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Summary

Linear (BLUP) and nonlinear (GFCAT) methods of sire evaluation for categorical data
were compared using Monte Carlo techniques. Binary and ordered tetrachotomous responses
were generated from an underlying normal distribution via fixed thresholds, so as to model
incidences in the population as a whole. Sires were sampled from a normal distribution and
family structure consisted of half-sib groups of equal or unequal size ; simulations were done
at several levels of heritability (h2). When a one-way model was tenable or when responses
were tetrachotomous, the differences between the 2 methods were negligible. However, when
responses were binary, the layout was highly unbalanced and a mixed model was appropriate
to describe the underlying variate, GFCAT elicited significantly larger responses to truncation
selection than BLUP at h2 = .20 or .50 and when the incidence in the population was below
25 p. 100. The largest observed difference in selection efficiency between the 2 methods was
12 p. 100.
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Résumé

Méthodes linéaires et non linéaires d’évaluation des pères sur des caractères discrets :
étude par simulation

Des méthodes linéaires (BLUP) et non linéaires (GFCAT) d’évaluation des pères sur
données discrètes ont été comparées à l’aide des techniques de Monte Carlo. On a simulé des
réponses selon 2 ou 4 catégories à partir d’une distribution normale sous-jacente munie de
seuils fixés. Les pères ont été échantillonnés dans une distribution normale. La structure famille
comportait des groupes de demi-germains de taille égale ou inégale. Les simulations ont été
effectuées pour plusieurs niveaux d’héritabilité (h2). Les différences entre les 2 méthodes

d’évaluation sont négligeables avec un modèle à yune voie ou des réponses en 4 classes.

Toutefois, en présence de réponses binaires, d’un dispositif fortement déséquilibré et d’une
sous-jacente décrite en modèle mixte, la procédure GFCAT procure des réponses après sélection
par troncature significativement supérieures à celles obtenues avec le BLUP pour h2 = 0,20
et 0,50 et une incidence du caractère dans la population inférieure à 25 p. 100. La diyfférence
maximum d’efficacité de sélection observée entre ces deux méthodes s’est située à 12 p. 100.

Mots clés : Données discrètes, évaluation des pères, caractères à seuils, modèle non linéaire,
simulation.



I. Introduction

Prediction of genetic merit of individuals from observations on relatives is of basic
importance in animal breeding. If the records and the genetic values to be predicted
follow a joint normal distribution, best linear unbiased prediction (BLUP) is the method
of choice, because it yields the maximum likelihood estimator of the best predictor, it
maximizes the probability of correct pairwise ranking (HENDERSON, 1973) and more
relevantly, it maximizes genetic progress among translation invariant rules when selecting
a fixed number of candidates (GOFFINET, 1983 ; FERNANDO, 1983). However, a number
of traits of importance in animal production (e.g., calving ease, livability, disease suscep-
tibility, type scores) are measured as a response in a small number of mutually exclusive,
exhaustive and usually ordered categories. These variates are not normally distributed
and, in this case, linear predictors may behave poorly for ranking purposes (PORTNOY,
1982). GIANOLA (1980, 1982) discussed additional potential drawbacks of linear predictors
for sire evaluation with categorical data, arguing from the viewpoint of « threshold »
models for meristic traits (DEMPSTER & LERNER, 1950 ; FALCONER, 1981).
SCHAEFFER & WILTON (1976) examined a modified version of a (fixed) linear model

for analysis of categorical data developed by GRIZZLE et al. (1969). They suggested that
the use of BLUP methodology in sire evaluation for categorical responses might be
justified given certain sampling conditions which unfortunately are inconsistent with the
assumptions required by their model. This work gave impetus for widespread use of
BLUP in evaluation of sires for categorical variates (e.g., BERGER & FREEMAN, 1978 ;
VAN VLECK & KARNER, 1979 ; CADY & BURNSIDE, 1982 ; WESTELL et Cll., 1982).

