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Inbreeding depression and heterosis :
Expected means and variances among inbred lines
and their crosses

C. CHEVALET et M. GILLOIS

Laboratoive de Génétique cellulaive,
Cenlye de Recherches de Toulouse, I.N.R.A.,
B.P. 12, 31320 Castanet-Tolosan, France

Summary

Complementary phenomena of heterosis and inbreeding depression are investigated from
a theoretical point of view in an experiment involving several inbred lines originating from the
same population. It is assumed that dominance interactions exist between gene effects, contri-
buting to a quantitative character. A general theory on the evolution of genetic variances within
and between subdivisions of the population is developed. We base ourselves on the theory and
on the calculation of identity coefficients. In the absence of selection, the evolution of variances
is determined onmly through the knowledge of genetic components typical of the quantitative
character, and of the genetic effective number of inbred lines. The given results generalize and
consolidate the former studies. The main possible evolutions are discussed by means of numerical
illustrations. The population structure differs from the one described by WRIGHT in the case
without dominance, depending on the importance of the dominance interaction and on the initial
frequencies of alleles.

Two main phenomena are expected:

(f) Preservation of temporary increase in the mean genetic variance within lines is possible
in cases more general than those that are already known; the immediate and constant reduction
of this variance in inbred lines does not constitute a widespread phenomenon.

(#d) The genetic variance in populations F, obtained by interbreeding inbred lines may be
considerably lower than the mean genetic variance in parental populations. Thus the reduction
in variance experimentally observed in F, must not always be attributed entirely to a reduction
in the environmental variance.

Furthermore, the general results are illustrated by investigating crossings of pure lines of
autogamous vegetable species.

I. — Introduction :
Heterosis and inbreeding depression phenomena

»  Many experiments led to the definition of the relations hip between theincrease
in the inbreeding coefficient and the quantitative performance. FALCONER (1960)
described their essential characteristics. This phenotypic mean depression
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distinguishes itself by its linearity as a function of the inbreeding coefficient F,
in the (0-0.60) interval. In mammals, the essential characteristic of which is the
period of gestation, perforniances such as the size of the litter, the viability of the
offspring and their weight before weaning are dependent both on the mother’s
and their own inbreeding coefficient (DICKERSON et al., 1954).

Heterosis corresponds to an observation initially made on the plant Kingdom:
this expression conveys the superior value of the phenotypic vigour of plants
born of parents of very distinct lines. Genetically distinct lines can be obtained
through genetic drift from the same initial stock. ROBERTs, whose works have
been quoted by FALCONER (1960), has reared thirty inbred lines of mice that
showed an inbreeding depression in the size of the litter. Next, he proceeded to
random matings between lines. In these matings the size of the litter reached the
initial level of the original population. Presented along these lines, heterosis
appears as the restoration of the loss caused by inbreeding, within one generation.
Similar results have been reported in pigs by SELLIER (I1970). Revealed in terms of
means, this phenomenon is also accompanied by an evolution in the phenotypic
and genotypic variances of populations. Generally it is agreed that inbreeding
in many lines born of the same population increases the genetic homogeneity
or uniformity within lines as well as the genetic variance or differentiation between
lines. A very important aspect from the biological and the breeding point of
view is the increase in the environmental variance in absolute and relative value,
with the increase in inbreeding and the reduction in this variance with the rise
of heterosis (FALCONER, 1960).

To interpret these phenomena the simplest classical quantitative genetics
model is necessary; the gene effect involved in the expression of a character shows
dominance interactions but no epistasis. The evolution of means will be reported,
and possible evolutions of different genetic components of the variance will be
described, but with this simple model it will not be possible to explain the
increase of the environmental variance value in inbred lines, nor its reduction in
hybrids.

II. — Genetic model of interpretation

A. — The ideal population

The above mentioned experimental results have been obtained from popu-
lations the structures of which can be idealized. It is assumed that a large popula-
tion in which mating is panmictic, is available initially. This panmictic popu-
lation bred a large number of subpopulations or *‘ lines ”’ panmictic themselves
but not very large. This subdivision comprises situations such as geographic or
ecological isolation or situations controlled by laboratory or domestic animial
breeders.

The large population will be referred to in terms of * original population ”,
the small ones will be referred to in terms of *“ lines ”’. In each one of these 'small
populations or lines, the genic frequencies are submitted to a drift mechanism,
to which is attributed the essential part in revealing heterosis experimentally.
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The simplest specific conditions governing this ideal population are:

1. Matings are achieved exclusively between individuals of the same line.
Consequently, they are isolated. Migration is excluded from the model.

2. Generations are distinct and do not overlap.

3. The number of animals kept for breeding purposes in each line is the same
for all lines and generations.

4. Within each line matings are panmictic.
5. There is no selection. Mutations are not taken into account.

6. For a pair of parents the number of offspring kept for breeding purposes
for the following generation is determined by the law of Poisson.

B. — Gene Effect Model

To explain the heterosis phenomenon, we shall restrict ourvelves to a parti-
cular model in which the genes present only domiinance interactions. According
to the breaking down introduced by FISHER (1918) a genotypic random variable
Z, is attached to each locus («) contributing to the character and made up of the
sum of additive effects X', and X", of genes, and of the residue of dominance D,.
Without epistasis, the total random genotypic variable Z is the sum:’

Z = X', + X", + =D,
3 3 o

Then, the genetic variance in the original population comprises one part of
 additive genetic variance ”’, 2 VARX) = V,, and one part of ‘ dominance
genetic variance ’, VAR (D) = V,. Whenever, we find it necessary to describe
a particular line with greater precision we consider a character governed by a
single biallelic locus, the numerical contributions of the three genotypes (aa), (a¢A)
and (AA) being written respectively:

2u, # 4+ d and o

g referring to the allele (a) frequency, p to that of (A).

The first approach in which the character is described in general terms by
means of its statistical parameters, enables us to obtain straightaway results on
an average, through identity, inbreeding and kinship coefficients.” The second
approach which is less general, enables us to understand what is taking place
“locally 7 when two given lines are crossed; its development is based on the
consideration of moments of orders 2, 3 and 4 of the genic frequency ¢ within
a line. On this occasion, we must recall the very close relationship that exists
between these genic frequency moments and identity coefficients.

