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Summary

A method of prediction of genetic merit from jointly distributed quantal and quantitative
responses is described. The probability of response in one of two mutually exclusive and exhaustive
categories is modeled as a non-linear function of classification and «risk» variables. Inferences
are made from the mode of a posterior distribution resulting from the combination of a multivariate
normal density, a priori, and a product binomial likelihood function. Parameter estimates are
obtained with the Newton-Raphson algorithm, which yields a system similar to the mixed model
equations. « Nested» Gauss-Seidel and conjugate gradient procedures are suggested to proceed
from one iterate to the next in large problems. A possible method for estimating multivariate
variance (covariance) components involving, jointly, the categorical and quantitative variates is
presented. The method was applied to prediction of calving difficulty as a binary variable with
birth weight and pelvic opening as « risk » variables in a Blonde d’Aquitaine population.

Key-words : sire evaluation, categorical data, non-linear models, prediction, Bayesian methods.

Résumé

Prédiction génétique a partir de données binaires et continues : application aux
difficultés de vélage, poids a la naissance et ouverture pelvienne.

Cet article présente une méthode de prédiction de la valeur génétique a partir d’observations
quantitatives et qualitatives. La probabilité de réponse selon I'une des deux modalités exclusives
et exhaustives envisagées est exprimée comme une fonction non linéaire d’effets de facteurs
d’incidence et de variables de risque. L’inférence statistique repose sur le mode de la distribution
a posteriori qui combine une densité multinormale a priori et une fonction de vraisemblance produit
de binomiales. Les estimations sont calculées a partir de I'algorithme de Newton-Raphson qui conduit
a un systéme d’équations similaires a celles du modéle mixte. Pour les gros fichiers, on suggere des
méthodes itératives de résolution telles que celles de Gauss-Seidel et du gradient conjugué. On pro-
pose également une méthode d’estimation des composantes de variances et covariances relatives aux
variables discrétes et continues. Enfin, la méthodologie présentée est illustrée par une application
numérique qui a trait & la prédiction des difficultés de vélage en race bovine Blonde d’Aquitaine
utilisant d’'une part, I’appréciation tout-ou-rien du caractére, et d’autre part, le poids a la naissance
du veau et 'ouverture pelvienne de la meére comme des variables de risque.

Mots-clés : Evaluation des reproducteurs, données discrétes, modéle non linéaire, prédiction,
méthode bayesienne.
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I. Introduction

In many animal breeding applications, the data comprise observations on one or
more quantitative variates and on categorical responses. The probability of «successful »
outcome of the discrete variate, e.g., survival, may be a non-linear function of genetic
and non-genetic variables (sire, breed, herd-year) and may also depend on quantitative
response variates. A possible course of action in the analysis of this type of data might
be to carry out a multiple-trait evaluation regarding the discrete trait as if it were
continuous, and then utilizing available linear methodology (HENDERSON, 1973). Further,
the model for the discrete trait should allow for the effects of the quantitative variates.
In addition to the problems of describing discrete variation with linear models (COX,
1970; THOMPSON, 1979; GIANOLA, 1980), the presence of stochastic «regressors » in the
model introduces a complexity which animal breeding theory has not addressed.

This paper describes a method of analysis for this type of data based on a Bayesian
approach; hence, the distinction between «fixed» and «random» variables is
circumvented. General aspects of the method of inference are described in detail to
facilitate comprehension of subsequent developments. An estimation algorithm is
developed, and we consider some approximations for posterior inference and fit of the
model. A method is proposed to estimate jointly the components of variance and
covariance involving the quantitative and the categorical variates. Finally, procedures
are illustrated with a data set pertaining to calving difficulty (categorical), birth weight
and pelvic opening.

II. Method of inference : general aspects

Suppose the available data pertain to three random variables: two quantitative (e.g.,
calf’s birth weight and dam’'s pelvic opening) and one binary (e.g., easy vs. difficult
calving). Let the data for birth weight and dam’s pelvic opening be represented by the
vectors y, and y,, respectively. Those for calving difficulty are represented by a set Y
of indicator variables describing the configuration of the following s X2 contingency
table:

Category of response
Row Easy calving Difficult calving
1 Ny n; — ng
2 Nay N, — Ny
i. nj) ;. - 0y
; r.15| n,. = Ny

where the s rows indicate conditions affecting individual or grouped records. The two
categories of response are mutually exclusive and exhaustive, and the number of
observations in each row, n; #0, is assumed fixed. The random quantity n; (or,
conversely, n; — n;;) can be null, so contingency tables where n;, =1, fori =1, ..., s, are
allowed. The data can be represented symbolically by the vector Y =(Y,, Y,, ..., Y,),

where Y;= 2 Y, with Y, being an indicator variable equal to 1 if a response occurs
r=1

and zero otherwise.
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The data Y, y, and y,, and a parameter vector @ are assumed to have a joint
density f(Y, y,, y,, 0) written as

(Y, y1, y2, 9)=1:(Y, y1, y2|0)-£,(0). (1)
where f,(0) is the marginal or a priori density of 8. From (1)
£.00]Y, yi, y2) =Y, y1, ¥2|0).£,(0)/1(Y, ¥, ¥2) (2)

where f4(Y, y,, y-) is the marginal density of the data, i.e., with 0 integrated out, and
f4(0|Y,, ¥1» ¥2) is the a posteriori density of 0. As f4(Y, y,, y,) does not depend on 0,
one can write (2) as

£40]Y, yi, y2) « £(Y, v, y2|0).£,(0) (3)

which is Bayes theorem in the context of our setting. Equation (3) states that inferences
can be made a posteriori by combining prior information with data translated to the
posterior density via the likelihood function f,(Y, y,, y2|6). The dispersion of @ reflects
the a priori relative uncertainty about 0, this based on the results of previous data or
experiments. If a new experiment is conducted, new data are combined with the prior
density to yield the posterior. In turn, this becomes the a priori density for further
experiments. In this form, continued iteration with (3) illustrates the process of
knowledge accumulation (CORNFIELD, 1969). Comprehensive discussions of the merits,
philosophy and limitations of Bayesian inference have been presented by CORNFIELD
(1969), and LINDLEY & SMITH (1972). The latter argued in the context of linear models
that (3) leads to estimates which may be substantially improved from those arising in
the method of least-squares. Equation (3) is taken in this paper as a point of departure
for a method of estimation similar to the one used in early developments of mixed
model prediction (HENDERSON et al., 1959). Best linear unbiased predictors could also
be derived following Bayesian considerations (RONNINGEN, 1971; DEMPFLE, 1977).

