

Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906)

S. Hadisoesilo, Rika Raffiudin, Wirian Susanti, Tri Atmowidi, Colleen Hepburn, Sarah E. Radloff, Stefan Fuchs, H. Randall Hepburn

▶ To cite this version:

S. Hadisoesilo, Rika Raffiudin, Wirian Susanti, Tri Atmowidi, Colleen Hepburn, et al.. Morphometric analysis and biogeography of Apis koschevnikovi Enderlein (1906). Apidologie, 2008, 39 (5), pp.495-503. hal-00891922

HAL Id: hal-00891922 https://hal.science/hal-00891922

Submitted on 11 May 2020 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Original article

Morphometric analysis and biogeography of *Apis* koschevnikovi Enderlein (1906)*

S. HADISOESILO¹, Rika RAFFIUDIN², Wirian SUSANTI², Tri ATMOWIDI², Colleen HEPBURN⁴, Sarah E. RADLOFF⁴, Stefan FUCHS⁵, H. Randall HEPBURN³

¹ Forest and Nature Conservation Res. and Dev. Centre, Jl. Gunung Batu, Bogor, Indonesia

² Department of Biology, Fac. of Mathematics and Natural Sciences, Bogor Agricultural University, Jalan Raya Pajajaran, Bogor, Indonesia

³ Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa ⁴ Department of Statistics, Rhodes University, Grahamstown, South Africa

⁵ Institut fuer Bienenkunde (Polytechnische Gesellschaft), Fachbereich Biologie der J. W. Goethe-Universitaet Frankfurt am Main, Oberursel, Germany

Received 12 July 2007 - Revised 3 March 2008 - Accepted 20 March 2008

Abstract – Multivariate morphometric analyses were performed on workers of *Apis koschevnikovi* from throughout their distribution in Malaysia, Borneo and Indonesia. Principal component analysis showed one morphocluster comprising bees from Kalimantan Indonesia, Sarawak, Sabah and the Malay Peninsula. The population is more homogeneous than *A. cerana* over the same geographical area, as seen from the average coefficient of variation in 12 characters in *A. koschevnikovi* (1.8%) compared to those same characters in *A. cerana* (4.3%). *A. koschevnikovi* is delimited to the tropical evergreen forest regions of Sumatera, Borneo, and the Malay Peninsula (Fig. 1). The altitudinal distributions show that *A. koschevnikovi* extends from sea level to about 1600 m. This significantly differs from *A. nuluensis* but not *A. cerana*. It appears that the range of *A. koschevnikovi* is diminishing because it is now either poorly represented or absent in several areas where it has been previously recorded.

Apis koschevnikovi / morphometrics / distribution

1. INTRODUCTION

Apis koschevnikovi was originally described by Enderlein (1906) as "Apis indica variety koschevnikovi" and also by von Buttel-Reepen (1906) as "Apis mellifica indica variety koschevnikovi". However, authorship for this species has been formally assigned to Enderlein (Engel, 1999). With the exceptions of Maa (1953) and Goetze (1964), there have been no other accounts of A. koschevnikovi from its original description until its rediscovery eight decades later in Borneo (Mathew and

Corresponding author: S.E. Radloff,

s.radloff@ru.ac.za

Mathew, 1988; Tingek et al., 1988). However, *A. koschevnikovi* had indeed been widely collected in the Sundaland region of Southeast Asia during the interim as evidenced by collections in various museums (Otis, 1997).

In a recent flurry of publications (cf. Hepburn and Hepburn, 2007), it was soon established that *A. koschevnikovi* is a morphometrically distinct species (Tingek et al., 1988; Rinderer et al., 1989; Ruttner et al., 1989; Sulistianto, 1990), that is reproductively isolated from (Koeniger et al., 1996), and differs in both nuclear and mitochondrial DNA regions (Arias et al., 1996; Takahashi et al., 2002; Raffiudin and Crozier, 2007) from other species of *Apis* with which it has a sympatric distribution.

^{*} Manuscript editor: Walter S. Sheppard

Here we report the results of multivariate analyses of morphometric variation in this species over its entire known range of distribution to define population structure and provide biogeographical information on and distribution maps for *A. koschevnikovi* in relation to *A. cerana* and *A. nuluensis* with which it is sympatric.

2. METHODS AND MATERIALS

2.1. Honeybees

Although most characters of length are some 10–15% greater in worker honeybees of *A. koschevnikovi* than in *A. cerana* (Rinderer et al., 1989; Sulistianto, 1990), these species may be confused in alcohol-preserved specimens that do not show the natural reddishyellow brightness of the former. Workers of *A. koschevnikovi* are one of four medium-sized bees and may be quickly distinguished from them by the cubital index which is 7.64 ± 1.40 in *A. koschevnikovi*, 3.74 ± 0.24 in *A. cerana*, 4.25 ± 0.47 in *A. nigrocincta*, and 3.77 ± 0.12 in *A. nuluensis*.

