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Abstract – Since 2006, disastrous colony losses have been reported in Europe and North America. The
causes of the losses were not readily apparent and have been attributed to overwintering mortalities and to a
new phenomenon called Colony Collapse Disorder. Most scientists agree that there is no single explanation
for the extensive colony losses but that interactions between different stresses are involved. As the presence
of Varroa in each colony places an important pressure on bee health, we here address the question of how
Varroa contributes to the recent surge in honey bee colony losses.

Varroa destructor / Apis mellifera / colony collapse disorder / winter losses / honey bee stressors

The Varroa mite (Varroa destructor)
switched from its natural host (Apis cerana)
to Apis mellifera, the European honey bee
(HB), when HBs were moved into areas where
Apis cerana is endemic. In Apis mellifera
the mite found a far less resistant host, and
subsequently spread nearly worldwide (Peng
et al., 1987; Oldroyd, 1999). Because Varroa
and HBs have not co-evolved for a long period
of time, they do not exhibit an adapted host-
parasite relationship, resulting in Varroa often
killing its host. During the first years after its
introduction in Europe and North America the
mite could be easily controlled by one to two
chemical treatments per year. Colony losses
have continued to increase since the turn of
the millennium despite the development of
more intensive control measures. Since 2006,
disastrous colony losses have been reported
in Europe and North America. The causes of
the losses were not readily apparent and have
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been attributed to overwintering mortalities
and to a new phenomenon called Colony
Collapse Disorder (CCD). Most scientists
agree that there is no single explanation for the
extensive colony losses but that interactions
between different stresses are likely involved.
As the presence of Varroa in every colony
places an important pressure on bee health,
we here address the question of how Varroa
contributes to the recent surge in HB colony
losses.

There are undoubtedly various causes for
recent colony losses. However, CCD and win-
tering mortalities have been cited as the most
frequent reasons. CCD was first reported in
HB colonies in the USA. One interesting ob-
servation is that at the time of collapse, Var-
roa mite populations were not at levels known
to cause economic injury or population de-
cline (vanEngelsdorp et al., 2009). Three dif-
ferent descriptive case analyses have been con-
ducted on colonies having CCD symptoms.
The first used a metagenomic approach to look
at candidate pathogens associated with CCD
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and found only one organism, Israeli acute
paralysis virus (IAPV), to be strongly corre-
lated with CCD (Cox-Foster et al., 2007). An-
other study looked at changes in transcript
abundance of bees related to CCD. Sixty-five
transcripts were identified as potential mark-
ers for CCD, but elevated expression of pes-
ticide response genes was not observed, and
genes involved in immune response showed
no clear trend in expression pattern despite
the increased prevalence of viruses and other
pathogens in CCD colonies (Johnson et al.,
2009). A third epizootic study characterized
CCD and the risk factors associated with
populations exhibiting CCD (vanEngelsdorp
et al., 2009). Bees in CCD colonies had higher
pathogen loads and were co-infected with a
greater number of pathogens compared to con-
trol populations, suggesting an interaction be-
tween pathogens and other stress factors in
CCD and a possible legacy effect of mite para-
sitism (vanEngelsdorp et al., 2009). An impor-
tant point is that descriptive case studies only
showed the state of the bees when they were
collected. Varroa populations could have dif-
fered prior to sampling, causing an immuno-
suppression response possibly leading to sub-
sequent pathogen and virus development. Like
all descriptive studies, definitive statements
cannot be made concerning factors causing
CCD, and there is no clear evidence to date to
suggest that Varroa is or is not involved. The
hypothesis that CCD is due to the invasive Var-
roa mite and its capability to suppress immune
responses cannot be excluded, and in fact is
supported by the study of vanEngelsdorp et al.
(2009).

Wintering mortalities are well known to
beekeepers, and some losses are inevitable.
Twenty years ago, it was acceptable to have 5
to 10% winter colony losses. Today, the losses
are often up to 20% or more in many areas (see
the special issue on colony losses in Journal of
Apicultural Research, 2010). Different causes
can explain winter mortality: queen losses,
lack of adequate food reserves, low fall popu-
lations, poor foraging conditions, diseases and
parasites, including failure of treatments to ad-
equately control Varroa. For an analysis of the
causes of winter losses it is very important to
consider how and when the losses occur and

the symptoms. A large number of dead bees
at the hive bottom or in front of the entrance
point to food scarcity or a disease like Nosema.
Empty nests with brood and food suggest that
Varroa may be the cause (Ritter, 1988). Possi-
bly in contrast to CCD, in those colonies the
existing bees and brood generally exhibited a
high level of Varroa infestation (Ritter et al.,
1984). Bees as well as brood parasitized by
Varroa are nearly 100% infested by Deformed
Wing Virus (DWV) (Genersch, 2005), and of-
ten also by Acute Bee Paralysis Virus (ABPV)
(Ball, 1985).