The Bayes estimator of @ is the vector & minimizing the expected a posteriori risk

R(H; Y, y1, y2) = j j 1(8, 0)£.(8]Y,, y,, y2)d(8) 4)

— oo — oo

where 1(§, 8) is a loss function (MooD & GRAYBILL, 1963). If the loss is quadratic

k
(6, 0)=> (8,—6,>°=(0—-0)(6—0) (5)

i=1

then

aR(0: Y, v, ) C o n
'(—agh—yZ):gg{ J' j (00— 06— 0/ +0'01£,(0]Y, y,,yz)d()}

— oo

=2[6-E®|Y, y,, y2)] (6)

Equating (6) to zero, yields 6=E(0|Y, Yi» ¥2)- Note that differentiating (6) with
respect to 0 yields a positive number, i.e., 8 minimizes the expected posterior risk,
and 0 is identical to the best predictor of @ in the squared-error sense of HENDERSON
(1973). Unfortunately, calculating @ requires deriving the conditional density of 0 given
Y, y, and y,, and then computing the conditional expectation. In practice, this is difficult
or impossible to execute as discussed by HENDERSON (1973). In view of these difficulties,
LINDLEY & SMITH (1972) have suggested to approximate the posterior mean by the
mode of the posterior density; if the posterior is unimodal and approximately symmetric,
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its mode will be close to the mean. HARVILLE (1977) has pointed out, that if an improper
prior is used in place of the «true» prior, the posterior mode has the advantage over
the posterior mean, of being less sensitive to the tails of the posterior density.

In (3), it is convenient to write

1Y, y1, ¥210)=1a(Y]y1, y2, 0).f5(y1, ¥2/0) (N

so the log of the posterior density can be written as

In(f.0]Y, yi, y2) ] =In[fs(Y]yi, y2, )]+ In[fs(y,, y2|0)]+In[£,(0)] + const.  (8)

III. Model

A. Categorical variate

The probability of response (e.g., easy calving) for the i row of the contingency
table can be written as some cumulative distribution function with an argument peculiar
to this row. Possibilities (GIANOLA & FOULLEY, 1983) are the standard normal and
logistic distribution functions. In the first case, the probability of response is

Py=b(p)= [ 6(x)dx 9)

where ¢&(.) and ®(.) are the density and distribution functions of a standard normal
variate, respectively, and u; is a location variable. In the logistic case,
Poy=[1+e 4] (10)

The justification of (9) and (10) is that they provide a liaison with the classical
threshold model (DEMPSTER & LERNER, 1950; GIANOLA, 1982). If an easy calving occurs
whenever the realized value of an underlying normal variable, z~N(3;, 1), is less than
a fixed threshold value t, we can write for the i'" row

P, =Prob {z<t}= f H(v)dv=D(t—8;) (11a)

—

Letting w;=t—38;, p;+5 is the probit transformation used in dose-response
relationships (FINNEY, 1952) ; defining ¥ = w,w/V3, then

[1+e— 4] = (whV3/m) (11b)

For —5<p; <35, the difference between the left and right hand sides of (11b) does
not exceed .022, being negligible from a practical point of view.

Suppose that a normal function is chosen to describe the probability of response.
Let y;; be the underlying variable, which under the conditions of the i'" row of the
contingency table, is modeled as

Vis=xXiBs +zisu;s + ey (12a)

where x{; and z{; are known row vectors, B, and u, are unknown vectors, and e;; is a
residual. Likewise, the models for birth weight and pelvic opening are

Y =xuB;+ziju, +e;, (12b)
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and
Yiz = Xi2B2 + Zou, + €52 (12¢)
Define p; in (9) as
lLi=E(Yi3|B|, B2, u;, uy, B, us, Vi, Vi)

=x£333+z;3“3+E(ei3|en’ €i2) (13)
which holds if e;; is correlated only with e;; and e;,. In a multivariate normal setting

1 “ro../o. 0 €
E(eislen. e2)=[ps 032][ 012] [ 3/ ! ][ I] (14)

P2 1 0 023/Ue2 Ci2

where the p;;'s and the o¢.'s are residual correlations and residual standard deviations,
respectively. Similarly

Var(Ynan B2, uy, uy, Bs, us, gy, Yi2)=Var(e|3|ei1, ei2)
21— g3 1) (15)

where p3 ,, is the fraction of the residual variance of the underlying variable explained
by a linear relationship with e;, and e;,. Since the unit of measurement in the conditional
distribution of the underlying variate given B,, B,, uw,, w,, B3, Wy, y;; and y,, is the
standard deviation, then (14) can be written as

1 p] 7 '[l/oe, O 1 e
E(esleir, e2)=[ps1ps2] [pn | ] [ . l/cez] Vit [eiz] (16)
=b,e;; +bsepn (17)
Hence, (13) can be written in matrix notation as
n=X;8;+ Z;u,; + bz,el +b,e, (18)
=XaBs +Zous + 2 b (v, — X8~ Zn)) (19)

i=1

where X,, X,, Z, and Z, are known matrices arising from writing (12b) and (12¢) as
vectors. Now, suppose for simplicity that X, is a matrix such that all factors and levels
in X, and X, are represented in X; and let Z,=Z,=Z,. Write

X,=X;Q; X:=X;Q,

where Q, and Q, are matrices of operators obtained by deleting columns of identity
matrices of appropriate order. Thus, (19) can be written as

p=X;(B;—b,Q,8, —bQ:B>)+Z;(u; —byu, —b,u,)
+ b,y + by, 20)

2 2
Letting T=8,— 2, b;Q;B; and v=u;— >, bju;, (20) can be expressed as
=1

i=1
p=X;1+Zw+b,y, +bsy, 21

Note that if b, =b, =0, then v=B;, v=us, and (21) is equal to the expectation of
(12a).