The worker honeybees used in our study derive from: (1) data from bees collected in Sabah, Borneo (Malaysia), and Sumatera (Indonesia) from the database of the Institut für Bienenkunde at Oberursel. (Obeursel database, n = 13 colonies); (2) new data from bees collected from south Kalimantan Borneo (Indonesia), (Hadisoesilo-Raffiudin database, n = 30 colonies), and from the Malay Peninsula and Sarawak Borneo (Malaysia), (Grahamstown database, n = 5 colonies). Collectively, honeybees from 48 colonies representing 19 localities in Indonesia and Malaysia were measured morphometrically and statistically analyzed. In addition, published morphometric data on A. koschevnikovi from Rinderer et al. (1989), Sulistianto (1990), and Fuchs et al. (1996) were included for a complete analysis of this species. Finally, to compare the average coefficient of variation for A. koschevnikovi with that of A. cerana we used the same A. cerana island database published by Radloff et al. (2005).

The largest source of published locality data on the distribution of *A. koschevnikovi*

is Otis (1997). Geographical coordinates and altitudes for identifiable localities in that dataset, plus all localities recoverable from all of the individual research papers (Hepburn and Hepburn, 2007) and new localities recently found by the present authors for *A. koschevnikovi* were used to prepare a new distribution map with GIS software (Fig. 1). The altitudes of all *A. koschevnikovi* localities and those of sympatric *A. cerana* (Hepburn and Hepburn, 2006) and *A. nuluensis* (Fuchs et al., 1996) were obtained and analyzed for pattern differences.

2.2. Morphometrics

Twenty-seven morphological characters of worker bees related to size or angles of venation were measured using the methods of Ruttner (1988) and the Ruttner parameters and their Ruttner numbers are given in brackets as follows: length of femur (5), length of tibia (6), metatarus length (7), metatarsus width (8), length of tergite 3(9), length of tergite 4, (10), length of sternite 3 (11), length of wax plate of sternite 3, (12) width of wax plate of sternite 3(13), distance between wax plates, sternite 3(14), length of sternite 6 (15), width of sternite 6 (16), forewing length (17), forewing width (18), cubital a (19), cubital b (20), wing angle A4 (21), wing angle B4 (22), wing angle D7 (23), wing angle E9 (24), wing angle G18 (25), wing angle I10 (26), wing angle I16 (27), wing angle K19 (28), wing angle L13 (29), wing angle N23 (30), and wing angle O26 (31). The Grahamstown database consists of the following twelve morphological characters (5), (6), (7), (9), (10), (11), (12), (15), (17), B4 (22), D7 (23) and G18 (25).

2.3. Data analysis

Because the morphometric databases were derived from measurements by different people, to control for possible subjective error, an analysis of the databases from north Borneo (Oberursel) and south Kalimantan (Hadisoesilo-Raffiudin) was first performed, followed by an analysis of the

Figure 1. Geographical distribution of *A. koschevnikovi* and *A. cerana* based on all published records. Localities are given in Table I and additional online material.

combined Oberursel, Hadisoesilo-Raffiudin and Grahamstown databases.

Multivariate statistical analysis of the data included principal components, analysis of variance and Levene's F statistic procedures for testing heterogeneity of variances (Johnson and Wichern, 2002). A Bonferroni adjustment to the level of significance was used in order to ensure that the overall level of significance of the multiple comparison tests did not exceed $\alpha = 0.05$. Chi-square tests based on observed frequencies were used to compare the altitudinal distributions between species. All tests were performed using Statistica[©](StatSoft, 2007).

3. RESULTS

3.1. Biogeography

Given sea level changes that connected the islands of Sundaland to the continent during much of the Pleistocene (Voris, 2000) and the current distribution of tropical evergreen rain forests in Southeast Asia, A. koschevnikovi might have been expected to extend well into the mainland. However, numerous excursions in tropical forests over the last decade in Thailand, Myanmar, Cambodia and Vietnam failed to find the species (S. Hadisoesilo, H.R. Hepburn, G.W. Otis, M. Pianchaeron, P.H. Thai, D.W. Roubik, S Wongsiri, all unpubl. data). It appears that A. koschevnikovi is probably restricted to the evergreen forests of the Malay Peninsula, Borneo and Sumatera. Moreover, further enquiries into geographical variation in A. koschevnikovi established morphometrically that A. vechti vechti of northern Borneo and A. vechti linda of Sumatera as described by Maa (1953) are only variations in A. koschevnikovi (Hadisoesilo et al., 1999).