Many physical and physiological detrimen-
tal effects of the Varroa mite have been de-
scribed at the individual bee and colony lev-
els. Repeated Varroa feeding on adult bee
and brood hemolymph injures the bees physi-
cally, reduces their protein content and wet and
dry body weights, and interferes with organ
development (Schneider and Drescher, 1987;
Bowen-Walker and Gunn, 2001). The parasitic
mite and the viruses they vector contribute to
morphological deformities (small body size,
shortened abdomen, deformed wings), which
reduce vigor and longevity, and they also in-
fluence flight duration and the homing abil-
ity of foragers (Schneider and Drescher, 1987;
Koch and Ritter, 1991; Romero-Vera and
Otero-Colina, 2002; Garedew et al., 2004;
Kralj and Fuchs, 2006). The mite weakens
the bee’s immune system, suppressing the
expression of immune-related genes and in-
creasing DWV viral titers, both of which
reduce worker survivorship and colony fit-
ness (Yang and Cox-Foster, 2005, 2007). A
number of viruses including DWV, ABPV,
Chronic Bee Paralysis Virus (CBPV), Slow
Bee Paralysis Virus (SPV), Black Queen Cell
Virus (BQCV), Kashmir Bee Virus (KBV),
Cloudy Wing Virus (CWV), and Sacbrood
Virus (SBV) have been shown to be associated
to varying degrees with V. destructor infesta-
tion (Ball and Allen, 1988; Allen and Ball,
1996; Martin, 1998, 2001; Tentcheva et al.,
2004; Carreck et al., 2010; Martin et al., 2010).
However, recent findings did not find evidence
of CWV transmission by the mite (Carreck
et al., 2010).

The role of Varroa mites as a vector in
transmitting viruses from infected individuals
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to healthy bees has been demonstrated. Varroa
feeds on brood and adult bees and moves
quickly from one bee to another (Le Conte
and Arnold, 1987). The Varroa mite can facili-
tate the horizontal transmission of DWV, SBV,
APV, IAPV and KBV viruses from nurse bees
to larvae through larval food and via brood
to adults (Ball, 1985; Chen et al., 2004). It
can also be transmitted vertically by drones
via semen and by queens via virus infected
eggs (Yue et al., 2006, 2007). In addition,
there is evidence for horizontal mite-to-mite
transmission of viruses (Bowen-Walker et al.,
1999; Chen et al., 2004, 2005). A few of those
virus can replicate in the Varroa mite and are
present in mite saliva, which suggests that Var-
roa is likely an active biological vector for
bee viruses (Ongus et al., 2004; Shen et al.,
2005; Chen et al., 2006). Clinical morpho-
logical symptoms like deformed wings and
shortened abdomens only develop when Var-
roa is associated with DWV, which is lethal to
the bees (Ball and Allen, 1988; Martin, 1998;
Bowen-Walker et al., 1999; Martin, 2001;
Tentcheva et al., 2006). ABPV and DWV are
highly pathogenic, vectored by V. destructor,
adding to the pathology of mite feeding in-
jury (Chen et al., 2006). Both viruses were re-
cently reported to be correlated with HB win-
ter losses (Highfield et al., 2009; Berthoud
et al., 2010). DWV could potentially act in-
dependently of Varroa mites to bring about
colony losses (Highfield et al., 2009). Finally,
the co-infections V. destructor with viruses has
been shown to play a major role in Varroa-
induced HB colony collapse (Martin, 1998,
2001).

At the colony level, untreated Varroa-
infested colonies usually die within six months
to two years of mite infestation. The length
of the time span does not only depend on the
mites’ potential to multiply in bee brood but
also depends on the Varroa invasion pressure
from nearby colonies. A high bee density com-
bined with severe Varroa infestation acceler-
ates bee death (Ritter et al., 1984). When adult
bees are infected prior to overwintering, they
survive a shorter time compared to mite-free
workers and they do not transition from sum-
mer to winter bees. As a consequence, they do
not live as long as winter bees and are less able

to contribute to the build-up of colony strength
in the early spring. When high mite levels
are present, parasitized colonies collapse dur-
ing the winter (Kovac and Crailsheim, 1988;
Boecking and Genersch, 2008).