Given p, the indicator variables Y are assumed to be conditionally independent,
and the likelihood function is taken as product binomial so

In[f(Y|p)]=3 [nyIn(P;) + (n, — n;)In(1 - Pyy)] (22)
i=1
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Now
f(Y|p) < £(Y ]y, y2, 0%) (23)
where 0¥ =[B,, B,, B3, u;, u,, Uy, by, b,1. Also
(Y |y, y2, 0%) « £(Y|yy, ¥2. B1s B2, T, Uy, s, ¥, by, by) (24).
Letting ¢ =[B,, B>, 7, u,, u,, v, by, b,], then from (23) and (24)
(Y |) < £(Yy1, vz, 0%) = £(Y]y1, ¥2, 0) (25).

B. Conditional density of «risk» variables.

The conditional density of y, and y, given 0 is assumed to be multivariate normal
with location and dispersion following from (12b) and (12¢)

hla XB,+Zu,

o102 :
y2|0 X.B5 + Zsu, (26)
AL Ry R

Var[ ]=[ ] @7
)’2|0 R;; Ry

where (27) is a non-singular known covariance matrix. Letting R'!, R'2, R?! and R?*? be
respective partitions of the inverse of (27), one can write

1& 3 -
ln[fs(Yh YZIO)] = _5 2 2 (i~ XB;— Ziui)Ru(yj ‘Xij - Zj“j) + const. (28)

i=1 j=1

C. Prior density.

In this paper we assume that the residual covariance matrix

€, Ry, R, Rys
Var =

€z R;, R;, Ry

€3 R31 R32 R33

is known. From (16) and (17), this implies that b, and b, are also known. Therefore,
f(B1, B2, 7, uy, wy, v, by, by) x £(B;, B2, 7, uy, uy, v) (28)
and the vector of unknowns becomes &' =[B,, B>, 7, u,, u,, v}

Let 8’ = [B’, u’] where B’ = [By, B3, 7] and W’ = [uy, vy, v']. A priori 8 follows
multivariate normal distribution

o[ o)) @)

Var(u)=Var | " =G, (30)

uy
u; —bu; —b,u,

where
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Further
Gc= l 0 0 G]] G|2 G13 I 0 _bll (31)
0 I 0 G,, G,, Gy, 0 1 —b,I
—b,l —b,l 1 G, Gs;, Gis 0 0 I

with Cov (u;, u))=G;;(i, j=1, ..., 3). Note that G_ depends on b, and b,; when b, =b, =0,
it follows from (30) that Gc={Gi,~ . Now

In[f,(8)] = —%{(a —a)T~Y(B—a)+uwG'u} + const. (32)

where GZ'={G¥}(i, j=1, ..., 3). Prior knowledge about B is assumed to be vague so
I' — o and '"'! — 0. Therefore

In[f,(8)] = —%{u’G;‘u} + const. (33).

IV. Estimation

The terms of the log-posterior density in (8) are given in equations (22), (28) and
(33). To obtain the mode of the posterior density, the derivatives of (8) with respect
to 0 are equated to zero. The resulting system of equations is not linear in 8 and an
iterative solution is required. Letting L.(0) be the log of the posterior density, the
Newton-Raphson algorithm (DAHLQUIST & BIORCK, 1974) consists of iterating with

b= - [[%ﬁ—)]];:l@u—n [[%;ﬂ]]thél‘*” G4

Note that the inverse of the matrix of second partial derivatives exists as B can
be uniquely defined, e.g., with X; having full-column rank, i=1, ...3. It is convenient

to write (34) as
(-5 @8 =[50, as).

A. First derivatives.

Differentiating (8) with respect to the elements of 0 yields

aL(0) 2 .
—— =X, Ri(y;—X;B;—Zu,),i=1,2 (36)
aBi i=1
and
aL(8 2 2 .
au(. )=z'i2 Ri(y, — X;8;,— Zu,))— >, Gllu,— Gl’v 37
i j=1 j=1 .

The derivatives of L(8) with respect to T and v are slightly different

3L.(9) - () d(y)
= ; —(n; —m; ; 8
T l—zl [nll Pil (nl. nll) l Pil] Xi3 (3 )
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where x[; is the i row of X;, and

3L(6) Es: [ni, M—(ni_ —ny) i) ] z;,— >, Giu,— G2, 39)

v i=1 P;, 1-P; j=1
Now, let v be a sxl vector with elements
v,—=—{n,-,ijl+(n,-'—n,-1)i32}, i=1,...,s

where i;; = —d(p;)/P;; and i;; = d(p;)/(1—P;;), and note that v, is the opposite of the
sum of normal scores for the j'** row. Then

L
3O _ Xjv (40)
aT
and
aL(0 2
L=zgv—2 G¥u; — GPv. (41)
av i=1

B. Second derivatives

The symmetric matrix of second partial derivatives can be deduced from equations
(36) through (41). Explicitly