The new data on the distribution of *A. koschevnikovi* establishes many new site localities but all within the previously defined limits of the tropical evergreen forest regions of Sundaland (Fig. 1, Tab. I and additional online material for the distribution of *A. koschevnikovi* based on all published

Country & State/Province	Locality	Latitude	Longitude	Altitude	n
INDONESIA					
Sumatera	Tanjungampalo	0.22N	102.32E		1
Kalimantan	Jungkal	2.208	115.25E	23	4
Kalimantan	Murung Jambu	2.31S	115.25E	25	1
Kalimantan	Abung	2.31S	115.27E	80	1
Kalimantan	Barabai	2.34S	115.22E	101	4
Kalimantan	Haliyau	2.38S	115.26E	50	2
Kalimantan	Hulu Muka	2.49S	115.17E	14	5
Kalimantan	Panggungan	2.49S	115.24E	100	1
Kalimantan	Lumpage	2.49S	115.25E	134	2
Kalimantan	Jelatang	2.50S	115.18E	28	1
Kalimantan	Benua Lama	3.02S	115.58E	30	1
Kalimantan	Berangas	3.14S	116.13E	29	3
Kalimantan	Tirawan	3.14S	116.15E	72	1
Kalimantan	Kersik Putih	3.298	115.59E	35	2
Kalimantan	Serakaman	3.298	116.21E	45	2
MALAYSIA					
Sabah	Tenom	5.07N	115.57E	500	9
Peninsula	Ringlet	4.24N	101.22E	1135	2
Sarawak	Tawau	4.15N	117.54E	0	3
Sarawak	Long Semado	4.15N	115.34E	858	3

Table I. Distribution of localities, co-ordinates, altitude (m) of *A. koschevnikovi* where data are available, n = number of colonies.

records). The altitudinal distributions show that *A. koschevnikovi* mainly occurs between sea level and about 1200 m: for 102 recorded localities, 98 were < 1200 m, and 4 between 1200 to 2700 m. The 4 latter samples may have been confused with *A. nuluensis* (see additional online material for the distribution of *A. koschevnikovi* based on all published records). These altitudinal distributions are not significantly different from those of sympatric *A. cerana* ($\chi^2 = 6.9$, df = 3, P = 0.0764), but are significantly different from those of geographically sympatric *A. nuluensis* for which only three localities have been reported and all are > 3000 m ($\chi^2 = 104.0$, df = 3, P < 0.0001).

3.2. Analysis of the databases from north Borneo (Oberursel) and south Kalimantan (Hadisoesilo-Raffiudin)

All morphometrical characters passed tests of normality (Kolmogorov-Smirnov: 27 characters with P > 0.20) and homogeneity of the variances between colonies from northern Borneo and southern Kalimantan (Levene: 27 characters with P > 0.20). Univariate ANOVA results showed significant mean differences between the northern and southern groups in 9 of the 27 morphometric characters, namely size-related characters (9) to (14), cubital b (20) and angles of venation (27) and (31) (Tab. II). The colony means and standard deviations of 27 morphometric characters, together with cubital index, body size and character ratios averaged for the northern and southern groups are shown in Table II.

A principal components analysis was performed using the colony means of 27 morphometric characters of worker honeybees. Eight principal components with eigenvalues greater than one were isolated: PC 1, size-related characters (5), (6), (7), (8), (9), (10), (11), (13), (17), and (18) with component loadings between 0.62 and 0.78 accounting for 23.8% of the variation; PC 2, size-related character (12) and angle of venation O26 (31) with component loadings 0.79 and 0.74 accounting for

Table II. Means and standard deviations of 27 morphological characters (Ruttner (1988) numbers are given in brackets), together with cubital index, body size and character ratios of *A. koschevnikovi* from northern Borneo (n = 12) and southern Kalimantan (n = 30).

	South		North				
Characters	Mean	S.D.	Mean	S.D.	t-value	df	P-value
fem (5)	2.439	0.030	2.450	0.018	-1.16	40	0.2541
tib (6)	3.140	0.042	3.140	0.026	0.05	40	0.9634
ltar (7)	2.027	0.042	2.048	0.019	-1.66	40	0.1052
wtar (8)	1.102	0.023	1.091	0.014	1.60	40	0.1180
lt3 (9)	1.995	0.031	2.032	0.026	-3.62	40	0.0008*
lt4 (10)	1.923	0.034	1.961	0.029	-3.36	40	0.0017
lst3 (11)	2.657	0.037	2.612	0.057	2.99	40	0.0048
lwm (12)	1.106	0.031	1.053	0.027	5.22	40	0.0000*
wwm (13)	2.103	0.039	2.068	0.032	2.79	40	0.0080
dwm (14)	0.290	0.026	0.314	0.036	-2.37	40	0.0228
lst6 (15)	2.271	0.036	2.272	0.031	-0.08	40	0.9389
wst6 (16)	2.585	0.073	2.618	0.082	-1.27	40	0.2110
lfw (17)	8.534	0.113	8.492	0.130	1.04	40	0.3047
bfw (18)	2.972	0.040	2.984	0.041	-0.93	40	0.3596
cubital a (19)	0.581	0.026	0.574	0.011	0.92	40	0.3645
cubital b (20)	0.096	0.013	0.084	0.012	2.76	40	0.0086
a4 (21)	32.070	1.190	32.600	1.545	-1.20	40	0.2390
b4 (22)	104.397	3.433	104.723	2.819	-0.29	40	0.7716
d7 (23)	90.072	1.777	91.169	1.996	-1.75	40	0.0885
e9 (24)	20.532	0.973	20.154	0.479	1.28	40	0.2086
g18 (25)	94.564	2.400	93.997	1.746	0.74	40	0.4630
j10 (26)	44.501	1.608	43.970	1.507	0.98	40	0.3321
j16 (27)	105.534	2.964	109.328	1.791	-4.13	40	0.0002*
k19 (28)	75.431	2.445	75.437	2.205	-0.01	40	0.9943
113 (29)	15.400	1.046	15.232	1.719	0.39	40	0.6993
n23 (30)	84.287	2.599	85.792	2.403	-1.73	40	0.0913
026 (31)	29.341	2.027	32.715	1.645	-5.12	40	0.0000*
cub index	6.162	1.092	6.929	1.030	-2.09	40	0.0433
leg	7.607	0.102	7.639	0.047	-1.02	40	0.3137
body size	3.918	0.064	3.992	0.054	-3.57	40	0.0009*
body size/leg	0.515	0.007	0.523	0.006	-3.32	40	0.0019
wtar/ltar	0.544	0.008	0.532	0.009	3.95	40	0.0003*
lwm/wwm	0.526	0.012	0.509	0.009	4.34	40	0.0001*
lst6/wst6	0.879	0.030	0.869	0.029	1.05	40	0.3013
bfw/lfw	0.348	0.003	0.351	0.004	-2.73	40	0.0094