C. — Summary and notations
In finite populations, the statistical description of a quantitative character

refers not only to the initial components V, and Vp (Girrors, 1964, 1965, 1g664;
HARRIS, 1964), but also to five genetic parameters and to the identity coefficients
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defined by Girrois (1964, 1965). Thus, the genotypic expectation, variance and
covariance in an inbred population are written:

(I) E(Zx) = (I —fI)Eo(Z) + fIEI(Z)
= Eo2) + /D
(2) VAR(Z) = (1 + Vi + T — )V

+ fIVD + fICIAD + fI(I ““fx)Dz
(3)  COV(ZZy) = 2¢V, + (3 + 3;5)Vp

+ 8V, + (8 + HERE A 3))C'a
L (8 4 % — fif,)D?

f; stands for the inbreeding coefficient of the individual I, ¢ and 3; being respecti-
vely the kinship and the ¢i* identity coefficients of the pair of individuals (I, J).
The significance of variance components introduced is defined in Table 1. Ep
and Ec, GiLLois’s original notations, have been replaced here by E, and E;;
in more general terms Ey stands for an expectation taken under the condition in
which the inbreeding coefficient equals f.

Mathemiatical expectations referred to by symbol E are taken with respect
to the distribution of frequencies g due to the phenomenon of genetic drift. The
means represented by the symbol M stand, strictly speaking, for mathematical
expectations E conditioned by the value of the genic frequency ¢: if for a given
line (¢) and an instent (¢), g« refers to the random variable which under these
conditions takes the frequency of allele (a) as a value and Z; refers to the random
variable which takes as value the genotypic value of an individual taken at random
from this line (7) at the instant (¢), the expression E(Zi /g:) is replaced by the
symbol M4(Z). This notation can be justified since this conditional expectation
depends only on the frequency ¢ which characterizes line (¢) at the instant (f).

When crossing two lines () and (j), heterosis is defined as the difference bet-
ween the genotypic level in the interbred population (¢ X j subscript) and the
mean of genotypic levels of parental lines. We may write:

Hoos = Mos(Z) — 2 (Mi(2) + My(2))

Therefore, it is also an expectation conditioned by the knowledge of frequen-
cies ¢; and g¢; in parental lines.

Finally, the time subscript has not been mentioned: it is implied therefore,
that all quantities are relative to the same instant, determined by the rank held
by the generation with respect to the original population, or in a similar fashion,
by the value of the inbreeding coefficient F calculated with regard to this original
population.

III. — Evolution of means

A, — On an Average Calculation of the Inbreeding Depression and of heterosis

A, — Inbreeding depression

For a line, the inbreeding coefficient of which is f, the genotypic mean expec-
tation is (formula 1):

¥y(Z) = Eol2) + /D
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With respect to the original population the mean of which is Ey(Z), the mean
inbreeding depression for lines having the same inbreeding coefficient f is written
as follows.

(4) Ef(Z) — Eo(2) = 1D
In the particular biallelic model, this depression is written:
(5) Ef(Z) — Eo(Z) = — 2dpoq,f

The inbreeding depression depends on the dominance, and on the inbreeding level.
Between this depression and the inbreeding coefficient f, the relation is linear as
long as it can be assumed that the average of genic frequencies of all lines represents
the average of the original population (no allele loss for the population on the
whole, composed of all lines, and expressed by the term pyg, in formula (5)).

A,. — Heterosis

If two lines, with inbreeding coefficients f; and f; are interbred to obtain ¥,
individuals, the gametes that unite in these crossed zygotes, represent independent
drawings from the original population. Then, we can write straightaway that
the expectation of the random genotypic variable of an individual F, is equal to
that of an individual of the original population, that is E,(Z). The expectation
of heterosis Hy; associated with the crossing of two lines is therefore:

E(Hy) = Eo(2) — (EnlZ) + Ex(2)

©) BHy) =l

When two lines having the same inbreeding coefficient f, are interbred, heterosis
corresponds exactly to the recovery of the initial level from which we had departed
because of the genetic drift in isolated lines. It is important to emphasize that
this result holds only on an average, on the whole for all F, matings that are
possible with the available lines.

B. — Calculation of the Inbreeding Depression
and of Heterosis in Terms of Genic Frequencies

B,. — Inbreeding depression

Let a line (¢) be described by the frequency g; of allele (@), and the frequencies
of genotypes (aa), {aA) and (AA) respectively defined by:

P =g} Q = 2qips; R = p:

In doing so, we consider in fact a large population showing the same frequency ¢
as in the line ({), and being in Hardy-Weinberg equilibrium, which could hold
only approximately in the line of finite size. Then, the character mean of line (1)
is written:

My(Z) = 2ugi + 2dqs(T — ¢1)
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The inbreeding depression is therefore:
(7) Mi(Z) — By(Z) = 2(u + d) (g: — go) — 24(g% — ¢%)

Without selection between lines, the expectation of g; is still ¢,, so that the inbreed-
ing depression has an expectation of:

8) E(Mi(Z)) — Eo(Z) = —2d VAR (¢4)

B,. — Heterosis

The individuals F, obtained by crossing individuals from lines (¢) and (j),
in which the frequencies of (@) are ¢; and ¢; have the following approximate geno-
typic constitution:

P = gqip;; Q= qi(1 — q5) + q5(x — qu); ete...
The genotypic mean of population F; is therefore written:
Mixi(Z) = 2u(gi + ¢5) |2 + 24((¢: + @) [2 — ¢i9y)
and heterosis, calculated with respect to the average of parental lines, is:
(9) Hy = d(gi — ¢)®

Heterosis appears therefore as soon as the lines show different genic frequencies,
at the locus under consideration. It will be maximum, in absolute value, if the
difference |¢; — ¢;| is maximum. The expectation of the previous quantity can
be written:

E(Hy) = d (VAR (q:) + VAR (¢3)),

and as in paragraph A, we find that the heterosis expectation is equal to the
contrary of the inbreeding depression.

B;. — Conclusion

Thanks to a simple genetic model, the basic conclusions revealed in the ana-
lysis of the experimental results recalled in section I, have been rediscovered. The
analysis of this particular model shows that heterosis is the more important as
the two interbred lines are different, the extreme case being represented here by
the interbreeding of two lines one of which had drifted towards the homozygous
state (aa) and the other towards the homozygous state (AA).