GIANOLA & FOULLEY (1983a) developed a Bayesian nonlinear method of sire eva-
luation for categorical variates based on the « threshold concept. In this approach
(GFCAT = Gianola-Foulley-Categorical), the probability of response in a given category
is assumed to follow a normal integral with an argument dependent on fixed thresholds
and on a location parameter in a conceptual underlying distribution. The location

parameter is modeled as a linear combination of fixed effects and random variables.
Prior information on the distribution of the parameters of the model is combined with
the likelihood of the data to yield a posterior density function, the mode of which is
then taken as an approximation to the posterior mean or optimum ranking rule in the
sense of COCHRAN (1951), BULMER (1980), FERNANDO (1983) & GOFFINET (1983).
Solution of the resulting equations requires an iterative implementation. A conceptually
similar method has been developed by HARVILLE & MEE (1982). Although these pro-
cedures are theoretically appealing, computations are more complicated than those

arising in linear methodology.

Although BLUP has become a standard method of sire evaluation in many countries,
its robustness to departures from linearity has not been examined. Non linearity arises
with categorical data and, therefore, a comparison between BLUP and the procedure
developed by GIANOLA & FOULLEY (1983 a) is of interest. The objective of this paper
is to present results of a Monte Carlo comparison of the ability of the above 2 methods
to rank sires correctly when applied to simulated categorical data.



II. Methodology

A. Experimental design and simulation of data

Three experimental settings were considered to compare the 2 methods of evalua-
tion :

1) a one-way sire model with equal progeny group size within a data set ;
2) a one-way sire model with unequal progeny group size within a data set ; and

3) a mixed model with unequal group size within a data set.

In the 1st setting 36 independent data sets were generated per replicate. These data
sets represented all combinations of 3 progeny group sizes (10, 50 or 250 progeny
records for each of 50 sires), 3 levels of heritability in a conceptual underlying scale
(hz = 0.05, 0.20 or 0.50), and 4 types of categorization which will be described later.
Phenotypic values in the underlying scale were generated (RONNINGEN, 1974 ; OLAUSSON
& RONNINGEN, 1975) as :

where :

Yij : phenotype of individual j in progeny group i, with y, - N (0,1) ;

h2: heritability in the underlying scale ;
a; : standard normal random variate common to all individuals in progeny group i with

ai - N (0,1), and

aij : standard normal random variate for individual j in progeny group i, with a, rv N (0,1).

The phenotypes y;! were categorized using fixed thresholds in the standard normal
distribution function. The first 3 categorizations reflected either a 1 p. 100 (y;! > 2.33),
5 p. 100 (y, > 1.65) or 25 p. 100 (y;! > 0.68) incidence of a binary trait in the population
as a whole. The 4,h type of categorization created a tetrachotomous trait reflecting
incidences of 40 p. 100-40 p. 100-15 p. 100-5 p. 100 in the population as a whole ; this
was made using 3 thresholds (yij :=:; - .25 ; - .25 < yq :=:; .84 ; .84 < y, <- 1.65 ; yq > 1.65).
Binary responses were coded as 0-1, and tetrachotomies were coded using the integer
values 1 to 4. The difference in heritability in a categorical scale resulting from using
integer verus « optimal » scores is negligible (GIANOLA & NoRTOrt, 1981).

In the 2nd setting 12 independent data sets were generated per replicate, representing
all combinations of the above levels of heritability and categorization. However, the 50
progeny groups represented in each data set varied between 5 and 250 in steps of 5.
Data were simulated as outlined for Setting 1.