Bonferroni adjustment: $\alpha^* = 0.05/35 = 0.0014$; * significant.

14.3% of the variation; PC 3, angles of venation A4 (21) and B4 (22) with component loadings 0.68 and 0.86 accounting for 9.0%; PC 4, cubital a (19) and angles of venation J10 (26) and K19 (28) with component loadings between 0.51 and 0.60 accounting for 8.6%; PC 5, angle of venation L13 (29); PC 6, angle of venation N23 (30); PC 7, size-related character (16); PC 8, size-related character (14) ac-

counting for 7.8%, 5.9%, 5.4% and 3.8% of the variation, respectively. The eight principal components accounted for a total of 78.7% of the variation in the data.

A PC plot using the first and second PC scores showed two clusters with the colonies from localities in the south mainly in the upper half of the plot and colonies from the northern localities in the lower half (Fig. 2a). This

Figure 2. Principal components scores plots using the colony means of 27 morphometric characters of worker honeybees from southern Kalimantan (s) and northern Borneo (n). (a) PC 1 versus PC 2 scores; (b) PC 1 versus PC 3 scores.

indicates that for PC 2 there is a north/south cline mainly due to differences in the length of wax plate of sternite 3, (12) and the angle of venation O26 (31) (correlation: r = 0.61 for (12), r = 0.61 for (31), P < 0.0001). The PC plot for the first and third PC scores did not show a similar cline but revealed one morphocluster (Fig. 2b).

3.3. Analysis of combined Oberursel, Hadisoesilo-Raffiudin and Grahamstown databases

Principal components analysis was carried out on the morphometric databases of Oberursel, Hadisoesilo-Raffiudin and Grahamstown comprising colonies from Indonesia (Kalimantan and Sumatera), and Malaysia (Peninsula and Sabah), using the colony means of twelve morphometric characters of worker honeybees common to all the databases. Four principal components with eigenvalues greater than one were isolated: PC 1, size-related characters (5), (6), (7), (9), (10), (11), (15) and (17) with component loadings between 0.55 and 0.83 accounting for 36.5% of the variation; PC 2, size-related character (12) and angle of venation D7 (23) with component loadings 0.73 and 0.58, respectively, accounted for 18.6% of the variation; PC 3 and 4, angles of venation B4 (22) and G18 (25)

Figure 3. Principal components scores plots using the colony means of 12 morphometric characters of worker honeybees from southern Kalimantan (s), northern Borneo (Oberursel and (n), Grahamstown (g)), Malay Peninsula (o) and Sumatera (t).

with component loadings 0.60 and 0.82, respectively, accounted for 10.8% and 9.4% of the variation, respectively. The four principal components accounted for a total of 75.3% of the variation in the data.

PC plots using both the first and second PC scores again showed a cluster of colonies from southern Kalimantan and a cluster from northern localities from Sarawak and Sabah along the PC 2 axis (Fig. 3). A north/south cline was apparent in the PC 2 axis mainly due to differences in the length of wax plate of sternite 3, (12) (correlation: r = 0.65 for (12), P < 0.0001). New additional colonies from Long Semado (Borneo, n = 3) fell close to those from the northern localities, colonies from Ringlet (Malay Peninsula, n = 2) and the colony from Tanjungampalo (Sumatera, n = 1) fell close to those colonies from the southern localities. PC plots for the first and, third and fourth PC scores did not show a similar cline but revealed one morphocluster.