A comparison between the average results directly obtained (paragraph A)
and the average results inferred from a ‘“ local ”’ analysis (paragraph B) lay stress
on basic fact: a comparison especially between formulas (5) and (8), leads to the
relation:

VAR (g:) = poqols,

that holds for any fixed instant (f) and that establishes a link between the variance
of the genic frequency on the one hand, and the inbreeding coefhicient, on the
other. As a rule, for a panmiictic population, we can write:

(10) VAR () = pogoF
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where F is function of kinship and inbreeding coefficients. This formula proven
in a classical manner for a hermaphroditic population (see CrRow and KiMURa,
1970, chapter 7) may be generalized (COCKERHAM, 1969).

This equivalence between the concepts of genic frequency variance and that
of inbreeding coefficient is a general property that can be stated as follows: any
moment of order % of the genic frequency ¢ can be expressed in terms of the initial
frequency g, and of identity coefficients defined for £ homologous genes taken at
random from a population in which the frequency ¢ is calculated (MALECOT, 1969a).
It is precisely this property that makes it possible to explain the genotypic variance
within inbred lines, for non-additive characters, with respect to a certain number
of parameters depending on g, and on identity coefficient of ‘“ orders "’ 2, 3, and 4.
Indeed, for a character with dominance, the expression of the genetic variance
in a line relies on the third and fourth powers of the frequency ¢, and the compu-
tation of its expectation requires the use of identity coefficients of order 2, 3 and 4.

IV. — Evolution of variances

Except in the particular case of an additive character—which presents no
interest in heterosis—the question of variance distribution within and between
lines has not a simple, nor a unique answer. The problem is set with the biallelic
model; next, the general method based on statistical considerations is presented
in the additive case. Despite the fact that formulas have been simplified (a
simplification that holds for lines with a sufficiently large genetic effective number
(Ne > 16)), they remain abstract and we think it useful to illustrate them by
designing imaginary quantitative characters in which genes show dominance and
overdominance interactions.

A. — Inbreeding phase
A,. — Biallelic model

Let a line (7) be characterized at an instant (#) by the frequency g; of allele (a).
Assuming the law of Hardy-Weinberg, we define:

— the genotypic mean:
Mi(Z) = 2uq; + 2dq:ps,

— the mean of the genotypic squares:
Mi(Z?) = 4u*q% + (u + d)*2puqs,
— and the genotypic variance in this line:
Vi = Mi(Z?%) — (Mi(Z))2.
We intend to study Vi, or rather its expectation Vi, that is, roughly the observable
mean of quantities Vi, if many equivalent lines are available. Meanwhile, we
are led to introduce the overall variance of genotypes, calculated on all individuals

of all lines, that is V;. Finally, Vp = V: — 'V, will refer to the variance of the
means M;(Z).
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Initially, Vp = o0, there is only one variance parameter, V:
Vo = 202poqqy -+ 4udpogo (I — 2q,) + 2d%pogo(T — 2PG0)s

(table 1). V4 has the same expression, substituting ¢;, the present frequency,
for q,, and the expectations V, and V, can be written:

Vo = 20°E(piqi) + 4udE{p:qi(1 — 2¢:)}
+ 2d*E{piqi(1 — 2p:q:)}
Vo = 4u?E(q?) + 44*E{g (1 — ¢:)*} + BudE{q:*(x — ¢i)}
— {2uq, + 2dpoqo(1 — F)}?
according to the definition of F (formula (10), paragraph IIT Bg). Therefore,
V and V, require the computation of moments of order 3 and 4 of frequency g;.

Their behaviour as time goes on depends also on the ratio 4 /4. The sum V;,
on the other hand, is expressed directly:

Ve = E{M(Z?)} — {E(M;(2))}*
= (1 —F)V, + Faupoq, + F(1 — F)4d?p?g%

4u%poq, stands for the total variance of Z, when all the lines have reached fixation,
without selection;

4d%p2,q2%, =. (—2dpyq,)? stands for the square of the parameter which characterizes
the inbreeding depression. This formula is formula (2), written as follows:

(2)  VAR(Z) = (1 —/) (Vs + Vp) + f(2Vs + Vp + C'xp) + f(x — /)D?

where V, + V,, = VAR,(Z) stands for the initial variance,
and 2V, + V', + C’yp, = VAR,(Z) the total asymptotic variance.

A,. — A particular case: the character is additive

Then we can calculate V, directly, for instance: having d = o in the expression
of the former paragraph, it becomes:

Vo == 4uPE(q:%) — 4u*qy’

= 4uPpoq,F
And since V, = 2u?pyq,,we get:
(11) V= (I—F)}V,
Vy = 2KV,
Ve = (1 + F)V,

(WRIGHT, 195I, I052.)

This same breaking down can be obtained starting out from a different point
of view: given an inbred population (of two sexes), characterized by the mean
inbreeding coefficient f and. the mean kinship coefficient ¢, and the initial variance
V, of an additive character,

(1 + /)V, represents the a-priori variance of the genotype Z; of a random indi-
vidual I;

2V, represents the a-priori covariance between the random variable Z;
and Z; of two distinct individuals taken from the same line.
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In an experiment involving several equivalent lines, this covariance will also
represent the variance of line means and we shall be able to write:

Ve = (1 +/)V,
(x1’) Vo = 2¢V,
V= (1 4 f—2¢)V,

Thus, we get the same beaking as WRIGHT got (formulas 11) noting that / and ¢
are not very different from the same value F. The difference is related to the fact
that the break-down is obtained here directly from genotypic frequencies. On
the contrary, expressions introducing a single parameter F are based on frequencies
and probabilities attached to gametes, from where we proceed to zygotic frequen-
cies by means of the law of Hardy-Weinberg. This statistical approcah of the
interpretation of a priori variance and covariance formulas, leads to a natural
extension to the case of any character due to many loci, with any number of
alleles per locus.

A, — A general case with dominance

Taking into account the previous consideration and expressions (2) and (3)
the break-down of the total variance V; into intra-line variance V ,, and inter-line
variance Vp, can be expressed:

(12) Vi = (1 +)Va+ (1 —HVy + V', + fChp + f(1 —)D?