3°L(0) .
=-X/R"X;; =1,2 4
BB ' e
9°L(0)
=—-X'R?’X 42b
T T “20)
32L(0) . i=1,2
= —-XRYZ;; .
oB;ou; : i=12 “20)
9’L(9)
=0; =12
ot ; 1 (42d)
°L(0
@ _p, i=12 (42¢)
aBiaV
3’L(9) N . i=1,2
= - Z/RVZ, - Gi;
du;du; ! ! ¢ i=12 42/
92L(0) .
=0; =1,2
du; o7’ ' (“422)
321(0) .
= -G, i=1,2
P i (42 h)
3°L(0
@ _ _xswx, (42i)
oToT
2L(0) .
oy X3WZ,; (42))
3?’L(0
®  ziwz,-G>. (42k)

vov’
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In (42 i) through (42 k), W is an sxs diagonal matrix with elements

Wi = njlijl(ijl - le) + (nj. - njl)ij2(ij2 - p'j)
=pv; +ngi +H(ny —ny)ik, i=1, ..., s, (43)
Note that E(W ;| ) =052, + (n;, —ny)i2, (44)

indicating that calculations are somewhat simpler if «scoring» is used instead of
Newton-Raphson.

C. Egquations

Using the first and second derivatives in (36-41) and (42a-42k), respectively,
equations (35) can be written after algebra as (45).

In (45), B1, B, ul and ui'! are solutions at the [i"] iterate while the A's are
corrections at the [i™] iterate pertaining to the parameters affecting the probability of
response, e.g., Alil= g1 —7li~11 Jteration proceeds by first taking a guess for 7 and v,
calculating W[°] and vt%, amendmg the right hand-sides and then solving for the
unknowns. The cycle is repeated until the solutions stabilize. Equations (45) can also
be written as in (46). The similarity between (46) and the «mixed model equations »
(HENDERSON, 1973) should be noted. The coefficient matrix and the « working » vector
yLii~1) change in every iteration; note that yii=!''=X g7 "1+ Z pli= 14 (Wi — 1)~ Tyli— 11,

D. Sotving tne equations

In animal breeding practice, solving (45) or (46) poses a formidable numerical
problem. The order of the coefficient matrix can be in the tens of thousands, and this
difficulty arises in every iterate. As B,, B», u, and u, are «nuisance» variables in this
problem, the first step is to eliminate them from the system, if this is feasible. The
order of the remaining equations is still very large in most animal breeding problems
so direct inversion is not possible. At the i'" iterate, the remaining equations can be
written as

P [i*l],Y[i]:l[i‘I] (47)'
Next, decompose PE~1 as the sum of three matrices L'"~"), D'~ ', U"~'1, which are
lower triangular, diagonal and upper triangular, respectively. Therefore
.Y[i)z{Dri—u}—l{l[i—n_Lrifn.Ym_Uri—n,Ym}_

Now, for each iterate i, sub-iterate with
‘Y[i’ "+”={D“_”}"{l“_”—L“‘”-y“’ BN _gli- Lyl j]} (48)

for j=0, 1, ...; iteration can start with y' ®’=0. As this is a «nested» Gauss-Seidel
iteration, with PY~'! symmetric and positive definite

lim At 3=t (49)
j—» oo

(VAN NORTON, 1960). Then, one needs to return to (47) and to the back solution, and
work with (48). The cycle flmshes when the solutions v stabilize.
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Another possibility would be to carry out nested iterations with the conjugate
gradient method (BECKMAN, 1960). In the context of (47) the method involves :

a) Set
P[0]=r[0]=l[i—l]_ P[i—l],Y[i‘ 01., i= 1’ 2’
where ' °1 is a guess, e.g., ¥ 91=0.

b) Calculate successively

[b.1] alfl_ 1 =p'[:'.er[n/{p:'m]-)[ifnpm}

[b.2] A i1 =yl il 4 gligpth)

[b.3] rlit11 = plil _ G lilgli— 115

[b.4] AL = _{r'[:‘+1lp(ifllpti]}/{plmp[i—upm}

[b.5] p“"’” =pli+v114 )\[j]p[j]

for j=0, 1, ..., until y'*J? stabilizes. When this occurs, PU~" and I'"!! jn (47) are
amended, and the cycle with a new index for i is started from (a). The whole process
stops when y'"! does not change between the [i] and [i+ 1] «main» rounds. While the
number of operations per iterate is higher than with Gauss-Seidel (BECKMAN, 1960), the
method is known to converge faster when P! in (47) is symmetric and positive definite
(personal communication, SAMEH, 1981).

V. Approximate posterior inference and model fit

As discussed by LINDLEY & SMITH (1972) in the context of linear models, the
procedure does not provide standard errors a posteriori. LEONARD (1972), however, has
pointed out that an approximation of the posterior density by a multivariate normal is
«fairly accurate » in most regions of the space of 0, provided that none of the n;, or
n; —n;, are small. If this approximation can be justified, given any linear function of
0, say t'0, one can write, given the model

E[t8|Y, y,, y,]=t (50a)
Var[t8|Y, y,, y.1=t'Ct (50b)

where § is the posterior mode and C is the inverse of the coefficient matrix in (46);
note that.C depends on the data through the matrix W. Further

[¢8 —t'6)/(£Ct): ~N(0, 1) (50¢)

thus permitting probability statements about t'0. In many instances it will be impossible
to calculate C on computational grounds.

The probability of response for each of the rows in the contingency table can be
estimated from (9) with p evaluated at . Approximate standard errors of the estimates
of response probabilities can be obtained from large sample theory. However, caution
should be exercised as an approximation to an approximation is involved.

When cell counts are large, e.g., n;; and n; —n;, > 5, the statistic

Sy —m 13'1)2
2 i
X = —_—— 51
Z:l n, P, (1-P;)
can be referred to a chi-square distribution with s-rank (X;) degrees of freedom. Lack
of fit may result from inadequate model specification in which case alternative models
should be entertained.
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VI. Unknown variance-covariance structure

The matrices R;;(i, j=1, ..., 3) and G, are assumed known so that they are treated
as nuisance arrays in (8) and (46). In animal breeding practice there are generally
«good » estimates of these matrices so they could be used in (45) or (46) to proceed
with the method, in the same way as in linear methodology (HENDERSON, 1973). The
effect of replacing R and G. matrices by estimates on the posterior distribution of 0
is not known, and should be studied by Monte-Carlo methods.