4. DISCUSSION

The multivariate analyses of the *A*. *koschevnikovi* samples clearly establish that this species is comprised of a single morphocluster. Moreover, the morphocluster can be delimited with as few as 12 morphological characters. It would also appear to be a very homogeneous species in comparison with *A. cerana* over the same area of distribution because the average coefficient of variation in *A. koschevnikovi* is 1.8% while in *A. cerana* it is 4.3% for the same 12 characters. *A. koschevnikovi* is often referred to in the literature as the "red bee of Sabah"; however "colour" was not used in our analyses because *A. koschevnikovi* is pale reddish in Sabah State, Borneo, Malaysia, but a dark, coppery colour in the Malay Peninsula and Sumatera, Indonesia (Otis, 1997).

The known geographical distribution of A. koschevnikovi is limited to the Malay Peninsula, Borneo, Malaysia and Borneo, Indonesia. The numerical weight of altitudinal distributions for A. koschevnikovi recovered from the literature provides values mostly below 1 200 m, but raises the question: is this because it is more difficult for collectors to reach higher elevations, or, are the bees actually scarcer there. Bearing in mind that the islands of the South China Sea were often connected to the mainland during much of the Pleistocene (Voris, 2000) and A. koschevnikovi occurs in tropical evergreen rain forests which extend into Thailand and Myanmar to the west and Cambodia and Vietnam to the east, its

absence from the later appears puzzling at first sight.

However, Hughes et al. (2003) found a significant transition between northern Indochinese and southern Sundaic (Indomalay) avifauna assemblages just north of the Isthmus of Kra in the Thai-Malay peninsula. This area is associated with a change from wet seasonal evergreen dipterocarp rain forest to mixed moist deciduous forest north of the Isthmus of Kra. They also reviewed the climatological and ecological factors associated with the forest types and hypothesized that the avian transition tracks the northern phytogeographical boundary and that hypothetical seaways at the end of the Oligocene could account for the development of both phytogeographical and avifaunal transitions as well. To the extent that these interpretations are sound, they would very conveniently explain why A. koschevnikovi does not occur in tropical evergreen rain forests which extend into Thailand, Myanmar, Cambodia and Vietnam.

It is apparent that the range of *A. koschevnikovi* is diminishing because it is now either poorly represented or absent in several areas from which it has been previously recorded decades ago. This has been attributed to habitat changes resulting from deforestation and the establishment of tea, oil palm, rubber and coconut plantations (Otis, 1997; Eltz, 2004). A final point of interest is that throughout its range *A. koschevnikovi* is sympatric with *A. cerana*; however, the former is a denizen of the primeval evergreen rain forests of Sundaland while the latter can be abundant in agricultural and even urban settings.

Analyse morphométrique et biogéographie d'*Apis koschevnikovi* Enderlein (1906).

Apis koschevnikovi / morphométrie / aire de répartition

Zusammenfassung – Morphometrische Analyse und Biogeographie von *Apis koschevnikovi* Enderlein (1906). An Arbeiterinnen von *Apis koschevnikovi* aus deren gesamten Verbreitungsgebiet in Südostasien wurden multivariate morphometrische Analysen durchgeführt. Siebenundzwanzig morphologische Merkmale der Arbeiterinnen wurden nach der Methode von Ruttner (1988) vermessen, die verwendeten Merkmale enthielten Größenmessungen und Flügelwinkel. Hieraus wurden acht Hauptkomponenten abgeleitet, die insgesamt 78,7 % der Variation in den Daten repräsentierten. Die multivariaten Analysen der Proben von *A. koschevnikovi* zeigten klar, dass die Art aus einem einzigen anhand von nur 12 morphologischen Merkmalen abgrenzbaren Morphokluster zusammengesetzt ist.

Die Hauptkomponentenanalyse zeigte einen die Bienen von Sumatra, Borneo und der malayischen Halbinsel enthaltenden Morphokluster (Abb. 2 und 3). Die Population ist einheitlicher als die von *A. cerana* in dem gleichen Verbreitungsgebiet. Dies kann aus dem Vergleich der mittleren Varianzkoeffizienten von 12 gleichen Merkmalen ersehen werden, der bei *A. koschevnikovi* 1,8 %, bei *A. cerana* aber 4,3 % beträgt.

Die Höhenverteilung zeigt, dass von den 102 erfassten Fundorten von *A. koschevnikovi* 96 % niedriger als 1200 m und 4 % zwischen 1200 und 2700 m lagen (Tab. I und zusätzliches elektronisches Onlinematerial zur Verteilung von *A. koschevnikovi* auf Grundlage aller publizierter Nachweise). Diese Höhenverteilung ist nicht unterschiedlich von der sympatrischen *A. cerana* ($\chi^2 = 6.9$, df = 3, P = 0.0764). Sie ist aber signifikant verschieden von der Höhenverteilung der geographisch sympatrischen *A. nuluensis*, für die bisher nur drei Fundorte bekannt sind, die alle über 3000 m liegen ($\chi^2 =$ 104.0, df = 3, P < 0.0001).