Therefore, V. destructor continues to be a
very serious threat of the HB and the inva-
sive parasitic mite still decimates HB popu-
lations throughout the world. It has been the
case in the USA where it reached disastrous
proportions especially during winters of 1995
to 1996 and 2000 and 2001 with colony deaths
reaching 50 to 100% in many beekeeping op-
erations (Kaplan, 2008; Pettis and Delaplane,
2010, this issue). The situation is similar in Eu-
rope (Moritz et al., 2010, this issue). In central
Europe, a high number of colony losses oc-
curred in the winter of 2002 to 2003 (Hendrikx
et al., 2009), and in southern Europe especially
during the year of 2005 (Higes, 2005). The his-
tory of Varroa in the USA and Europe make
it logical to ask what role Varroa parasitism
plays in the recent HB losses worldwide.

The Varroa mite has been present for many
years in most of the countries that are report-
ing an increase in colony losses at the moment.
While mite populations can be controlled, one
can still speculate that the losses can be due,
at least in part, to Varroa infestations in the
colonies. If so, what has changed regarding
Varroa biology or the environment that can ex-
plain losses compared to 20 years ago? Poten-
tial reasons include changes in Varroa and host
bee biology and population dynamics changes,
Varroa control with acaricides, indirect effects
of Varroa treatments and synergistic effects of
multiple factors.

VARROA AND BEE HOST BIOLOGY

V. destructor genetic variability could ex-
plain differential colony losses if different
haplotypes or strains of mites have differ-
ent degrees of virulence to the bees, leading
to differences in host-parasite equilibrium. It
has been shown that two major mite haplo-
types have spread over the world, the Japanese
and the Korean haplotypes (Anderson, 2000),
which might have different virulence de-
pending on the haplotype (Correa-Marques
et al., 2003; Vandame and Palacio, 2010).
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Each haplotype has a clonal genetic struc-
ture (Solignac et al., 2005). While it is un-
likely that different Varroa haplotypes could
explain the recent colony losses, two new hap-
lotypes of Varroa destructor were recently de-
scribed in A. mellifera colonies in Southeast
Asia (Navajas et al., 2009). Nothing is known
about their virulence on European bees out-
side Asia, but those haplotypes might be a new
threat to consider for A. mellifera bees outside
Asia. Importation of bees from Asia should be
considered carefully, since the impact of intro-
ducing Asian haplotypes to A. mellifera popu-
lations outside of Asia is unknown. The recent
discovery of the Japanese haplotype in Spain
makes it evident that HB market exchanges
can disperse pathogens and parasites (Munoz
et al., 2008).

V. destructor is a pseudo-haplo-diploid par-
asite species (Martin et al., 1997; Harris
and Harbo, 1999) reproducing mainly through
brother-sister matings, a system which largely
favors the fixation of new mutations (Cornuet
et al., 2006). Co-evolution of the host and
the parasite is driven by mutations of both
the mite and the bee, which can lead to a
more or less stable equilibrium. Heritable be-
havioral and physiological traits can be in-
volved in Varroa tolerance (see Büchler et al.,
2010; Rinderer et al., 2010, this issue), but the
mite may counter-select those traits to increase
its fitness. Mite reproduction is an important
trait in Varroa population dynamics and dif-
ferential reproduction rates had been observed
since the first infestations on HB were de-
tected (Anderson, 2000). Changes in the host-
parasite chemical ecology can influence Var-
roa populations and mite reproduction as the
mite can be differentially attracted depend-
ing on inhibitory and stimulatory factors com-
ing from different types of brood (Nazzi and
Milani, 1996; Trouiller and Milani, 1999).

Population dynamics

At the time of the first introduction of Var-
roa in Germany, studies often found 7 000 to
11 000 mites in a colony 4 years after the ini-
tial infestation (Ritter and Perschil, 1982; Fries
et al., 1994). At that time, the economic thresh-
old was determined to be 200 fallen mites per

day in July (Ritter et al., 1984). It is now
unusual to find such high Varroa infestation
levels. Today, German beekeepers are required
to start treatment if the natural mite drop ex-
ceeds 10 mites per day, a level that indicates
the colony is close to collapse. In Germany, a
colony mite load above 3 000 mites indicates
the colony is close to collapse (Boecking and
Genersch, 2008). Interactions between viruses
and Varroa mite infestation are key to under-
standing colony collapse as it has been shown
that the bees can tolerate a higher Varroa load
if they are not infested by viruses (Martin,
2001). Sumpter and Martin (2004) worked on
a model illustrating why different mite levels
associated with colony collapse exist. As many
viruses naturally infest HB colonies (Gauthier
et al., 2007), to date we cannot exclude mite-
virus interactions (even the recently identified
IAPV virus) as a cause of variation in the mite
load threshold required to cause colony losses.