If the analysis were to proceed in an entirely Bayesian context, prior distributions
would need to be specified for the elements of these matrices. This is not addressed
in the present paper as it does not appear clear what densities should be considered
for the distribution of covariance components. For a discussion of Bayes estimation of
variance components, see HILL (1965), Tia0 & TAN (1965), TiaA0 & Box (1967),
LINDLEY & SMITH (1972) and HARVILLE (1977). LEONARD (1972) considered estimation
of variance components with binomial data for a one-way model.

Equations (46) suggest methods for estimating variance and covariance components
in this quantitative-categorical setting. Write

a) W =AU =({VWIT}R, j=1,
b) X{ = AlIX,
¢) Z{" =A1Z,

and
d) qgile[i]y[Si]
Equations (46) can then be written as (52) below.
X{R''X, X{R'2X, X{R''Z, X|R"Z, 0 0 Bi+n
XRX,  XRPX, X;R*'Z, X;R¥Z, 0 0 [
ZiR''X, ZR’X, ZR'Z +G! Z{R7?Z,+G} 0 G ujit!
ZéR2‘X| ZéR22X2 ZéRnZ, +Gf;‘ ZéR22Z2+G§2 0 G23 u[2|+]]
0 0 0 0 X5x Xjliiz g gl
0 0 G2| ng Zé[i]x(}i] Z’[']Z[']+G33 ;{iH]
Xi(R!ly, +R'%y;)
X3(R?My, + R%y;)
= | ZiR!y, +R"y,) (52)
Zy(R?'y, + R*y;)
X;’lf]q[fl
Zg“'q"]
The above equations suggest at each iterate the multivariate linear model
Y1 X, 0 o [LIARER zZ, 0 O utit 1 E}
y» |=10 X, 0 g+l +f 0 Z, 0 uitt |+ | ER
q[i] 0 0 xgi] ‘r“+l] 0 0 Z[3i] v[i+l] Egi]
i=0,1... (53)

with B+, BL+4) and +1'+' «fixed » and uli*"), uli+!"1 pli+! and the E’s random, with
covariance matrix
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“[1f+” Gii.c Gi2e Gz O 0 0
“[2_l+” GZI,C G22,(: G23,c 0 0 0
Var v[l+1] = G3l,c G32,c G33‘c 0 0 0
21 0 0 0 R,, R ©
EY 0 0 0 R,; Ry, 0
EY! 0 0 0 0 0 I

i=0,1... (54)

holding at every iterate. Note that the residual variance of ¢! is unity so this part of
the covariance structure does not need to be estimated. Provided that p;, and p,, are
known, the method can be used to estimate the additive genetic covariance matrix
between the quantitative traits and the hypothetical underlying variate with binary expres-
sion.

Expressions in (53) and (54) suggest that some of the methods for estimating variance
and covariance components in linear models could be used to estimate the covariance
structure in (54). One possibility would be to mimic the computations used in estimation
via restricted maximum likelihood (SCHAEFFER et al., 1978) for multivariate normal data.
As computational feasibility is of paramount importance, a multivariate extension of
Henderson’s «simple » method (HENDERSON, 1980) could be useful here. However, this
method does not preclude negative estimates of variance components. Estimation of
genetic parameters in non-linear models is an open area of potential importance.

VII. Numerical application

Data were obtained from 47 Blonde d’Aquitaine heifers mated to the same bull
and assembled to calve in the Casteljaloux Station, France. Each calving record included
information on the following: region of origin and sire of the heifer, pelvic opening and
season of calving, sex and birth weight of the calf, and calving difficulty score (1:
normal birth, 2: slight assistance, 3: assisted, 4: mechanical aid, and 5: cesarean). For
the purpose of the analysis, twin calves were excluded and calving difficulty was
recoded as: a) « Easy» (scores 1, 2 and 3) or b) «Difficult» (scores 4 and 5). The data
are presented in Table 1. As shown in Table 2, 23.4 % of the calvings were «difficult »
and there were marked differences in the incidence of difficult calvings between sexes
and maternal grandsires.

A. Models

Birth weight was modeled as
Yijuim =Di+T;+ Ly + S, + €500m (55a)

where D; is the effect of the i region of origin of the heifer (i=1,2), T; is the effect
of the j*™* season of calving (j=1,2), L, is the effect of the k™ sex of calf (k=1: male,
2=female), S, is the effect of the 1™ sire of the heifer (1=1, ..., 6), and eju., is a
residual. The vectors B, and u, were defined as

Bi=[D+T,+L,;, D, +T,+1L,, T,-T,, L;—L,] (35b)
and
ll; :[Sl’ SZ’ S:h S4, SS’ S6] (55 C)
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TABLE 2

Marginal mean (or frequency) of calving variables by level of factors considered.
Moyenne (ou fréquence) marginale des variables de vélage par niveau de facteur.

Variable!®
Factor N° BW PO CD
Heifer origin 1 30 43.02 319.60 0.267
2 17 43.02 321.48 0.177
Calving season 1 20 42.23 327.96 0.200
2 27 43.61 314.59 0.259
Sex of calf M 25 44.59 - 0.360
F 22 41.24 - 0.091
Sire of heifer 1 10 40.55 328.28 0.000
2 7 42.99 317.40 0.286
3 6 40.53 309.55 0.000
4 4 45.38 312.08 0.500
5 11 45.46 338.98 0.364
6 9 43.43 301.57 0.333
Total 47 43.02 320.28 0.234

(a) BW: birth weight in kg.; PO: pelvic opening in cm?; CD: frequency of difficult calvings.