In Setting 3, 15 independent data sets were generated per replicate. Combinations
of the 3 heritability levels with a 10 p. 100 incidence level (y;! > 1.28) of a binary trait
were added to those used in Setting 2. Data were generated as before. Prior to catego-
rization, the effects of 2 fixed classifications, factor A (2 levels) and factor B (10 levels),
were superimposed, as indicated in table 1. Each progeny group was almost equally
represented in the levels of factor A, but only in 2 levels of factor B (20 p. 100 in



level B, and 80 p. 100 in level Be+, ; e = 1, 3, 5, 7 or 9). Consequently, 80 p. 100 of
the A x B x sire cells had no observations so as to approximate the situation in field
data sets. The disconnectedness of data subsets with respect to factor B and sires does
not hamper the comparison of predictors of genetic merit, as these are uniquely defined
and obtainable regardless of connectedness if the sires are a random sample from one
population (FERNANDO et al., 1983). The phenotypic values in the underlying scale
modified by the effects of the levels of the A and B factors, were categorized as follows.
With y,j - N (0,1) as in [1], let :

Clearly, Wijkf rv N (Ak + B!, 1) represents phenotypic values in 20 « sub-popula-
tions » corresponding to the filled cells in Table 1. The categories were then formed as :



In order to limit computing costs, each data set in each setting was replicated
10 times. Further replication depended on the Monte Carlo estimates of the difference
between methods of evaluation and of its sampling variance based on the first 10

replicates.

B. Methods of sire evaluation and computing procedures

1) In sire evaluations with linear models (BLUP ; HENDERSON, 1973),

where :
x : vector of categorical responses,
1 : vector of ones,

p : fixed effect common to all observations,
X, Z : known incidence matrices,

0 : vector of unknown fixed effects,
u : vector of unknown sire effects,
e : vector of residuals.

and :

Further, in the 3 settings :

where 02 and G2 are the sire and residual variances, respectively, and 1. and Ie are

identity matrices of appropriate order. With progeny consisting of halb-sib groups :



where h2 is « heritability in the categorical scale ». The latter was calculated from the
« true underlying heritability (h2) and from the expected incidences for each of the
settings using the formula (ViNsok et al., 1976 ; GIANOLA, 1979).

where m is the number of response categories (2 or 4), pi is the expected incidence in
the ith category, Izil are ordinates of the standard normal density function evaluated at
the abscissae corresponding to {p;}, and fwil are the scores assigned to the categories
(0-1 or 1-4). Mixed model equations corresponding to the models [3] and [4] were
formed using variance ratios as in [8] pertaining to the appropriate levels of heritability
used in the simulation. Sire solutions to the mixed model equations were taken as

predictors of the transmitting abilities of the 50 sires.

2) In the non linear method (GFCAT ; GIANOLA & FOULLEY, 1983a) the thresholds
and the unknown effects which affect location in the conceptual underlying distribution
are estimated jointly. The location parameters (11) were modeled as :

In [12] and [13], t is a vector of unknown fixed thresholds ; t is a scalar when

response variables are dichotomous, or a vector of order 3 x 1 when there are

4 categories of response. Prior information about t and (3* was assumed to be vague,
and u* - N (0, Ihl/4). The log-posterior density to maximize is :

y

where :

n : number of observations,
m : number of categories,
6j, : Kronecker delta, taking the value 1 if observation j is in category k, and 0

otherwise,

Pjk : (D (tk - ylj) - (D (tk_, - Tl,), is the probability of response in category k given the
location parameter Tlj, and 4) (.) denotes the standard normal distribution function
to = - !, tm = 00), and

G : Diag fh’/41. 
’

y



The parameters (6) were estimated iteratively using the modification of the Newton-
Raphson algorithm suggested by GinrroLw & FOULLEY (1983a). Starting values used for
t were 0 in the case of binary responses, or the threshold values used for categorization
into 4 classes when the data were generated. Starting values for [3* and u* were always
zero. In random models, iteration continued until A’ A/p < 10-10, where A = CM - 8[i-1] 1’
is a vector of corrections at the ith iterate, and p is the order of 0. In the mixed model
(11! the system does not converge if all responses in a subclass of a fixed effect are in
the same extreme category, a problem recognized by HARVILLE & MEE (1982). These
authors suggested ignoring the data from such subclasses or to impose upper and lower
bounds on the parameter values. In the present study the main interest was in the sire
solutions. Because these converge more rapidly than the solutions for t and (!*, conver-
gence was monitored by restricting attention to the sire part of the parameter vector.
The criterion used was :

The above test, while suitable for the purpose of this study, cannot be recommended
for more general puposes, e.g., field data sets with large numbers of sparsely filled
subclasses from combinations of levels of fixed effects.