VARROA CONTROL
WITH ACARICIDES

Is acaricide control still a feasible way to
manage Varroa populations? When the mite
arrived in Europe in the 1970s, efficient control
was rapidly deployed using bromopropylate,
fluvalinate, amitraz and coumaphos in easy-to-
use formulations. In 1995, the first occurrence
of mite resistance to fluvalinate, a pyrethroid,
was observed in Southern Europe, making
the chemical compound unusable for Varroa
control. The mites have developed resistance
to fluvalinate and to other pyrethroids like
flumethrin (Milani, 1995; Hillesheim et al.,
1996), thus rendering pyrethroids ineffective
as a class of miticides. In spite of alternating
among chemical controls, the mite became re-
sistant to other miticides like coumaphos and
amitraz as observed especially in the USA
(Milani, 1999; Elzen et al., 2000).

There is no chemical treatment with 100%
effectiveness. Treatments that kill susceptible
individuals leave the more resistant mites to
produce the next generation, and over time,
the mite population becomes increasingly re-
sistant. Natural substances such as oxalic acid
and thymol have not yet resulted in resistant
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mite populations, but while they reduce mite
populations, they are not consistently highly
effective in all situations. The lack of effec-
tive miticides to control Varroa lets the mite
populations grow to injurious levels trigger-
ing colony collapse directly by the number
of mites per bee or indirectly by decreasing
bee immunity and favoring virus multiplica-
tion. Moreover, Varroa resistance to acaricides
favors the escalation of chemical applications
leading to increased doses and residues of
miticides in the hive. The amount and num-
ber of fat soluble residues from mite controls
accumulating in the hives and in bee prod-
ucts, especially in the wax comb, are espe-
cially frightening (Wallner, 1999; Bogdanov,
2006; Martel et al., 2007). A recent study
on the synergistic effects of fluvalinate and
coumaphos showed a large increase in the tox-
icity of fluvalinate to young bees that had been
treated previously with coumaphos, suggest-
ing that HB mortality may occur with the ap-
plication of sublethal doses of miticide when
tau-fluvalinate and coumaphos are simultane-
ously present in the hive (Johnson et al., 2009).
Other alternative controls including more nat-
ural substances like the essential oil, thymol,
can result in build up of residues in wax over
the years of treatments (Floris et al., 2004)
and become toxic to the bees. The wax in
those colonies can be melted to make foun-
dation wax, but many miticides are stable in
beeswax and can be reintroduced through con-
taminated foundation, favoring Varroa resis-
tance to the miticides. Getting rid of miticide
residues in beeswax is a widespread problem
in beekeeping. Miticide residues can become
more toxic when combined with agricultural
crop pesticide residues when contaminated
pollen loads are brought back to the hive by
the foragers, sometimes in significant concen-
trations (Chauzat et al., 2006). The residues
make the pesticide stress factor much more im-
portant for the bee as lethal synergetic inter-
actions between pesticides and miticides can
occur (Colin and Belzunces, 1992; Johnson
et al., 2009). Miticides and pesticides accu-
mulate in the colony matrices as a function
of time, and the residues are more important
now compared to 20 years ago. This chemical
stress is being studied, as it could at least partly

explain colony losses ((Johnson et al., 2010),
this issue). On the other hand, some chem-
ical substances, especially the organic acids
and essential oils, exhibit a disinfectant ef-
fect. When they are used for Varroa control,
the pathogenic but also beneficial fungi and
bacteria present in a healthy colony may be
destroyed (Vasquez et al., 2009). A healthy
colony’s microflora appears to be an important
part of the natural defense against diseases in a
bee colony as demonstrated by their inhibitory
effect, reducing susceptibility to Ascosphaera
apis (Gilliam, 1997). Colony microflora may
act in a similar way for other pathogens.

