ratio
between the environmental and the additive genetic variances can vary between 0
and infinity. On the other hand, in a &dquo;sire&dquo; model, the corresponding ratio varies
between 3 and infinity.

POSTERIOR DENSITY OF THE RATIOS OF VARIANCE
COMPONENTS

With the above parameterization, a! can be integrated out analytically using
inverted-gamma integrals (Box and Tiao, 1973) to obtain:



Although the joint posterior density (8) is not in any obviously recognizable form,
the components of the modal vector, or a-values maximizing (8) can be calculated.
Let the logarithm of (8) be L, so that:

where:

The mixed model &dquo;residual&dquo; sum of squares B(.) depends on the variance
ratios through the solution vector b. Following Macedo and Gianola (1987) and
suppressing the dependence of B(.) on the a’s in the notation, we have for
i = 1,2,...,c- 1:

Setting (10) to zero and rearranging:

with:

Above:

is a block-diagonal matrix, and

Noting the special form of Pi one obtains:



where Cii is defined below. Using (12a) and (12b) in (11) and rearranging gives,
for i = 1,2,...,c - 1:

Above,

and Cii is the partition of (W’W+E)-1 corresponding to the ui effects. Note that

q= > 4 and n > !+2c are required. The expression in (13) can be interpreted as the
ratio between an &dquo;estimator&dquo; of o,2 and an &dquo;estimator&dquo; of !2. Because (13) is not
explicit in the a’s, the expression must be iterated upon, thus generating a sequence
of successive approximations. For example, starting with a!O] (i = 1, 2, ... , c&mdash;1) one
can solve the mixed model equations, evaluate the right hand-side of (13), obtain
a new set of a’s and repeat the calculations until convergence.

In addition to first order algorithms such as the one suggested above, computing
strategies based on second derivatives are possible. These are tedious and are not
presented here. The important point is that the components of the mode of the
joint posterior density of al, a2, ... , a!_1 can be obtained without great conceptual
di!culty. Hereafter, these components will be denoted as 5i,Q’2,5e-i. Contrary to
REML, account is being taken here of the &dquo;degree of freedom&dquo; lost in estimating
a! (a! in the original parameterization).

EXACT MARGINAL DISTRIBUTION OF EACH
OF THE VARIANCE COMPONENTS

Residual component

Consider density (7) and write it as:

The first conditional density in (14) is obtained from (7) by regarding ac as a

variable and the remaining a’s as constants. Hence:

This is exactly the kernel of the density of an inverted x2 random variable with

parameters:

and



as before. The complete density (Zellner, 1971) is:

and the mean, mode and variance of this distribution can be shown by standard
techniques to be: 

’

provided that n &mdash; p &mdash; 2c > 4. From (14), the marginal density of a, is:

This is a weighted average of an infinite number of inverted x2 densities as in (16),
the weight function being the posterior density (8). Whereas the marginal density
of ac cannot be written explicitly, its mean and variance can be calculated by
numerical means. For example, note that:

because the expectation is calculated with respect to the distribution al, a2, ..., -;
a!-1 ! y. This is the Bayes estimator minimizing expected posterior quadratic
loss. Evaluating the expectation in (19) requires solving Henderson’s mixed model
equations a large, technically an infinite, number of times. Monte-Carlo (Kloek and
van Dijk, 1978) or numerical (Smith et al, 1987) integration procedures are needed
to complete the calculation of (19).

Other components

Now consider the parameterization:

i different from c

The Jacobian matrix of the transformation from a parameterization in terms of
all a-components to one in terms of !2 and the variance ratios as indicated above



is ai. The joint posterior density of uf and al, a2, ... , a!_1 is then from (7):

As in the preceding section, given the ratios of variance components, and
provided that each of the variances !2 takes values between 0 and oo, one obtains:

where:

Again, (22) is the density of an inverted X2 random variable with the features:

Using the argument of (18), the marginal density of a? is a weighted average of
an infinite number of inverted X2 densities, and the posterior density of the ratios
of variance components, (8), is the weight function. The marginal posterior density
cannot be written in explicit form, but its moments can be evaluated numerically.
For example:

where the expectation is taken with respect to the distribution c!l, a2, ... , a!_1 [ y.
As discussed earlier, carrying out this calculation requires numerical integration or
Monte Carlo techniques.