The model for pelvic opening was
Zijkl =D€+TE +Sl’c+e€jkl (56a)

where Dj is the effect of the i*" department of origin of the heifer (i=1,2), T} is the
effect of the j™ season of calving (j=1,2), S. is the effect of the k* sire of heifer
(k=1, ..., 6) and e};,, is a residual. The vectors B, and u, were defined as

B2=[D; +T;, D;+T;, Ti — T3] (56 b)
u; =[S}, 53, S3, S4, S5, Sel. (56 ¢)

The data in Table 1 can be regarded as a 47 X2 contingency table, with rows
corresponding to each record, and columns being « DIFFICULT » and « EASY » calvings.
Hence,n, =1fori=1,..,47,and Y’ =[Y,, ..., Y], with Y, being a scalar variable with
realized value 1 if a difficult calving occurs, or 0 otherwise. The probability of difficult
calving for the i'™ row was assumed a normal integral with argument modeled as

RiGkmy =D + TE + LT+ S+ by(Yijiim —43.02) + bao(Zijm — 320.28) (57 a)

where D7 is the effect of the j'® department of origin (j=1,2), Ty is the effect of the
k™ season of calving (k=1,2), L is the effect of the I'" sex (I1=1: male, 2=female),
and S, is the effect of the m'™ sire of the heifer; b, and b, are partial «regression»
coefficients of the underlying variate on birth weight of the calf and pelvic opening of
the heifer, respectively. These coefficients were assumed known with b, =.1643 and
b, = —.0184; the logic for the choice of these values is presented in the following section.
Note that as pigum, increases, so does the probability of difficult calving; also, igkim,
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increases with increased birth weight and decreases with increased pelvic opening. The
vector T and v were then

7=[Di+T;+L3, D3+ T;+L3, T — T3, Li - L3l (57b)
=[ ,l,’ S’2” ,3” Zy g9 Sg (57C)

B. Conditional covariance

Given 0, the variance-covariance matrix of birth weight and pelvic opening is
0 o2 o,
Var [ yll ] [ ' 212] ® Li7xa7
y2|0 o oz,

€12
where ® is the Kronecker product. The values used for the residual covariance matrix
were (MENISSIER & SAPA, personal communication): o2, =25, o2,= 1089 and o ,=41.25.

The coefficients b, and b, were calculated as in (16) and (17) from p,, = .25, p;3=.50
and p,; = —.30; the residual variance in the underlying scale, which was set equal to 1,
corresponds to (15). These values yielded b, =.1643 and b, = —.0184.

C. Prior distribution

The parameter vector for this problem was

0’ =[BiB:tuju’] (58)
Prior knowledge about B,, B, and T was assumed to be vague. The covariance
matrix of u;, u,, and v was
u,
Var| u, | =G, ® g6 (59)
v

where G, is a 3X3 matrix calculated as in (31). The unconditional prior covariance
matrix was taken as

i=1,..,3

G ={pGiqui0'uj} ] — I, s 3 (60)

where pg_ is the genetic correlation between traits i and j in the underlying scale. The
genetic correlations used were (MENISSIER & S..PA, personal communication) :

PG, =-70 and pg,, = —.50. The standard deviations were calculated as
Ou=0./VN, i=1,..,3 (61)
with \;=(4—h3)/h}, and h?= .15, h2= .40 and h?=.30. Further
0'e3=1/V 1_Pg.lz (62)

with p%,,=.4427. We obtained

9740  3.7997 .2635 9740  3.7997 1734
G=]3.7997 121.0000 —-2.0978 [; G.=]3.7997 121.0000 —.4956
2635 —2.0978  .1455 1734 —~.4956  ..0260
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Computations were also carried under the hypothesis of no «risk» relationship, i.e.,
b,=b,=0. In this case, a different prior covariance matrix was used

9740 3.7997 .1967
Go= [ 3.7997 121.0000 —1.5661
1967 —1.5661 .0811

obtained from G by appropriate rescaling of elements. For example, and taking into
account that 1/V1—p2,,=1.3395

.0811=.1455/(1.3395).

Note that h3=4x.0811/(1 +.0811)= .30, PG,,=-70 and pg,, = — .50, as it should be.
In this instance, the u;’s are expressed in standard deviation units of the underlying
variate for calving difficulty «unadjusted» for residual variation in birth weight and
pelvic opening. In order to compare estimates obtained under b, #0 and b,#0 with
those calculated with b, =b,=0, the latter were multiplied by 1.3395 to express them
in the same scale.

D. Logistic approximation

In each of the two cases (b, #0 and b, #0, and b, =b, =0) computations were also
conducted using the logistic approximation in (11 »). Since the residual variance in the
logistic scale is w?/3, the prior covariance matrices G, and G, discussed in the previous
section were rescaled as

G¥=LG.L'; G¥§=LG,L’

where L is a 3 x 3 diagonal matrix with elements 1, 1 and w/V/3. Solutions to (45) and
(46) obtained with the logistic approximation were then divided by =/V3 to make them
comparable to those obtained with the normal scale.