INDIRECT EFFECTS OF VARROA
TREATMENT AND BEEKEEPING
MANAGEMENT PRACTICES

The quality of Varroa control by beekeep-
ers can explain some losses; a lack of treat-
ment, and poor timing of treatments have
been reported to be important in HB colony
losses (Delaplane and Hood, 1997; Currie and
Gatien, 2006). This is especially valid when
nectar or honeydew is only harvested at the
end of a bee season. To avoid residues in honey
a chemical treatment can be done only after the
harvest. At this time, the mite population has
often already reached injurious levels.

Recent reports of HB colonies surviv-
ing Varroa mite infestation without treatment
present a possible way to understand Var-
roa and HB biology and co-evolution (Ritter,
1993; Kefuss et al., 2004; Fries et al., 2006; Le
Conte et al., 2007; Seeley, 2007), but this in-
formation needs to be considered carefully as
Varroa-resistant HBs may not exhibit the same
resistance if moved to other areas. For exam-
ple the number of mites may increase when
moving bees from one foraging crop to another
one, disrupting the equilibrium between the
parasite and the host in a way that it unfavor-
able to the bees. Also, bees that survive mite
infestation may not have characteristics suit-
able for beekeeping such as honey production
or they may be overly aggressive (for more de-
tails, see Büchler et al., 2010; and Rinderer
et al., 2010, this issue). Moreover, the appar-
ent lack of resistance of bees in many areas
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Figure 1. Potential synergetic effects of different stressors on varroa populations and HB health.

is not just a lack of co-evolution, but may be
due to the management practice of keeping
large numbers of colonies in close proximity
where mites can spread even after they kill
a colony. The practice of keeping colonies in
high-density apiaries makes it easier for Var-
roa transmitted viruses to spread.

Varroa environment

Factors such as weather conditions, longer
brood rearing periods and large amounts of
drone brood can dramatically increase the mite
population size (Calis et al., 1999; Martin,
2001). Global warming can induce longer
spring and fall periods resulting in longer
brood rearing periods and more drone brood,
both of which lead to significantly larger mite
population at the end of the year (Le Conte
and Navajas, 2008). But longer summers also
means longer foraging time which could in-
crease the mite threshold levels (Sumpter and
Martin, 2004).

SYNERGISTIC FACTORS

Colonies that died from CCD symptoms
had capped brood with low levels of parasitic

mite indicating that the losses could not be at-
tributed to a recent infestation of mites. In-
stead, vanEngelsdorp et al. (2009) suggested
that CCD might be due to an interaction
between pathogens and other stress factors,
or a possible legacy effect of mite para-
sitism. Downey et al. (2000) demonstrated that
the two parasites, V. destructor and Acara-
pis woodi, have biologically synergistic in-
teractions at the individual and colony level
that are detrimental to their host colonies
(Downey et al., 2000; Downey and Winston,
2001). What about interactions between Var-
roa and other stressors? Many interactions
could be involved in colony losses, such as
pathogens, pesticides and the environment
(climate change) (see Fig. 1). Except for very
early data showing that Varroa mites kill bee
colonies (Ritter et al., 1984), many studies of
CCD or winter mortalities have not looked at
the origin of the stress that led to losses, but
rather at the results. In contrast, recent moni-
toring in Canada using colonies with different
levels of Varroa infestation concluded that the
Varroa mite was the main culprit causing re-
duced populations and death of overwintered
HB colonies (Guzman-Novoa et al., 2010). In
addition, a causal approach demonstrated that
V. destructor is a key factor in winter losses in
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Norway (Dahle, 2010). Control strategies for
the mite must be developed that do not involve
any application of acaricides to avoid side ef-
fects. The invasive Varroa mite has detrimen-
tal physical and physiological effects and is a
potential immune-suppressing stress on bees
allowing pathogens to multiply unchecked.
Thus, interactions between the mite and other
pathogens, especially viruses and newly iden-
tified pathogens like Nosema ceranae, should
be studied to quantify their role in HB losses.
Varroa interactions with miticides and other
pesticides are also good candidates to study,
as a detrimental synergetic interaction be-
tween Nosema and a neonicotinoid was re-
cently demonstrated (Alaux et al., 2009). It is
also well known that, similar to Nosema, the
fat body is reduced in bees infested by Varroa
making them more susceptible to pesticides.
The reduction in fat body due to Nosema infec-
tion seems to be the essential factor, an effect
which may also be caused by Varroa infesta-
tion of brood (Drescher and Schneider, 1987).
It is logical that brood reared in a contam-
inated environment, such as in contaminated
wax cells, may be more sensitive to effects of
pesticides compared to adult bees, resulting in
weakening and other health problems. Other
combinations of parasites, pathogens and pes-
ticides need to be studied, which will require
a lot of work and coordination between scien-
tists.
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Varroa et santé des abeilles : la présence de cet
acarien peut-il expliquer en partie les pertes ob-
servées dans les colonies ?