In zahlreichen Exkursionen im tropischen Regenwald über die letzten 10 Jahre in Thailand, Myanmar, Kambodscha and Vietnam konnte die Art *A. koschevnikovi* nicht nachgewiesen werden, ihr Vorkommen ist auf die Region des immergrünen Regenwaldes von Sundaland begrenzt (Abb. 1). Anscheinend ist das Verbreitungsgebiet von *A. koschevnikovi* im Schwinden, da diese in einigen Gebieten, in denen sie früher gefunden wurde, nun nur geringfügig vertreten ist oder vollständig fehlt.

Apis koschevnikovi / Morphometrie / Verbreitungsgebiet

REFERENCES

- Arias M.C., Tingek S., Kelitu A., Sheppard W.S. (1996) *Apis nuluensis* Tingek, Koeniger and Koeniger, 1996 and its genetic relationship with sympatric species inferred from DNA sequences, Apidologie 27, 415–422.
- Eltz T. (2004) Spatio-temporal variation of apine bee attraction to honeybaits in Bornean forests, J. Trop. Ecol. 20, 317–324.
- Enderlein G. (1906) New honeybees and contribution to the distribution of the genus *Apis*, Stet. Entomol. Ztg. 67, 331–334 [in German].

- Engel M.S. (1999) The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae; *Apis*), J. Hymenopt. Res. 8, 165–196.
- Fuchs S., Koeniger N., Tingek S. (1996) The morphometric position of *Apis nuluensis* Tingek, Koeniger and Koeniger, 1996 within cavitynesting honey bees, Apidologie 27, 397–405.
- Goetze G.K.L. (1964) The honeybee under natural and beekeeping conditions. Part 1. Systematics, reproduction and heritability, Monogr. Angew. Entomol. 19, 1–20 [in German].
- Hadisoesilo S., Meixner M., Ruttner F. (1999) Geographic variation within *Apis koschevnikovi* Buttel-Reepen, 1906, in Borneo, Treubia 31, 299– 306.
- Hepburn R., Hepburn C. (2006) Bibliography of *Apis* cerana Fabricius (1793), Apidologie 37, 651–652.
- Hepburn R., Hepburn C. (2007) Bibliography of Apis koschevnikovi Enderlein (1906), Apidologie 38, 507.
- Hughes J.B., Round P.D., Woodruff D.S. (2003) The Indochinese-Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions, J. Biogeogr. 30, 569–580.
- Johnson R.A., Wichern D.W. (2002) Applied Multivariate Statistical Analysis, 5th Edition, Prentice Hall, New Jersey.
- Koeniger N., Koeniger G., Gries M., Tingek S., Kelitu A. (1996) Reproductive isolation of *Apis nuluensis* Tingek, Koeniger and Koeniger, 1996 by species specific mating time, Apidologie 27, 353–360.
- Maa T.C. (1953) An enquiry into the systematics of the tribus Apidini or honey bees (Hymenoptera), Treubia 21, 525–640.
- Mathew S., Mathew K. (1988) The 'red' bees of Sabah, Newsl. Beekeep, Trop. Subtrop. Countries 12, 10.
- Otis G.W. (1997) Distributions of recently recognized species of honey bees (Hymenoptera: Apidae; *Apis*) in Asia, J. Kans. Entomol. Soc. 69, 311–333.

- Radloff S.E., Hepburn H.R., Fuchs S., Otis G.W., Hadisoesilo S., Hepburn C., Tan Ken (2005) Multivariate morphometric analysis of the *Apis cerana* populations of oceanic Asia, Apidologie 36, 475–492.
- Raffiudin R., Crozier R.H. (2007) Phylogenetic analysis of honey bee behavioural evolution, Mol. Phylogenet. Evol. 43, 543–552.
- Rinderer T.E., Koeniger G., Tingek S., Mardan M.B. (1989) A morphological comparison of the cavity dwelling honeybees of Borneo Apis koschevnikovi (ButtelReepen, 1906) and Apis cerana (Fabricius, 1793), Apidologie 20, 405–411.
- Ruttner F. (1988) Biogeography and Taxonomy of Honeybee, Springer, Berlin.
- Ruttner F., Kauhausen D., Koeniger N. (1989) Position of the red honey bee, *Apis koschevnikovi* (Buttel-Reepen 1906), within the genus *Apis*, Apidologie 20, 395–404.
- StatSoft, Inc. (2007) STATISTICA, version 8.1, www.statsoft.com.
- Sulistianto A. (1990) Morphometric analysis of Indonesian honeybees, Thesis, University of Wales College of Cardiff, United Kingdom.
- Takahashi J.I., Nakamura J., Sasaki M., Tingek A., Akimoto S. (2002) New haplotypes for the noncoding region of mitochondrial DNA in cavity nesting honey bees *Apis koschevnikovi* and *Apis nuluensis*, Apidologie 33, 25–31.
- Tingek A., Mardan M.B., Rinderer T.E., Koeniger N., Koeniger G. (1988) Rediscovery of *Apis vechti* (Maa, 1953): the Saban honey bee, Apidologie 19, 97–102.
- von Buttel-Reepen H. (1906) Contributions to the systematics biology as well as the historical and geographical distribution of honeybees (*Apis mellifica* L.) their variability and other *Apis* species, Mitt. Zool. Mus. Berlin 3, 117–201 [in German].
- Voris H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations, J. Biogeogr. 27, 1153–1167.