+ o¥(f)(D* — D?)

Viw=(I+[—20)Vy + (T —[— 8 — 85)Vy, + (f — §)V'p
+{f— 8 — (8 + 8 + 8 + 8)/4}C' 4, + (f — 8, — 8)D2
+ ¢.,2(f)(D* — D?)

Vo = 2@V, + (3 + 35)Vy + 3,V
+ {8 + (3 + 8 4 & + &) [4}C 4 + (3, + 86 — [3)D?
+ oo¥(f)(D? — D?)

In the foregoing expressions, coefficients assume their mean values within a line.
Symbols 6:23(f), c»?(f) and ox*(f) hold for the variances of individual inbreeding
coeflicients, over the whole population, within line, and between lines, respectively.
It should be noted that the corresponding component (D% — D?) arises only when
more than one locus contribute to the character. The hypotheses proposed in
section 2 concerning the structure of lines make it possible to simplify these ex-
pressions in so far as the genetic effective size Ne is sufficiently large, larger than
say 16. If this is the case, identity coeficients 8; assume approximate expressions,
functions only of parameter F, that under the same hypothesis is equal to f and ¢.
Four probabilities will be introduced here.

F : the probability that at the same locus, two gametes taken at random
carry identical genes:

F ~ 1 — exp(—¢/2Ne)
G : the probability that three gametes taken at random carry identical genes:

~T 3 L Y
Gx~1 2(1 F)+2(I F)
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H : the probability that four gametes taken at random carry four identical
genes:

H =~ I—%(I—F) —|—(1—F)3—§(1—F)6

K : the probability that, four distinct gametes being drawn at random, the
four genes of the same locus are distributed into two independent groups,
each made up of two identical genes:

K = 2(G—H)

(according to CHEVALET, GILLOIs, NASSAR, 1977).
Also, from the work of WEIR and COCKERHAM (1969), it turns out that the
variances of inbreeding coefficients may be approximated as follow:

wf) = o) = ST

It will be found in the numerical illustrations (section 6) that the corresponding
component may generally be neglected. Formulas (12) become:

(12') Vi = (1 + F)V, + (1 — F)V, + FV'y + FC',p + F(1 — F)D?

(1 —F) 2 2
t N D)
Vs = 2FV, + g KV, 4+ HV'y + GClyp + (H + g K — F2)D?

Vo = (1 —F)V, + (I _—F—gK)vD 4 (F—H)Vy + (F — G)Clap

(1 — F)?

2 _ 2
12.Ne (® D?)

+ (F——H——éK)Dz +

The behaviour of these variances with time can therefore be studied as soon
as relative values for five genetic variance components are given; these results
make it possible to generalize the work carried out by ROBERTSON (1952) in the
case of one character governed by a very rare recessive gene.

To complete this break-down of the variance, it may be interesting to consider
the “ additive *’ part, in so far as this additive genetic fraction of the variance can
be estimated in inbred lines. This break-down has been achieved by Crow and
KiMURA in the particular case studied here (1970, formulas 7-5-20, 21, 22, page
343). Their extension to a general character with dominance characterized by
parameters V,-, Vo, V., ¢, and D? can be written as follows:

e Intra-line additive genetic variance:
(x3) Vw, = (1 —F)V, + (ZF—-ZG——gK)VD

+ 2(C —H)Vy + (F— ),y + (zG —2H —%K)Dz
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e Genetic variance of intra-line dominance:

Vwp = (I—“3F+ZG +§K)VD + (F—2G + H)V'p

(1 —F)?

I
4 (F-—2G+H+§K)D2+ s

(D*— DY)

A peculiar phenomenon has been revealed by RoBERTSON if, in our biallelic
model, we have (d = — #) and (g ~ 0): at the beginning of the inbreeding process,
the intra-line variance increases at first, before finally decreasing towards o. For
a recessive gene this property persits if: (6¢%, < 1) (see CRow, KIMURA, 1970).

As a general rule, it can be shown that the phenomenon appears as soon as
the following relation holds:

(14) Va4 Vp <V + Cyp + D2

basing ourselves on approached expressions of identity coefficients.

Note ; Formulas (12) can be extended to any quantitative character, governed
by genes in epistatic interactions, by introducing generalized identity coefficients
{see GALLAIS, 1970).

B. — Mating Phase,; Population F,

B,. — Biallelic model

Two inbred lines are interbred. These lines are characterized by:

—— the frequencies ¢; and gy,
— the means M(Z) and M;(Z),
— the variances Vi and V.

The subscript (¢ X j) stands for the quantities related to the population F,, in
which the genotypes have the following frequencies:

P=gqq;, Q=4qips+ @ps; R =iy
We have therefore:

M (Z) = (u + d) (¢s + q5) — 28449

Mixs(Z%) = 44°qigs + (u + 4)* (qips + P1gs)
and the genetic variance of population F,; can be written:

Vixg = 4uPqigs + (u + d)® (qips + piq5)

— (4 d)2 (g + ¢5)2 — 4d%qi%q?
+ 4d (u + d) (g + 95)9:9s

Consequently, the expression of this quantity, refers only to the moments of order
two of the frequency, because of the independence between ¢; and ¢;. Using
relation (10), we get:

E(Vix)) = (1 — F)V, + F(1 — F)4d®piqs
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In the particular case of an additive character, the average of variances of popula-
tions F, does not differ from that of parental lines. This property holds ‘ locally ”
since:

Vix; —% (Vuwi + V) = 2d(gi — )% (g5 + ¢ — 1)? {26 — d(q: + ¢ — 1)}

cancels itself if 4 == 0. If d is not equal to zero, this difference can take any signs,
but it can be noted that if heterosis is large in the crossing between lines (i) and
(7), |gi — @] is large; and this implies that |g: + ¢; — 1| is small (since: [gi — gi
+ |g: + ¢ — 1| < 1). The difference between former variances is close to zero.
This fact shows that the reduction in the variance observed in ¥, is not of genetic
nature. ‘This observation that applies to the interbreeding of two very difteren-
tiated lines, does not on average and has no reason to hold if many lines and all
crossings are available.