APPROXIMATE MARGINAL DISTRIBUTION OF EACH
OF THE VARIANCE COMPONENTS

Because of the numerical difficulties arising in the marginal analysis of the variance
components, it would be desirable to develop approximations that permit an



analytical treatment of the resulting distributions. If the posterior density of the
ratios of variance components is peaked or symmetrical about its mode, one
can resort to the well known approximations (Box and Tiao, 1973; Gianola and
Fernando, 1986; Gianola et al, 1986):

and

where the a’s are the components of the mode of the posterior distribution of
the variance ratios, with density as in (8). The marginal densities of the variance
components can be approximated using densities (16) and (22), but with the
parameters now being:

where 0 is the solution to Henderson’s mixed model equations evaluated at

Si,S2)&dquo;-)Sc-i- Because the densities are in inverted x2 form, one can readily
obtain their moments and construct point estimates of the variance components in
a Bayesian decision-theoretical context. For example, for a quadratic loss function,
the estimator that minimizes expected quadratic loss is the posterior mean, or:

and

Estimators minimizing &dquo;all or none&dquo; posterior loss are:

and

The posterior variances can be approximated by evaluating expressions S’ in
(17c) and sf in (23c) at the a values. In fact, all the approximate marginal



distributions can be depicted graphically by plotting densities (16) and (22),
evaluated at the a values, thus giving a full (approximate) solution to the problem
of inferences regarding variance components in a univariate mixed linear model.

DISCUSSION

Harville (1990) stated: &dquo;A more extensive use of Bayesian ideas by animal breeders
and other practitioners is desirable and is more feasible from a computational
standpoint than commonly thought... The Bayesian approach can be used to devise
prediction procedures that are more sensible - from both a Bayesian and frequentist
perspective - than those in current use&dquo;.

In this paper we have used the Bayesian mechanism of integrating nuisance
parameters to construct marginal likelihoods from which marginal inferences about
each of the variance components can be made. In this respect, the method advanced
in this paper goes beyond REML in degree of marginalization. In REML, the fixed
effects are viewed as nuisance parameters and are integrated out of the likelihood
(Harville, 1974) so inferences about variance components are carried out jointly.
In the present paper fixed effects and other variance components also regarded
as nuisances are integrated out so that inferences about individual variances of
interest can be completed after taking into account, exactly or approximately, the
error due to not knowing all nuisance parameters. Hence, practitioners that accept
R.EML in terms of the argument advanced by Patterson and Thompson (1971), ie,
taking into account degrees of freedom &dquo;lost&dquo;, should also feel comfortable with
our approach because additional degrees of freedom (stemming from the nuisance
variance components) are also taken into account.
When fixed effects are viewed as nuisance parameters, it is fortunate that the

likelihood can be separated into a component that depends on the fixed effects plus
an &dquo;error contrast&dquo; part (Patterson and Thompson, 1971). However, in likelihood
inference it seems impossible to eliminate nuisance parameters other than by ad hoc
methods or without recourse to Bayesian ideas. A possible method for dealing with
nuisance variances would be treating all random effects other than that of interest as
fixed, and then estimating the appropriate component by some translation invariant
procedure such as REML. This suggests that the distribution of the resulting
statistic would not depend on parameters of the distribution of the nuisance random
effects. On the other hand, the variance of interest would be estimated jointly with
the residual variance; in most instances this should cause little difficulty because of
the large amount of information available about the residual component. It seems
intriguing to examine the sampling properties of this method.
An interesting question is the extent to which the proposed method differs from

REML. It is known that ML and REML can differ appreciably when the number of
fixed effects is large relative to the number of observations. Likewise, the difference
between estimates obtained with the new method and REML should be a function of
the number of variance components in the model and of the amount of information
about such components contained in the sample. For the sake of brevity, we will refer
to the new method as &dquo;VEIL&dquo; (standing for &dquo;variance estimation from integrated
likelihoods&dquo;).