As the residual standard deviation is the unit of measurement implicit in the method
developed by GIANOLA & FOULLEY (1983a), all solutions were multiplied by 1 - hl/4
to express them in the scale of the simulation. This, of course, does not affect sire
rankings.

C. Comparison of methods

The analysis of each data set generated yielded 2 vectors of estimated transmitting
abilities (BLUP : f ; GFCAT : u*) ; the vector of true transmitting abilities (a) was
stored during simulation. Sires were ranked using 6 and u*, and the corresponding
average true transmitting abilities for the 10 lowest ranking sires were computed ; let
these values be 5 and 5* for rankings based on u and fi*, respectively. As the categories
of response were scored in ascending order, this is tantamount to selection against a
« rare » categorical trait or « lower tail selection ». Because of symmetry, only « lower
tail selection » needs to be considered. Further, because E (ai) = 0, a and a* can be
viewed as expressing « effectiveness » of lower tail selection based on u or u*, or as a
realized genetic response. The method of evaluation which on average (over replicates)
yields the lowest values (a or 5*) would be preferred.

Differences between 5 and 5* were examined using paired t-tests within each of
the treatment combinations (i.e., progeny group size x heritability x level of categori-
zation). The statistic used is : 

-



Efficiency of selection, i.e., realized genetic progress as a percentage of maximum
genetic progress, was also assessed. Maximum genetic progress was defined as the

genetic selection differential occurring if the true transmitting abilities were observable.
For example, in the case of selection using BLUP evaluations, efficiency of selection
was calculated as :

where 51 is the average transmitting ability of the sires with the lowest 10 true values.

III. Results

A. Setting I

After 2 replications, it became apparent that the 2 procedures, linear and non

linear, gave exactly the same ranking of sires when progeny group size was constant
and responses were dichotomous. The log-posterior density in GFCAT (GrANoLA &

FOULLEY, 1983a) is equal to :

where :

n : constant progeny group size,
n, : number or responses for sire i,
t : unknown threshold, and
s : number of sires.

Substituting vi = u’ - t in [20], v; and t are solved from :

and

where : 4) (.) : normal probability density function.

It is informative to express n; in [21a] as a function of vi, using [21b] :



It can be shown (proof available on request) than ni is a monotonically increasing
function of v;, and hence of u’. It is easy to see that this is the case by replacing 4) (vi)
by its logistic approximation !GIANOLA & FOULLEY, 1983a) so :

which is clearly a monotonically increasing function of v¡ and thus of û;. Because of
the monotonicity, as ni increases, so does û:. Similarly, in BLUP, when 11 = 0, the

transmitting ability of the sire is calculated from :

so u; is a linear and, therefore, monotonically increasing function of n;. We conclude
that for a one-way random model, binary responses and constant progeny group size :

so GFCAT and BLUP yield exactly the same ranking of sires.

With 4 categories of response and constant progeny group size, BLUP and GFCAT
gave, in general, similar sire rankings (table 2). The average difference (eq. [17])
between methods was generally not significant and lower than 2 p. 100, except for



h2 = .50 and n = 10. In this case, BLUP was « better » in 7 of the 10 replicates, and

equal to GFCAT in the remaining 3 ; for this combination of h2 and n BLUP was
4.4 p. 100 better than GFCAT, (p < .05). However, in view of the overall pattern of
results in Table 2, it is doubtful whether this « significance » should be taken seriously.
As expected, the efficiency of selection as defined in this paper increased with h2 and,
particularly, with n. The results indicate a « consistency » property of the 2 methods :
as n increases, BLUP and GFCAT converge in probability to the true transmitting
ability of a sire, and more rapidly so at a higher level of heritability.