B,. — A general Model

Just like in the study in which the means were investigated (paragraph III,
A,) we note that two gametes, one of which has been drawn from a line (¢) and the
other from a distinct line (j) are surely ““ non-identical ”’. This is the same situa-
cion as the one studied by MALECOT in 1939, in which only one parameter is useful:
coefficient F, and we get:

— a priori variance Vi, of the genotype of a zygote taken at random from
any crossing Fy:

(15.1) Vir, = Vo 4+ Vp =V,
— variance Vg, of the means of all possible population Fi:

(15.2) Vir, = FV, + F2V,, (FALCONER, 1960, chapter 16)
— genetic variance expectation in a population F;, Vyg,:

(15.3) Var, = (1 —F) (Vs + V) + F{x — F)V,,

It is not easy to compare these expressions with formulas (12) or (12’) espe-
cially because of the components V’;,, C',;, and D2 the relative values of which vary
with the gene effect and with the initial frequencies of different alleles.

V. — Lines derived from interbred populations

If several lines obtained through systematic experiments, or made up of
animal samples of isolated races are available, many types of interbreeding can be
considered. The first are of types F,, and can reveal heterosis. Complex three
or more way crossings, with several levels, etc., can be attempted to show new
heterosis reactions. It is difficult to give a useful theoretical description of such
phenomena. We shall only recall here the result concerning a line F, derived from
interbreeding individuals belonging to the same interbred population F,.

Then two essential phenomena appear: loss of half of the heterosis (for a
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model with dominance without nmiaternal or paternal type effects), and the reappear-
ance of a part of the genetic variance.

If on an average, the loss of heterosis can be easily described, and if broadly
speaking the components of the mean of different types of crossings can be analysed
in complex situations (HAYMAN, MATHER, 1955; DICKERSON, Ig69g) the genetic
variance reapparance mode is not easy to understand as soon as we depart from
the purely additive case.

Again we consider two parental populations (¢) and (j) having undergone
1dentical evolutions in as far as probability is concerned, and having interbred at
a moment when the frequencies of an allele (a) were respectively ¢; and ¢;. To
simplify, we assume that all gametes produced by the zygotes of the population
¥, have the same probability of carrying the allele a, equal to (¢; + ¢;) /2. These
gamietes unite at random to form the zygotes F,, then the closed line evolution
proceeds normally from this population ¥, on. The forming of F, zygotes allows
us to consider this F, generation as the first generation of a line born of an original
population in which the initial frequency of () would be (¢; + ¢5) /2. This ficti-
tious initial population does not identify itself with that of F,, since a panmictic
structure with genotypic frequencies deduced through the law of Hardy-Weinberg,
corresponding to the frequencies ¢’y = (¢: + ¢;) /2, must be attributed to it. To
this imaginary structure correspond an ‘‘ initial " expectation E’y(Z), and an
* initial ” variance V,, just as fictitious as the population. Although attributed
to the frequency of (a) in population F,, these quantities have no meaning for this
interbred population merely because these genotypic frequencies are different.
In this approach, heterosis in F, gives evidence of a non-random association of
gamnietes in zygotes, and coming back to random association of panmixia, from
F, on, shows a loss of information together with the disappearing of a part of
heterosis.

A. — Evolution of the Mean

In the biallelic model, with notations of paragraph III, B, writing M2;,;(Z)
for the genotypic mean in ¥,, and N’ for the genetic effective number of the new
closed line F,, F,, etc., we get according to formula (9) and to the value

9o = (g5 + g1 /2:
©) Mixs = (Mi(Z) + My(2)} [z + d(g — 99
M = (Mi(2) + Mi(2)}[2 + 5 dlgs — @) + 57 4'obo2d

The first two terms correspond to the starting levels of the initial fictitious popula-
tions (frequency ¢’y), and the last term to the new inbreeding depression, 1 /2N,
representing the inbreeding coefficient of ¥, with respect fo ¥,. In the absence of
any other effects, the mean level of line F,, F,, etc., must therefore decrease in
expectation, from level:

E', =2(Mi + My) + EHU

As we pass from F; to F,, we lose half of heterosis, then the mean level of
the line continues to decrease, gradually if the effective number N’, is sufficiently
large.

The same result is obtained directly in the general case with dominance, by



86 C. CHEVALET, M. GILLOIS

using the fact that the mean inbreeding coefficient of individuals in F, is equal
to ¥ /2, F being the inbreeding coefficient reached in parental lines. P, F,, F,,
being used as subscripts for expectations defined in parental populations F,, F,,
respectively, we have:

Ep(Z) = Ey(2) + F.O

Ex,(Z) = Eo(Z) = E,y(Z) —F.D
B (Z) = Bgl2) + 2 ByD = E (2) — 2.9

B. — Evolution of the Variance

Just like in the expression for the variance in parental lines and in populations
F,, we refer to the identity coefficients. The quantities F, G, H, K are the same
as before (paragraph IV, A;) and they still depend on parental lines. With the
same approximations, we get after several calculations, and ignoring the contri-
butions due to the variance in inbreeding coefficients:

e a priori variance of the genotype of a zygote from a line F,:

F F ¥ F F F
(16.1) - Vip, = (I + ;) Vi + (I —E)VD + ’Z—V’D + —Z_CIAD + ’2‘(1 '—‘—) D2

e variance of the means of all possible F, populations:
I I I ! I !
(16.2) VbFz = FVA -+ (ZF2 + EK) VD + EHVD -+ 41 GC AD
1 1 1
= K —-F2| D2
+ ( gH+ 2 K —2F ) D
e genetic variance in a population F, (in expectation):

F F P K FoH|
(163) VWFz:(I—;) VA+(I——~2-—:~E) Vn‘i"(g——)vn

F G F ¥ H K
- _. = 4 ———— 2
+(2 4)C“D+(z 8 8 24)D

Except in the additive case, in which we can see that in F, half of the genetic
variance lost during the inbreeding phase in recovered, these formulas do not give
obvious information concerning the behaviour of the variance. Only in several
examples do these formulas become helpful (section 6).