E. Iteration

Starting values for 7 and v are needed to iterate with (45) or (46). Two different
sets of starting values were used. The first was the T and v roots of (45) with WIi-11=1,
vli=11=t being a vector of (0,1) variables (1: difficult calving; 0: otherwise) and v/~ "'=0.
These roots yielded 1°! and v'®! which were used to compute p{%..., in (57 a); in turn,
these values permitted calculation of W' in both the normal and logistic cases. The
second starting set was the solution to (45) with W''"''=1, vi=!T=¢* being a vector of

1+.5 .
empirical logits (ln [0+ 5] =1.099 if a difficult calving occurred and — 1.099 otherwise)
and v/ "1=0. ’

Iteration stopped when VA'A/29 <10~ '°, where A=8'"—8' ' In each of the four
cases resulting from the combination of normal or logistic functions with hypotheses
about residual correlation (b, #0 and b,#0 vs, b, =b,=0), convergence to the same
solution occurred irrespective of the starting set used. Six rounds of iteration were
required for the starting set using v''"'!=t*; seven rounds were required when v{i "=t
was used. From a practical point of view, however, iteration could have stopped at
the third round. Results of iteration using a normal integral, b,#0 and b,#0, and
vii='1=¢ as a trial vector are shown in Table 3.
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TABLE 3
Solutions by round of iteration in the case of a normal function, b, # 0 and b, #0, and a trial
vector of (0, 1) variables.

Solution a différentes itérations dans le cas d’une fonction normale avec b; # 0, b, # 0 et un vecteur
initial de variables (0, 1).

Iteration®

Component® of ¢ 0 1 7

1. D;+T,+L, 41.664 41.671 41.688
2. Dy+Ty+L, 42.307 42.282 42.315
3. T,-T, -1.221 —1.208 —1.194
4. L,-L, 3.028 3.017 2.978
5. §; -0.336 —0.305 —0.426
6. S, -0.210 —0.243 —-0.270
7. 83 —-0.633 —0.582 —0.664
8. S, 0.372 0.352 0.491
9. S5 0.730 0.821 0.885
10. S¢ 0.077 —0.043 -0.017
11. D1+ T3 313.138 313.134 313.143
12. D3+ T; 312.590 312.644 312.610
13. T1—T3 14.899 14.876 14.848
14, S 4.401 4.349 4.548
15. S; 0.168 0.228 0.284
16. S; -3.800 —-3.907 —3.738
17. S; —1.855 ~1.812 -2.106
18. S; 11.113 10.968 10.876
19. S¢ —-10.027 —9.826 —9.864
20. DI +T3+ L5 0.135 —-1.193 —1.772
21. D5+ T3+L5 0.107 —1.390 —-2.134
22. TY~-T —0.041 0.405 0.432
23. L1—-L3 0.244 0.420 1.022
24. St -0.116 —0.113 —-0.126
25. S5 —0.050 —~0.053 —0.056
26. S; —0.084 —-0.078 —0.088
27. S§ 0.091 0.088 0.106
28. S§ 0.030 0.039 0.045
29. Sg 0.129 0.116 0.119

(a) Components 1-10: birth weight, 11-19: pelvic opening, 20-29: underlying variate for calving difficulty.

(b) Convergence attained at the seventh round of iteration.

F. Model fit, estimates and their posterior precision

The models were evaluated for fit by referring the statistic in (51) to a chi-square
distribution with 47 —4 =43 degrees of freedom. None of the chi-square values

x’(b; #0, b, #0, normal)=26.19; x*b,=b,=0, normal)=37.56

x’(b, #0, b, #0, logistic) =27.12; x*b, =b,=0, logistic)=37.35

could be considered significant so there was no evidence to reject the model. However,
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given the sparsity of the contingency table analyzed in this example, the approximation
of (51) to a chi-square statistic may be poor.

Differences between final round estimates of @ obtained with the normal (8. and
the logistic (8, ) functions were small so the latter will not be presented here. In fact,

[(8,.—0.)(8, -0.)/29F=2.94x 102

Estimates of components of @ obtained using the normal distribution, and their
estimated posterior precision (square root of estimated posterior variance) are shown
in Table 4. The contrast L7 —L5 was estimated at 1.022 and 1.315 for the cases
(b, #0, b, #0) and (b, =b,=0), respectively. These indicate that if a male calf is born,
the probability of a «difficult» calving would be larger than if a female calf is born,

TABLE 4

Estimates of components of @ and their posterior precision in the case of a normal function.

Estimations des composantes de @ et de leur précision a posteriori dans le cas d’une fonction
normale.

«Risk » relationship

Component® of A

b, #0. b, #0 b,=0,b,=0
1. D,+T,+L, 41.688 +1.425 41.697 *=1.424
2. D,+T,+L, 42.315 *=1.669 42.378 *+1.669
3. ) -T, ~1.194 *=1.502 —-1.206 =1.502
4. L,-L, 2.978 *1.457 2.937 £1.455
5.8 —0.426 =0.862 —0.571 =0.847
6. S, ~0.270 *+0.867 —0.240 *0.854
7. 8 —0.664 *+0.894 —0.805 +0.884
8. S, 0.491 +0.899 0.544 +0.891
9. S 0.885 +0.831 0.878 *0.815
10. S¢ —-0.017 =0.852 0.194 +0.834
11. D;+T; 313.143 +8.468 313.287 =*8.465
12. D3+ T} 312.610 =10.710 312.362 +10.707
13. T}—T3 14.848 +9.970 14.756 +9.968
14. Si 4.548 +8.361 5.605 =8.306
15. S, 0.284 +8.763 0.314 +8.672
16. S; -3.738 *9.125 —2.422 +9.059
17. S§ —2.106 +9.387 —3.268 +9.297
18. S5 10.876 +8.235 10.313 +8.146
19. S¢ -9.864 =8.525 —10.543 *8.433
20. D+ T5+L3 —-1.772 =0.563 —1.666 +0.634
21. D} +T5+ L5 —2.134 +0.692 —-1.957 x0.777
22. T'-T 0.432 +0.522 —~0.150 =0.599
23. L7-L5 1.022 +0.588 1.315 *0.643
24. S —0.126 *+0.129 -0.361 *0.310
25. S5 -0.056 =0.133 —-0.100 *=0.311
26. S3 —0.088 =0.138 —-0.217 =0.326
27. S; 0.106 *0.141 0.285 =0.328
28. S5 0.045 *0.124 0.016 *=0.294
29. S§ 0.119 +0.128 0.376 +0.302

(a) Components 1-10: birth weight; 11-19: pelvic opening; 20-29: underlying variate for calving difficulty.
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irrespective of whether the effects of birth weight and pelvic opening are removed.
This is consistent with the findings of BELIC & MENISSIER (1968). However, the
difference in the underlying scale between male and female calves was smaller when
birth weight was included as a «risk » variable. If this result were true, it would suggest
that part of the difference between sexes in liability for calving difficult is not associated
with differences in birth weight. The effect of including «risk » variables in the model
was clear in relation to differences between seasons. Season 1 was more favourable in
the (b, =0, b, =0) model perhaps because of calves with lighter birth weight and dams
with larger pelvic opening; when these differences were taken into account
(b, # 0, b, # 0), season 2 turned out to be more favourable.