The finite sampling properties such as bias, variance and mean squared error of
VEIL are unknown, but the same holds for REML and ML, except for some trivial
models. Differences among methods depend on data structures and parameter
values, and can only be assessed via simulation experiments. When the approximate
analysis described in this paper is used, the goodness of VEIL will depend on
the extent to which the density Q’i,a2)-&dquo;)Q’c-i ! y is peaked; this assumption
surely does not hold when there is limited information in the data about the
variance ratios. In this case, the exact approach is strongly recommended over the
approximate one. With respect to large sample properties, the work of Cox (1975)
on partial likelihoods suggests that the properties of maximum likelihood estimates
apply to maximum marginal likelihood estimates as well. A good illustration is

precisely REML relative to ML. Hence, the large sample properties of estimates
obtained from the highly marginalized likelihoods presented here should be the
same as those of REML although, of course, the parameters of the asymptotic
distribution must differ. For example, the asymptotic variance-covariance matrix of
ML estimates of variance components is different from that of REML estimates.

From a Bayesian viewpoint, the method described in this paper is a marked
improvement over ML and REML provided the objective of the analysis is making
marginal inferences about individual components of variance, as the other param-
eters are treated as nuisances. As stated earlier, the marginal densities of the vari-
ance components are approximately inverted X2. This allows to generate a complete
posterior distribution from which moments can be calculated as needed, and prob-
ability statements can be obtained at least by numerical procedures. The inverted
x2 distribution is defined only over the positive part of the real line so the embar-
rassing situations caused by encountering point estimates that fall outside of the
parameter space, or negative values of the variances yielding a positive likelihood
(Harville and Callanan, 1990) are avoided.

It is interesting to observe that the (approximate) marginal posterior densities
of the variance components appear in the inverted x2 form. In a fixed model, the
marginal posterior distribution of the residual variance is exactly inverted XZ and its
modal value is the usual unbiased estimator (identical to REML in this case). This
implies that this distribution is suitable for specifying marginal prior knowledge
about variance parameters as done, for example, by Lindley and Smith (1972) and
H6schele et al (1987). For instance, suppose that the prior distribution of Q2 is taken

as inverted x2 with parameters vo and so. Then the marginal posterior density of
Q2 can be written as:

Taking into account that the integrated likelihood is approximately proportional to
(22) when the a’s are replaced by the a’s, (29) can be put as:



where:

and

Hence, the marginal posterior density of component a? remains in the inverted X2
form. This &dquo;conjugate&dquo; property of the inverted x2 density can be used to advantage
when computing the marginal density of a variance component from a large data
set. If the data can be partitioned into independent pieces, repeated use of (30) with
parameters updated as in (31a) and (31b) will lead to the (approximate) marginal
posterior density of the variance components. Each of these pieces of data should
have a relatively large amount of information about the variance ratios so that
replacing the variance ratios ai by the modal values ixi can be justified. Note in
(31a) and (31b) that while the &dquo;degree of belief&dquo; parameter accumulates additively,
the parameter s2 is updated in the form of a weighted average which is a common
feature in Bayesian posterior analysis.

The computations required for completing the approximate analysis are similar
to those of REML. As illustrated in (13), an iteration constructed on the basis of
successive approximations requires at each round the solution vector and the inverse
of the coefficient matrix of Henderson’s equations. These are also the computing
requirements arising in first and second order algorithms for REML (Harville and
Callanan, 1990). Derivative free algorithms should be explored as well. On the other
hand, carrying out the exact analysis requires numerical integration and the mixed
model equations would need to be solved at each of the steps of integration. This
may not be feasible in a large class of models. In summary, the exact method can
be applied only in data sets of moderate size, but it is precisely in this situation
where it would be most useful.

As stated by Searle (1988), the sampling distributions of analysis of variance and
likelihood based estimates of variance components are unknown and will probably
never be because of analytical intractability. It would be intriguing to study the
extent to which the inverted x2 distributions with densitites as in (16) and (22) can
provide a description of the variability encountered over repeated sampling among
estimates of variance components obtained with the present method. In such a study
the QZ’s would be estimates obtained in different (independent) samples and v and
s! would be parameters of the sampling distribution. In other words, perhaps the
small sample distribution of point estimates obtained with VEIL can be suitably
fitted by an inverted X2 distribution.
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