The complexity of these formulas gives an insight into the difficulty of relating
a heritability estimated in an interbred population to heritability coefficients
estimated in parental populations, even if the changes undergone by the component
of the phenotypic variance attributed to the environment are not taken into ac-
count. Only the particular case in which the parental lines have all reached fixa-
tion can be further analysed.
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C. — Application to the case in which parental lines are homozygous

The particular case in which parental lines have reached fixation is often
considered in plant genetics, in autogamous species in which pure lines can be
easily obtained. The analysis of genetic variability can be explained by having:

F=G=H=1 and K=o

in the preceding formulas, and interpreted in simple statistical terms.

Let us assume that # pure lines were born of a basic population in which the
quantitative character considered is characterized by the parameter D ofinbreeding
depression and by its variance components V,, V,, V'p,, C',,, and D% the intra-line
variance, ¢o%, represents the environmental effect variance, that is 4V, in pure
line, and the inter line variance, that is ;6% represents the genetic variance.

Vo=V, =2V, 4+ V', + ', since there is no longer an intraline genetic
variance (V = 0).

Then, we can consider the experiment that consists in carrying out all inter-
breeding of type F; between these lines, next from each 7 X j crossings, subpopula-
tions of type F, are created (simply through self-fecundation if the species is auto-
gamous). In subpopulations F,;y;, a variance analysis can be carried out, according
to a random model:

Y =1 + o + a5 + («0)ig -+ o

in which «; stands for the main effect of the 7t line, (xa)s; the interaction between
itk and j*» lines, and ez, the residual effect. This variance analysis makes it possi-
ble to estimate:

16%, = variance of «; effects,
162, = variance of interaction effects («x«)y,
102, = residual variance.

The same approach, carried out on subpopulations Fyi; leads to the estimation
of similar quantities: ,02,, 502, and ,06%,. The genetic interpretation of quantities
6%, that can be estimated, is then as follows, taking into account formulas (2), (15)
and (16):

0% =2V, + V', + Cyp

0% w —OVe
I
2 —
19, EVA
2
1% = VD
10’25 ::lve
I I I
2 — ! T’
¢?, =-V =C —V
2Y a A+8 AD+I6 D
I
2 =-V
2% qa =™ D
4

I I I I I I
2525 - (EVA + ;V,D +ZC,AD) + (EV,D + ZVD + 2D2) -+ 2V¢

In the expression of ,6%., the break-down enclosed in the parentheses corres-
ponds to the break-down of the genetic variance in subpopulations F, into * additive
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i

genetic variance ”’ and ‘ genetic variance of dominance . ,V, stands for the
variance of environmental effects in the generation F,.
These formulas call for the following comments:

1) The additive genetic variance in subpopulation F, is equal to one quarter
of the variance between parental lines. This is a case in which a ‘“ heritability ”
in crossing can be associated with the variability of parental lines. We can write:

I 00'20

=
4 2%

B, —

Fa

as for an additive character.

We must note, however, that such a ‘“ heritability *’ presents only a limited
practical interest for at least two reasons: the genetic variance in the subpopula-
tions F, is calculated on an average, and therefore it has no significance for a parti-
cular subpopulation F,i;; the experiment described, that assumes the existence
of pure lines can be achieved in practice only on autogamous plants in which heri-
tability has no predictive value in so far as selection is concerned.

2) If the environmental variance ,V, in F, can be correctly evaluated from
environmental variances ;V, and ,V, or from other experiments, the experimental
diagram described allows the evaluation of the genetic components introduced
to explain the estimated variances o®. At least for the characters which are as-
sumed not to be subject to epistatic interactions, this diagram provides a method
to estimate the variance components V'y,, C',p, and D2 related to inbreeding.

3) The introduction of dominance effects differentiates the genetic inter-
pretations of quantities ;02, and ,6%, that can be estimated. The existence of nega-
tive C’,;, quantities particularly, can account for a reduction in variances %, bet-
ween F, and F, generations.

VI. — Numerical illustrations

Even though within the additive model the evolution of variances follows
a simple rule (formulas (11) developed by WRIGHT), it is difficult to get a general
idea of the phenomenon as soon as dominance is introduced. Here we present
several curves in order to illustrate formulas (12) and (x3), and a corresponding
table, of the redistribution of the variance in interbred populations F, and F,
(formulas (15) and 16)).

Four quantitative characters are considered:

{(a) Character governed by four triallelic loci in which alleles A;, A,, A; have
the genotypic effects defined in the following table:
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(A, dominant over A, and A,, A, dominant over A,). The initial frequencies
of these different alleles at the four loci, are:

Ay A A

Locus1j 1/2 1/4 1/4
Locusz| 1/4 1I/2 1/4
Locus3| 1/4 I/4 1/2
Locus4| 1/3 1/3 1/3

After the initial variance of the original population is reduced to one, the compo-
nents are written:

V, = 0.7477 Vy = 0.2523 D = —1.256
V', = 0.0993 C'yp = — 0.1992 D% = 0.3959

(b) Character governed by only one biallelic locus, in which the contributions
of three genotypes are 1, 0, o for (aa), (aA) and (AA) respectively, the initial fre-
quency of (a) being equal to 0.1, as it has been presented by ROBERTSON in 1952.
The values of components are:

V, = 0.1818 V, = 0.8182 D = — 0.9045
V'p = 5.8182 C’ap = 2.900I D? = 0.8182

(c) Character governed only by locus number 1 of the preceding character (a),
with the same effects and the same initial frequencies. The case has been consider-
ed because it is an extension of the previous case (b), in the sense that the relation
(14) is 2also proven by its parameters, which are:

V, = 0.6207 Vp, = 0.3793 D = —0.7505
V'p = 0.1379 Clap = 0.6437 D2 = 0.5632

(d) Character governed by four triallelic loci the three alleles of which have
the following contributions:

A, 1 2 2
A, 2 0.5 2
A, 2 2 o

(advantage given to heterozygotes). The initial frequencies at four loci are res-
pectively identical with those of homonymous alleles of character (a). After
reducing the initial variance to one the components are:

V., = o.1601 V, = 0.8399 D =—2.510

V'p = 0.2143 C'yp = — 0.2592 D2 = 1.5765

The results are shown in figure 1 and in Table z.
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V: : overall genetic variance,

V. : expectation of the within line genetic variance,

Vs : expectation of the additive genetic variance within lines,

V : genetic variance between line means,

F : stands for the mean inbreeding coefficient of the lines, and is taken as the measure of time.
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Les figuves 12 & 1d se véfévent aux quatre cavactéves définis en section 6.