B. Setting 2

When the data were described by a one-way random model and progeny group
size was variable (5 to 250 progeny per sire), BLUP and GFCAT did not always yield
the same sire rankings (Table 3). However, on the basis of 10 replications, the 2
methods gave virtually similar results, as indicated by the almost null variance of their
difference. As in the previous case, the efficiency of selection increased with heritability
and incidence, and also with the extent of polychotomization (binary vs. tetrachotomous
variables).



C. Setting 3

Under the more realistic assumptions of this setting, GFCAT performed significantly
better than BLUP when responses were binary, heritability in the underlying scale was
moderate (h2 = .20) or high (hz = .50), and when low incidences (1 p. 100, 5 p. 100)
were used to categorize the underlying variate (Table 4). GFCAT was also better when
h2 = .50 and incidence was 10 p. 100. In these instances, the increase in efficiency
ranged between 3.9 p. 100 (h2 = .50 and 5 p. 100 incidence) to 12.2 p. 100 (h2 = .20
and 1 p. 100 incidence). The 2ymethods did not differ significantly at h2 = .05, or when
the incidence of a binary trait was 25 p. 100, or when the response wasytetrachotomous.

As pointed out before, the intended incidence levels in the mixed model setting do not
correspond to the realized incidence levels ; the reason for this is that each combination
of fixed effects represents a distinct statistical population.



IV. Discussion

This study addressed ranking properties of linear (BLUP) and non-linear (GFCAT)
methods of sire evaluation for dichotomous or ordered categorical responses. The end-
point measured was the Monte Carlo realized response to truncation selection upon
predicted sire values. The impetus for the study was provided by shortcomings expected
in theory when linear predictors are used with categorical responses (GIANOLA, 1980,
1982) ; these shortcomings are addressed by GFCAT. As BLUP has become in many
countries the standard procedure for sire evaluation, a change in methodology for certain
traits could be justified only if the alternative method, in this case GFCAT, leads to

improved selection decisions. This was the rationale for the choice of end-point measured.

Under normality, BLUP is the maximum likelihood estimator of E (u y) or best
predictor (HENDERSON, 1973). The best predictor maximizes the correlation between
true and predicted values, or accuracy of selection (HENDERSON, 1973 ; BULMER, 1980).
In order to illustrate, consider a one-way sire model with known mean. If the sires are
unrelated, the squared accuracy of selection for the ith sire, using the best linear predictor
as a ranking rule, is :

However, under the threshold model and with binary responses (DEMPSTER &

LERNER, 19SO! : 1

where t = (D-1 (a) is the inverse probability transformation corresponding to an overall
incidence a in the population. Using [26] in [25], it is clear that P7 increases with w at
a given h2. However w is maximum when t = 0 (a = 50 p. 100), and symmetric about
this value Hence, pi is frequency dependent, and the accuracy of selection of a linear
predictor declines as a departs from 50 p. 100, irrespective of the direction. Although
pi is only an approximate measure of efficiency of selection when E (u ! y) is not linear
in y (BULMER, 1980), the above argument illustrates the impact of the incidence of a
binary trait on efficiency of selection (see, for example, table 3). In GFCAT, the
posterior density is well approximated by a multivariate normal distribution as the

margins of the contingency table (GtartoLa & FOULLEY, 1983a) become large. In a one
way-sire model, the squared accuracy of selection with GFCAT is approximately :

and ui is the transmitting ability of the ith sire in the underlying scale. Note that the
accuracy of selection depends not only on ni and h2 but on the distance between the
true transmitting ability of the ith sire and the threshold. This is automatically estimated



in GFCAT and not taken into account in BLUP. Nevertheless, [27] is maximum when

t = ui, and decreases as the proportion of the progeny of the sire exhibiting a response
deviates from 50 p. 100. This is also borne out by the results in table 3. All in all,
the results in tables 2 and 3 clearly suggest that BLUP, as measured by the criterion
considered in this study, is a very satisfactory method of prediction of breeding value
for categorical responses when the one-way sire evaluation model is tenable. In view
of the lower computational requirements of BLUP relative to GFCAT, the adoption
of non linear methodology is difficult to justify in this type of sampling scheme.