Online Material

State/ProvinceBRUNEI1Bukit Sih4.52N114.55E02Belalong Field station4.43N115.04E74INDONESIA3KalimantanBettotan5.49N118.07E04SumateraGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
BRUNEI1Bukit Sih4.52N114.55E02Belalong Field station4.43N115.04E74INDONESIA3KalimantanBettotan5.49N118.07E04SumateraGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
IncontractBukit Sih4.52N114.55E01Belalong Field station4.43N115.04E742Belalong Field station4.43N115.04E74INDONESIAGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
111102Belalong Field station4.43N115.04E7411111113KalimantanBettotan5.49N1114SumateraGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N1116SumateraGunung Leuser Natl Park3.46N97.12E8
INDONESIAINDONESIA3Kalimantan4Sumatera5KalimantanLong Pa Sia4Sumatera6SumateraGunung Leuser Natl Park3.46N97.12E8
INDONESIA3KalimantanBettotan5.49N118.07E04SumateraGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
3KalimantanBettotan5.49N118.07E04SumateraGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
4SumateraGeumpang4.56N96.09E6505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
4SumatriaGeumparg4.50N90.09E0505KalimantanLong Pa Sia4.22N115.43E10506SumateraGunung Leuser Natl Park3.46N97.12E8
6SumateraGunung Leuser Natl Park3.46N97.12E8
6 Sumatera Gunung Leuser Nati Fark 5.4010 97.12L 6
7 Valimentan Tanahmarah 240N 11721E 9
/ Kalillaliali Ialalillelali 5.401 117.51E 6 2 Sumotore Deborok 2.20N 02.12E 115
o Sumatera Tambunan 2.27N 09.12E 115
9 Sumatera Tambulani 5.2/N 96.19E 101 10 Sumatera Sibularait 2.10N 08.24E 450
$10 \qquad \text{Sumatera} \qquad \text{Stoumanget} \qquad 5.19\text{N} \qquad 96.34\text{E} \qquad 430$
11 Kalimanian Kasai 2.15N 117.52E U
12 Kalimanian Pelawandesar 1.10N 117.54E 14
13 Kalimantan Kariorang 0.49N 117.52E 0
14 Kalimantan "Tabang, Bengen River" 0.34N 116.01E 125
15* Sumatera Tanjungampalo 0.22N 102.32E 1
16 Sumatera Muaralembu 0.24S 101.20E 128
17 Kalimantan Samarinda 0.30S 117.09E 50
18 Sumatera Pariaman 0.37S 100.07E 21
19 Sumatera Tanjunggampalu 0.37S 100.52E 224
20 Sumatera Muara 0.40S 100.57E 345
21 Sumatera Trawas 1.02S 102.47E 141
22 Kalimantan Gunung Palung Nat Park 1.13S 110.07E 655
23 Kalimantan Pan Kalan Kasai 1.15S 110.05E 500
24 Kalimantan Balikpapan 1.16S 116.49E 0
25 Sumatera Pelewan Mountain 1.36S 105.52E
26 Kalimantan Timpah 1.42S 114.25E 127
27 Kalimantan Lampung 1.48S 115.04E 65
28 Kalimantan Ketapang 1.50S 109.59E 30
29 Sumatera Muara near Solok 1.55S 100.52E 9
30* Kalimantan Jungkal 2.20S 115.25E 23 4
31* Kalimantan Murung Jambu 2.31S 115.25E 25 1
32* Kalimantan Abung 2.31S 115.27E 80 1
33* Kalimantan Barabai 2.34S 115.22E 101 4
34 Sumatera Surulangun 2.35S 102.47E 313
35* Kalimantan Haliyau 2.38S 115.26E 50 2
36 Kalimantan Kandangan 2.46S 115.16E 59
37* Kalimantan Hulu Muka 2.49S 115.17E 14 5
38* Kalimantan Panggungan 2,49S 115,24E 100 1
39* Kalimantan Lumnage 2.49S 115.25E 134 2
40* Kalimantan Jelatang 2 50S 115 18F 28 1
41 Sumatera Taboali 3.00S 106.30F 207
42 Kalimantan Tanahmerah Pulau 3.028 116.10F
43* Kalimantan Benua Lama 3.02S 115.58F 30 1
44* Kalimantan Berangas 3 14S 116 13F 20 3

Appendix I. Distribution of localities, co-ordinates, altitude (m) of *A. koschevnikovi* based on all published records. * Indicates localities where data are available, n = number of colonies.