: variance génétique totale,
Vuw:
Vo :
: variance génétique entre lignées,

: coefficient moyen de consanguinité dans les lignées, a I'instant ¢ défini par :

espérance de la variance génétique intra-lignée,
espérance de la variance génétique additive intra-lignée,

F = 1 — exp(— ¢ /2N,).
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A. — Break-down into intra- and inter-line variance (fig. 1)

For character (a), in which only pure dominance interactions were introduced,
and in which intermediate frequencies of alleles were considered, the general evo-
lution of variances is very similar to that observed in the additive case, with only
a miarked reduction in the total asymptotic variance, which is 1.4 V, here and not
2V,. The fraction of the variance attributed to additive effects V 4a [V » remains
relatively constant.

For the other three characters considered, an initial increase in the genetic
variance of lines is observed, as well as an increase in the additive genetic variance.

TABLE I

The statistical parameters descvibing a quantitative character
(Components of the mean and of the variance)

Parameétres statistiques décrivant wun cavactéve quantitatif
(Composantes de la moyenne et de la variance)

Notation of the sums
of terms related Biallelic model
to several loci

Notation

Significance for one locus
for one locus (a)

Genotypic mean in the ori-
ginal population (F = o) Eqo(Za) Ey(2) 2ugy + 2dpugo

Genotypic mean calculated
in identity condition
F=1 ... ... .. E,(Zo) E\(Z) 2uq,

Mean of the dominance de-
viation computed in iden-
tity condition, i.e. para-
meter of inbreeding de-
pression . . . . . . . .| E|(Ds) = E,(Zg) E(D) =D ~— 2dpeg,

— Ey(Za) = D

Additive genetic variance in
the original population. . 2. VAR(Xy) Va 2pefolue + (1 — 2g,)d)?

Dominance genetic variance .
in the original population VAR (Dgy) Vp 4d2P2q,*

Dominance genetic variance
computed in identity con-
dition e e VAR, (Dq) V'p 4d%Pogo(T — 2¢4)?

Covariance between additive
effects and dominance de-
viation, computed in iden-

tity conditions oo 4.COVL(XgDy) Cap — 8dpygoll — 24,)
(v + d1 — 2q,))
Square of the parameter of
inbreeding depression (e-
qual to VAR (D) in the
biallelic case) . .. (E1(Da))? D2 402?42
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The phenomenon can last a long time (case (b)) or it can only be a practically tem-
porary maintenance of the initial variance (case (c)). The miost noteworthly of
these increases seems to be that of the additive genetic variance. This increase
in the genetic variance V or V .4, is not uniform in all lines. V is indeed an
expectation and its increase originates from the fact that in a few lines (j) the fre-
quency of some genes, scarce at first will increase and the genetic variance V ,y
will beconie very large with respect to the initial variance, whereas, in most lines (¢)
these genes will disappear and. variances V; will become very small.

A remarkable thing happens to character (d): the final reduction in the total
variance V. This is due to the fact that in the initial population most of the
variance is due to the difference between the performances of homozygotes on the
one hand, and those of the heterozygotes on the other. At the end of the process,
only homozygous populations are left which are not very different from each other.
It can even said that a model which would attribute the same contribution to all
homozygotes A;A:, would lead to an asymptotic total variance equal to O. Ac-
cording to formula (z) or (2’) the total variance passes through a maximum if the
following relation holds:

|[VARy(Z) — VAR(Z)| < D?

For characters (a) et () which involve several loci, it is found that the compo-
nent attached to the variance of inbreeding coefficients does not contribute signi-
ficantly to the expected variance. In the case (d), where D% — D2 is about 4.72
times the initial variance V, + V,,, and with a smiall effective size (N, = 16),
the contribution does not exceed 2 p. 100, and is of the same order of magnitude
as the approximation involved in the computation of identity coefficients. How-
ever, it might be questionable to ignore this coniponent for a character contributed
by a large number, L, of loci yielding equal contributions D,: then the component
D2 — D? = (L, — 1)D? could be important. This may only happen for a character
showing a very great inbreeding depression.

B. — Redistribution of the Variance in interbred Population F, and F,

In table 2, the results are summed up in condensed form, on the one hand for
an additive character to be used as reference and for characters (a), (b), (c) and (d).
The same distinction between character (a) and the other characters must still
be made, the first having a behaviour that is very similar to that of an additive
character. The other characters (b), (c), () have a common property which seems
to present some interest, that of being able to recover from lines F, an important
fraction of the genetic variance of the initial population, not only at the beginning
when intraline variances are large but during the entire process, still the limit is
reached. Another aspect common to character (), (¢) can be pointed out: variance
Vuwr, is systematically and clearly smaller than V., whereas the divergence is
small for characters (a) and (4). In a way this questions the comparison made
between the variance in inbred parental lines, and the variance in hybrid popula-
tions ¥, that descend from them. It would not be fair to characters such as (b)
and (¢} to attribute entirely the difference in phenotypic variances observed ex-
perimentally to an increase in the environmental variance.

The preceding results are only illustrations but they seem to include most of
the possible cases. If we restrict ourselves to biallelic loci in which one of the
alleles is dominant over the other, but considering various distributions of initial
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frequencies between loci (the law of Pearson between o and 1) we find again the
cases studied in this paper and in addition to them, a situation in which the intra-
line mean variance V , decreases faster than in the case of an additive character,
contrary to the cases illustrated.

VII. — Conclusion

In this article heterosis was defined only with respect to interbreeding of
inbred lines born of the same stock. No attempt was made to study the incidence
of epistatic interactions. Interbreeding distinct races in which different alleles
can segregate, the experimental results of plant genetics, may therefore appear
to have been abusively neglected. In fact, the ideas justifying this are:

— Heterosis, in as far as its genesis is concerned, should not be dissociated
from its complementary phenomenon, the inbreeding depression.

— The dominance model has the two fold advantage of giving a satisfactory
theoretical explanation and of being supported by physiological and molecular
genetics data, at least when only one locus is being considered.

— The overdominance is revealed at the level of allelic series with visible
effects, but it is refuted at the molecular level and it is interpreted more as the
result of an interaction between closely related locus effects.