In one-way layouts, many assumptions violated by linear models when applied to
binary responses are not strained (GIANOLA, 1980, 1982). For example, the phenotypic
variance, (D (t) [1 - <I> (t)], is homogeneous. This is not true in the mixed model situation
where, in the usual notation (e.g., GIANOLA & FOULLEY, 1983b), the residual variance
is (D (X[3 + Zu) [1 - <I> (Xp + Zu)]. When a mixed model was applied to generate and
to analyze the data, GFCAT was significantly better than BLUP in a number of

heritability-incidence combinations for binary responses (table 4). This occurred at

h2 = .20 and .50, and when incidence was low. Note that at these levels of h2, the
heritability in the « observed » scale for the significant comparisons varied between .05
and .26, depending on the incidence. The range of incidences encompassed by the
significant comparisons was 1 p. 100 (6.5 p. 100 of « effective incidence » ; see previous
sections) to 10 p. 100 (21.6 p. 100 of « effective incidence »). It is not immediately
obvious, at least when responses were binary, why « significance » occurred for some
treatment combinations but not for others. Because a plot of the standard normal
distribution function against its argument is particularly non linear in the tails, we
conjecture that a linear approximation is fairly robust at intermediate frequencies, say
20 to 80 p. 100, but breaks down otherwise. The levels of incidence (1-10 p. 100, or

effectively 6.1 p. 100-21 p. 100) and the « observed » heritabilities (.05-.26) at which

« significances » occurred, suggest that GFCAT should be considered for application to
genetic evaluation of binary traits related to reproduction and fitness, e.g., calf survival,
conception rate, or abortion rate under tropical or sub-tropical conditions (A. MENENDEZ,
Cuba ; personal communication). When responses were tetrachotomous the 2 methods
did not differ significantly for any of the treatment combinations considered. This

suggests that the linear combination w’v (w : vector of scores ; v : 4 x 1 vector containing
the observations in the 4 categories for a particular subclass) tends to normality rapidly
so that a linear approximation does not result in any appreciable loss in response to
selection.

A conceptual difficulty encountered when implementing the linear analysis in the
simulation under the assumptions of a mixed model, was arriving at a meaningful value
of h’. In a single population problem, h2 can be readily calculated from h2 and from
the incidences in the population (ROBERTSON, 1950 ; VINSON et al., 1976 ; GIANOLA,
1979) ; simulation studies conducted by VAN VLECK (1972) and OLAUSSON & RONNINGEN

(1975) suggest that this approximation is fairly accurate, at least for binary responses.
However, under a mixed model, there are as many h2’s as there are combinations of
levels of fixed effects or sub-populations (GIANOLA, 1980, 1982). This implies that the
variance ratio used in BLUP would need to vary from sub-population to sub-population.
However, because a sire leaves progeny in many sub-populations, this poses the problem
of which variance ratio applies to which sire. The approach taken in this paper, e.g.,
for binary responses, was to approximate h2 as :



where :

!1) : Y- i pi4)i, with (Di being the incidence in the sub-population i ;
,

p; : proportion of observations in the data set in the ilh sub-population ;
if> : ordinate of the standard normal density function appropriate to <&.

While this is a heuristic solution, to which alternatives exist, the difficulty of

modeling correctly the threshold concept with linear models is well illustrated. It is

possible to speculate that use of an « incorrect » heritability might have affected nega-
tively the effectiveness of selection using BLUP as a sire ranking criterion. Mixed linear



model predictors of breeding value are believed to be insensitive to changes in heritability
(FREEMAN, 1979). We examined this problem for the case of binary responses via an
additional simulation. Six data sets were generated under the mixed model assumptions
of Setting 3 ; the data sets corresponded to 2 levels of incidence in the population
(1 p. 100 or 5 p. 100), and 3 levels of heritability (h2 = .05, .20 or .50). In each data
set, the value of h2 used in the mixed model computations was varied from 50 p. 100
to 150 p. 100 of the « true » h2. As shown in table 5, the efficiency of selection averaged
over 10 replications was virtually insensitive to the value of h2 used in the calculations.