Count State/	ry & Province	Locality	Latitude	Longitude	Altitude	n
State/			2.1.40	116.155		-
45*	Kalimantan	Tirawan	3.148	116.15E	72	1
46	Kalimantan	Banjarbaru	3.258	114.49E	23	2
47*	Kalimantan	Kersik Putih	3.298	115.59E	35	2
48*	Kalimantan	Serakaman	3.298	116.21E	45	2
49	Kalımantan	Lampake	3.34S	115.49E	1	
50	Sumatera	Bengkulu	3.47S	102.16E	8	
51	Sumatera	Cabang Research Station	4.39S	105.49E	1	
52	Sumatera	Goenoeng Tanggamoes	5.25S	104.42E	1000	
53	Sumatera	Bandar Lampung	5.32S	105.02E	575	
54	Java	Bangka	6.15S	106.49E	26	
55	Java	Tjimandala Gunung Pantjar	6.34S	106.54E	575	
56	Java	Tjibunar	6.49S	106.04E	57	
57	Java	Tjidaoen	7.28S	107.20E	29	
58	Java	Bukit Lawang	7.49S	112.42E	453	
59	Java	Kacangan	7.58S	111.40E	497	
MAL	AYSIA					
60	Sabah	Kudat	6.52N	116.49E	0	
61	Peninsula	Alor Setar	6.07N	100.22E	0	
62	Sabah	Kamburongoh	6.01N	116.32E	2673	
63	Sabah	Kota Kinabalu	5.58N	116.04E	8	
64	Sabah	Sepilok	5.52N	117.58E	180	
65	Sabah	Sandakan	5.49N	118.07E	0	
66	Sabah	Kerokot	5.49N	116.30E	786	
67	Sabah	Bukit Kretam	5.48N	118.59E	150	
68	Peninsula	Gunung Jerai	5.47N	100.04E	1000	
69	Sabah	Tambunan	5.47N	116.20E	1054	
70	Sabah	Kampong Kertam	5.31N	118.30E	80	
71*	Sabah	Tenom	5.07N	115.57E	500	9
72	Sabah	Deramakot	5 00N	117 00E	400	-
73	Sabah	Danum Valley	4 95N	117.41E	100-1100	
74	Peninsula	Bukit Larut	4 47N	100.45E	109	
75	Sabah	Luasong	4 37N	117 24F	500	
76	Peninsula	Gunong Kledang	4 34N	101.01E	880	
70	Sarawak	Lambir Hills	4 28N	114 00F	80	
78	Peninsula	Gopeng	4.28N	101 10E	68	
70	Peninsula	Bertam Valley	4.25N	101.10L	1220	
80*	Peninsula	Binglet	4.23N	101.24L	1135	2
81	Sarawak	Long Da Sia	4.24N	101.22E	1050	2
82	Sarawak	Miri	4.22N	113.43E	1050	
83	Deningula	Aver Itam	7.221 1 16N	101.07F	- 15	
81*	Sarawak	Tawan	4.15N	101.07E	0	3
Q5*	Sarawak	Long Semado	1.1.JIN	117.34E	858	2
0J 86	Deningula	Long Schlau0	4.1JIN 2.55M	113.34E 102.22E	0J0 108	3
00 07	Femilisula	Mt Dulit	2.15N	102.22E	100	
0/	Daningula	Ivil Dulli Dukit Kutu	3.1.JIN 2.1.2M	114.13E	1230	
88 80	Peninsula		3.12N	102.05E	804	
89	Peninsula	Kuala Lumpur	3.10N	101.42E	00	

Appendix I. Distribution of localities, co-ordinates, altitude (m) of *A. koschevnikovi* based on all published records. * Indicates localities where data are available, n = number of colonies.

Country	&	Locality	Latitude	Longitude	Altitude	n
State/Pr	ovince					
90	Peninsula	Dusun Tua	3.07N	101.49E	86	
91	Peninsula	Genting Highlands	3.06N	101.45E	1700	
92	Peninsula	Simpang Pertang	2.57N	102.16E	21	
93	Peninsula	Ayer Hitam	2.55N	102.24E	57	
94	Peninsula	Kampong Serting	2.49N	102.22E	80	
95	Peninsula	Kuala Pilah	2.43N	102.15E	98	
96	Peninsula	Melaka	2.12N	102.15E	1	
97	Sarawak	Balin Balai	2.04N	111.25E	28	
98	Sarawak	Matu	2.40N	111.31E	0	
99	Sarawak	Santubong	1.43N	110.17E	0	
100	Sarawak	Mt Matang	1.36N	110.10E	140	
101	Sarawak	Batu Kawa	1.31N	110.16E	15	
102	Sarawak	Tebakang	1.06N	110.30E	75	

Appendix I. Distribution of localities, co-ordinates, altitude (m) of *A. koschevnikovi* based on all published records. * Indicates localities where data are available, n = number of colonies.