— Despite the fact that epistasis has been shown to exist in the vegetable
kingdom, it has no explicetive value as long as it is introduced at the statistical
level to make up for all deviations from a simple model.

Section III — evolution of means — surely does not bring any new results
in recalling how the dominance model explains the existence and the linearity of
the inbreeding depression as well as heterosis in interbreeding inbred lines. Its
essential interests, in our opinion, is of didactic nature.

Two standard computation methods have been used in parallel, but the rela-
tionships are not always clearly understood. On the one hand, we have recalled
the *“ on an average ”’ computation in which MALECOT's inbreeding coefficient f
makes its appearance defined as a probability of identity between genes. On the
other hard, we used a more standard description, by nieans of the frequency of
an 2llele in a line, and obtained a formula in which the veriance of the frequency
of this zallele VAR(q) appears this time. A comparison between these two
expressions leads to a formula connecting the two quantities F and VAR(g) :
VAR(g) = podoF.

Without being 2 generel demonstration, this comparison between methods
is a good introduction to the systematic use of identity coefficients, that takes
place next to analyse the evolution of variances.

Section IV is the one thet brings most innovations in so far asitshows original
results concerning break-down of the variance between and within lines. These
results are established after a sinmiple statistical analysis, but the simplification
of formulas and their expression in terms of only one parameter F, relies on the
results recently obteined concerning the evolution of these identity coefficients
in panmictic populations.

This field is still left to be explored, since we do not know how to formulate
the evolution of variences, in general terms. This is due to a basic difficulty
which lies in characterizing a quantitative character through five variance compon-
ents. The difficulties in estimating them are known (CHEVALET, 1976) but the
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knowledge of identity coefficients in panmictic lines may lead to new estimation
methods, that are simpler than those based on intra-line analysis and on explicit
calculation of coefficients depending on the pedigree.

Nevertheless, the behaviour observed in the given illustrations and which
are also found when we study loci where initial allelic frequencies follow various
distributions, must retain our attention since they show the possibility of an evolu-
tion, which does not follow WRIGHT's diagram even at the cost of a transformation
of data.

(/) The maintenance of the mean genetic variance in the lines, or its temporary
increase is possible in cases that are more general than those already known; the
inimediate and continuous reduction in this variance of inbred lines is not a general
phenomenon.

(#7) The genetic variance of populations ¥, obtained from interbreeding inbred
lines can be considerably smaller than the mean genetic veriance in parental popu-
lations; the reduction in variance, experimentally observed in F, should not always
be attributed to a reduction in the environmental variance.

(¢i¢) Considering 2 model with several loci shows that a component of variance
attached to the variability in individual inbreeding coefficients must be considered.
Although it seems to be generally small, it should be teken into eccount if experi-
mental evidence shows a great inbreeding depression or a clear contribution of
the variance of inbreeding coefficients to the phenotypic variance.

The use of the results obtained from this study, to interpret the results of an
experiment, or to devise a method for the estimation of variance components is
illustrated in the case in which pure lines are available. This application which
holds for autogamous vegetable species, may be extended to any inbred lines by
means of formulas developed in this paper and by means of approached expressions
of identity coeflicients. It might also be worth generalizing such results to cases
where the founder individuals of the lines are not unrelated.

Finally, this study of variances is based explicitly on the hypothesis of lack
of selection, mutation and migration. Mutetion and migration phenomena can
be treated by the theory of identity between genes (MALECOT, 1948, 19695, 1971,
1972; GILLOIS, 1964, 1966b). The evolution of identity coefficients with mutation
is well known (GILLOIS, 1964; CHEVALET, GILLOIS, NASSAR, 1977) and it is possible
to consider extending MALECOT’s methods to identity coefficients. The study
of the influence of selection can rely on the results of KIMURA (1964) on the moments
of genic frequencies. For sufficiently low selection pressures, it is possible to as-
sume that the formulae we have given are good explanations for 2t least a certain
period of time. The characterization of this field of validity will constitute the

subject of a forth-coming study.
Re¢u pour publication en avvil 1978.

Résumé

Hétérosis et dépression dues a la comnsanguinite.
Evolution des variances génétiques dans les lignées consanguines
et dans leurs croisements

Les phénomeénes complémentaires d’hétérosis et de dépression de consanguinité sont définis
par rapport & une expérience ot une population est subdivisée en lignées isolées et d’effectifs
limités. Pour un caractére quantitatif d a I’action de plusieurs locus o1l se manifestent des inter-
actions de dominance, on donne un traitement général de 1'évolution des moyennes et des varian-
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ces génétiques dans et entre les lignées. En absence de sélection, les variances génétiques dans les
lignées consanguines, et dans les croisements entre ces lignées, s’expriment au moyen des valeurs
initiales des variances génétiques, et en fonction des coefficients d’'identité entre 2, 3 et 4 génes.
On donne des formules approchées de ces variances, ou les coefficients d’identité s’expriment en
fonction de puissances du coefficient moyen de consanguinité dans les lignées. Ces résultats géné-
ralisent notamment les travaux de WRIGHT, ROBERTSON, CROW et KIMURA, qui sont limités ou
bien &4 des caractéres additifs, ou bien a4 un seul locus. Les principaux types d’évolution des va-
riances génétiques, et de leur redistribution dans des populations croisées F, et F,, sont discutés
aun moyen d’illustrations numériques. L’interprétation statistique des résultats est esquissée dans
le cas particulier du croisement entre des lignées homozygotes.

Deux résultats qualitatifs méritent d’étre soulignés :

(1) Le maintien, ou I’accroissement temporaire, de I’espérance de la variance génétique intra-
lignée semble possible dans des cas plus généraux que ceux déja connus.

(i#) La variance génétique dans un croisement F, entre deux lignées consanguines peut étre
nettement plus petite que la moyenne des variances génétiques dans les lignées parentales. La
réduction de la variance phénotypique, souvent observée dans une telle expérience, ne devrait
donc pas étre toujours attribuée exclusivement a une réduction de la variance des effets du milieu.

Deux types d’application des résultats obtenus sont envisagés : ’estimation des composantes
génétiques de la variance dans les populations consanguines, et I'obtention de prédictions appro-
chées de la réponse a la sélection dans une petite population.
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