Varroa destructor / Apis mellifera / syndrôme
d’effondrement des colonies / pertes hivernales /
facteurs de stress

Zusammenfassung – Varroa-Milben und Honig-
bienengesundheit: Kann Varroa einen Teil der

Völkerverluste erklären? Seit 2006 werden in
Europa und Nordamerika katastrophale Völkerver-
luste gemeldet. Die Ursachen dieser Verluste waren
nicht leicht zu erklären, sie wurden als überwin-
terungsbedingte Mortalitäten bewertet und unter
dem Begriff Colony Collapse Disorder (CCD) zu-
sammengefasst. Die meisten Wisenschaftler stim-
men dahingehend überein, dass diesen Völkerver-
lusten keine Einzelursache zugrunde liegt, sondern,
dass vermutlich verschiedene Stressfaktoren zu-
sammenwirken. Da der Varroa-Befall einen wich-
tigen Druck auf die Gesundheit der Bienen in den
Völkern darstellt, gingen wir der Frage nach, inwie-
fern Varroa an den seit kurzem beobachteten Völ-
kerverlusten beteiligt sein kann.
Verschiedene physikalische und physiologische
Faktoren mit negativer Wirkung der Varroa-Milbe
auf die Gesundheit der einzelnen Biene und den
Volkszusammenhang sind bereits bekannt. So führt
das wiederholte Saugen von Hämolymphe zu Ver-
letzungen der Bienen, zu erniedrigten Werten im
Proteingehalt, sowie dem Lebend- und Trockenge-
wicht und zur Behinderungen in der Organentwick-
lung. Die parasitische Milbe und die von ihr über-
tragenen Viren führen zu morphologischen Fehlent-
wicklungen, reduzierter Widerstandskraft und Le-
benserwartung und zu negativen Effekten auf die
Flugdauer und Heimfindungsfähigkeit der Sammle-
rinnen. Die Milbe schwächt das Immunsystem der
Bienen, indem die Expression von Genen der Im-
munantwort reduziert wird. Zusammen mit erhöh-
ten DWV-Viren-Titern reduziert sie damit die Le-
bensfähigkeit der Arbeiterinnen und die Koloniefit-
ness. Die Rolle der Varroa-Milbe als Vektor in der
horizontalen und vertikalen Übertragung von Viren
ist hingehend bekannt, und Ko-Infektionen von V.
destructor mit verschiedenen Viren wurden bereits
als wichtige Faktoren im Varroa-bedingten Zusam-
menbruch von Völkern beschrieben. V. destructor
muss deshalb weiterhin als eine ernsthafte Bedro-
hung der Honibiene gelten, und weiterhin werden
Honigbienenpopulationen weltweit durch diese pa-
rasitische Milbe dezimiert.
Die Hypothese, dass CCD durch eindringende Var-
roa-Milben und ihre immunsuppressiven Fähig-
keiten hervorgerufen wird, ist damit nicht aus-
zuschliessen und wird durch die Befunde von
vanEngelsdorp et al. (2009) gestärkt. Die Varroa-
Milbe ist seit Jahren in den meisten Ländern vertre-
ten, aus denen auch Völkerverluste gemeldet wer-
den. Obwohl die Milbenpopulationen kontrolliert
werden können, kann trotzdem spekulativ postu-
liert werden, dass die Verluste zumindest teilwei-
se durch einen Varroa-Befall der Völker bedingt
sein können. Welche Veränderungen in der Varroa-
Biologie können also die jetzigen Verluste im Ver-
gleich zu denen vor 20 Jahren erklären? Wir dis-
kutieren potentielle Ursachen, einschliesslich Ver-
änderungen in der Biologie und Populationsdyna-
mik von Varroa und ihrem Wirt, der Kontrolle
von Varroa durch Akarizide, indirekte Effekten der
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Varroa-Behandlungen, sowie synergistische Effekte
multipler Faktoren.

Varroa destructor / Apis mellifera / Colony Col-
lapse Disorder / Winterverluste / Honigbienen
Stressfaktoren
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