G. Sire evaluation

As pointed ovt before, v=u; —bu; —b,u,, so sire solutions presented in Table 4
for the two different models are not comparable. Sires can be ranked for calving
difficulty in the full model by using the statistic

U,=v+b,u, +bou, (63)

where v, 4, and u, are the sire components of @ associated with the underlying variate,
birth weight and pelvic opening, respectively. From a practical point of view, one may
be interested in ranking sires in terms of probability of difficult calving rather than in
a hypothetical underlying scale. For example, breeders may wish to know the probability
that a heifer sired by the m*™ bull, born in region 1, calving a male calf in season 1 a
will experience a difficult calving. An estimate of this probability can be calculated as

M m=®[D+T)+Li+S.,+by(D, + T, + L, - 43.02) + by(D; + T} - 320.28)]. (64)
Using (64) for sires 1 to 6 yields
Sire 1: .253 Sire 4: .436
Sire 2: .312 Sire 5: .347
Sire 3: .304 Sire 6: .463.

In more general situations, e.g., artificial insemination, the probability of difficult
calving associated with using the m™ sire in a given distribution of regions, calving
seasons and sexes of calf may be of interest. This probability could be estimated as

ﬁ“.mzzjklajklﬁjklm (65)

with ﬁjklm as in (64) and 3;,, being an arbitrary weight such that 2;,8;,=1. For the
example considered in this paper, we took 8 = 1/8 because there were 8 region X season X
sex subclasses, and ranked sires using (63) and (65). Results are shown in Table 5 for
the normal and logistic distributions. As already indicated, differences between the
normal and logistic models were negligible, and the estimated probability of difficult
calving ranged between .116 and .239. Note that evaluations based on raw frequencies
(Table 2) gave the probability rankings :

Sire 1 =Sire 3 < Sire 2 <Sire 6 < Sire 5< Sire 4.
However, the ranking in Table 5 was
Sire 1< Sire 3 < Sire 2 < Sire 5< Sire 4 <Sire 6.

This indicates that evaluation based on raw frequencies can be seriously misleading.
However, the progeny group sizes were small (Table 2) and none of the evaluations
calculated with (63) could be considered different from zero (Table 5).
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TABLE §

Sire evaluation and estimated probability of difficulty calving®.

Evaluation des péres et estimation de la probabilité d’apparition d’un vélage difficile.

Evaluation + Probability of
Posterior precision Difficult calving
Sire Normal Logistic Normal Logistic
1 —0.280+0.321 -0.279+0.321 0.117 0.116
2 -0.106+0.326 —0.103+0.326 0.147 0.148
3 —0.128 +£0.337 —0.127+0.336 0.143 0.144
4 0.225+0.341 0.232+0.340 0.217 0.226
5 —0.009x0.311 —0.007+0.310 0.166 0.169
6 0.298 +0.319 0.284+0.318 0.235 0.239

(a) See equations (63) and (65).

VII. Conclusions

This paper presents a solution to the problem of estimating the genetic merit of
candidates for selection when both quantal and continuous information is available in
a set of individuals. The proposed method was adapted to the situation where the
probability of «response» is a function of continuous «risk» variables. Also,
consideration is given to the assumption that candidates for selection are sampled from
a distribution with second moments known, a priori. The method can be extended to
multiple ordered or unordered categories of response along the lines presented by
GIANOLA & FOULLEY (1983).

The method is non-linear and approximates the best predictor in a squared error
sense. Theoretical objections arising in analysis of categorical data with linear models
(e.g., GIANOLA, 1982) are eliminated. For example, when calving difficulty is measured
as an «all or none» trait, sire Xxsex of calf interactions are usually found to be
«significant». This may be associated with a scaling problem. Suppose we wish to
compare two sires and that the values in the underlying scales are v, Mg, Mom and
Mor; the subscripts indicate the sire and the sex of the calf. Further, suppose that there
is no interaction between sex and sire in the underlying scale, i.e.,

KM ™ B2m = MiF — P2F-

However, ®(ju,)— P(pom) may be different from ®O(p,p)— P(p,r) because ®(x)
does not vary linearly with x.

The method of estimation is based on Bayes theorem, but is not completely Bayesian
in the sense that the variance-covariance structure is regarded as representing a set of
«nuisance » parameters. In principle, prior knowledge (or lack of) about variances and
covariances could be represented via a prior distribution (LINDLEY & SMITH, 1972) and
modal estimates obtained from the posterior density. HARVILLE (1977) has indicated
that estimators of variances obtained from the joint posterior mode can be degenerate
if uninformative priors are used. This author qualified the modes of the marginal
posterior density of the variance components as «seemingly superior» estimators.
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Important numerical problems arise when the procedure is applied to the estimation
of vectors with thousands of elements, the usual situation in applied animal breeding.
Nevertheless, the order of the computations is comparable to that arising in
multi-dimensional BLUP multiplied by the number of « main » iterates needed to achieve
convergence. When the «risk» variables are considered in the model, the method
requires that every experimental unit with a categorical response includes information
on the quantitative variates.
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