GFCAT is based on the concept of an underlying continuous distribution of genetic
merits and environmental influences. The data simulation procedure applied implicitly
assumes this concept to be reality. In many cases the evidence to support this concept
may not be sufficient however. A trait may be categorical down to the genetic level
(e.g. halothane sensitivity in pigs). On theoretical grounds both methods compared
would be hard to justify then.

V. Conclusions

The results of this study indicate that a non linear method of sire evaluation for
categorical responses, GFCAT, does not always outperform BLUP. In the one-way sire
evaluation models, differences between methods, as measured by the ability to elicit

larger response to selection, were negligible. However, this type of layout is seldom
realistic in practice. Similarly, when responses were polychotomous, i.e., more than
2 meaningful categories of response, there was little difference between methods, irres-
pective of the model used to generate and to analyze the data. In the above cases, given
the additional computational requirements of GFCAT and the apparent robustness of
BLUP, it seems doubtful that non linear methodology could be justified from a practical
point of view.

When a mixed model was required to describe variation of binary responses, GFCAT
performed significantly better than BLUP when heritability in the conceptual underlying
scale was moderate to high, and when the expected incidence was below 25 p. 100 ;
for some combination of parameters the gain in efficiency of selection amounted to
12 p. 100. Hence, it appears that for the type of sampling situations that arise in animal
breeding practice, non linear methods should be given serious consideration for the
analysis of binary responses. At least in theory, it is expected that the superiority of
GFCAT over BLUP would be proportional to the number of fixed effects required in
the model and to the extent of heterogeneity in incidence across statistical sub-popula-
tions.

The cost of data processing is usually small relative to the other outlays associated
with a large scale breeding program, e.g., field personnel, testing facilities, and overhead
costs. Small increases in accuracy of selection stemming from improved evaluations of
candidates are usually cost effective because the total cost of the evaluation is increased
only to a limited extent. Further, the improved evaluations have multiplicative effects
as potentially increased returns from improved stock are spread industry-wide (albeit
unequally among tiers) and over generations. In the data sets considered in the present
study between 5 to 10 rounds of iteration were required to attain convergence using
GFCAT. This may give an indication of the additional computational requirements of
the non linear methodology.



In the present study, the underlying variance-covariance structure was known. This
might have favored GFCAT somewhat over BLUP because the prior distribution for
the former method could be specified without « error ». As pointed out previously,
when applying linear methodology to categorical responses a « heritability » value needs
to be contrived ; in the general case it is not obvious how to do this. However, the
results displayed in table 5 suggest that this issue should not have been an important
source of difference between the 2 methods. On the other hand, it is possible that the
linear methodology was « helped » by using a contrived value of heritability. This is so
because of the inability of linear methods to account for the relationship between mean
and variance arising in categorical responses. Methods for estimating variance components
in mixed linear models (at least 10 such methods have been described in the literature !)
may give severely biased estimates of the underlying variance-covariance structure. This
is an area for further work. Clearly, a single simulation study cannot address all possible
combinations of parameters, data structures, models and methods.

A question of considerable interest is the ability of BLUP versus GFCAT to account
for selection bias. While under normality BLUP is unbiased by selections based on
translation invariant functions of the records (HENDERSON, 1973 ; FERNANDO, 1983 ;
GoFFtNET, 1983), this property does not hold for other distributions, e.g. multinomial.
FERNANDO (1983) has shown that when selecting a fixed number of candidates, genetic
progress is maximized by ranking individuals with conditional means, calculated as if

selection had not occurred, irrespective of the number of stages or of generations
involved in the selection program. With categorical responses, GFCAT can be thought
of as an approximation to the posterior mean or conditional expectation of the predic-
tands given the data. We conjecture that GFCAT should be less prone to bias than
BLUP for categorical data in a population undergoing selection.
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