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Abstract – Most QTL mapping methods share a common assumption: that the phenotype follows
a normal distribution. Many phenotypes of interest, however, do not satisfy this assumption. In this
paper, a methodology of QTL mapping for ordinal traits based on the framework of the generalized
linear model (GLM) is presented. The location and effect of the putative QTL were estimated us-
ing the maximum likelihood method. The efficiency and the power of the proposed method were
compared with that of the method based on the linear model (LM) in various conditions (QTL ef-
fect, heritability, phenotypic incidence, and number of categories of phenotypes) via simulation.
A daughter design with multiple families and a total of 500 individuals was applied. The results
showed that the GLM approach had certain advantages over the LM approach in power of QTL
detection and QTL position estimation for ordinal traits. The estimates of the QTL position were
0.11∼1.59 cM (0.78 on average) less biased with smaller standard errors. The power of QTL detec-
tion was 1.6 ∼ 10.9% (5.1% on average) higher. In addition, the power and the accuracy of QTL
mapping depended on the effect of the putative quantitative trait loci and the value of heritability.
With the increase of the QTL effect from 0.05 to 0.3, the biases of the QTL position estimates
reduced 0.4 to 3.6 cM and the power increased 27 to 56% under different heritabilities. With the
increase of heritability from 0.1 to 0.4, the biases reduced 0.24 to 3.1 cM and the power increased
5% to 35% under a different QTL effect.

ordinal traits / threshold models / generalized linear model / QTL mapping / maximum
likelihood

Résumé – Cartographie de loci à effets quantitatifs (QTL) pour des caractères ordinaux en
utilisant le modèle linéaire généralisé dans des familles de demi-germains. La plupart des mé-
thodes de cartographie des QTL ont en commun un même principe : le phénotype suit une distri-
bution normale. Or, de nombreux phénotypes d’intérêt ne satisfont pas à cette condition. Dans cet
article, la méthodologie de cartographie des QTL pour des caractères ordinaux basée sur le modèle
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linéaire généralisé (GLM) est présentée. La position et l’effet du QTL supposé sont estimés à l’aide
de la méthode du maximum de vraisemblance. L’efficacité et la puissance des tests proposés sont
comparées par simulation à ceux fondés sur le modèle linéaire (LM) dans des conditions variables
(effet des QTL, héritabilité, incidence phénotypique et nombre de catégories phénotypiques). Une
population expérimentale selon un schéma familles de filles de mêmes pères et un total de 500 indi-
vidus a été utilisée. Les résultats montrent que GLM a certains avantages sur LM pour la puissance
de détection des QTL et l’estimation de leur position en ce qui concerne les caractères ordinaux.
L’estimation de la position du QTL était 0,11∼1,59 cM (0,78 en moyenne) moins biaisée, avec des
écart-types moindres et la puissance de détection était 1,6∼10,9 % (5,1 % en moyenne) donc plus
grande. La puissance et la précision de la cartographie des QTL dépendent de la variance des QTL
supposés et de la valeur de l’héritabilité. Lorsque la proportion de variance due au QTL augmente
de 0,05 à 0,3, les biais d’estimation des positions de QTL sont diminués de 0,4 à 3,6 cM en fonction
des situations testées et la puissance de détection est augmentée de 27 à 56 % quelle que soit l’héri-
tabilité. Lorsque l’héritabilité augmente de 0,1 à 0,4, les biais sont réduits de 0,24 à 3,1 cM suivant
les simulations et la puissance est augmentée de 5 à 35 % quelle que soit la variance des QTL.

caractères ordinaux / modèle à seuils / modèle linéaire généralisé / cartographie des QTL /
maximum de vraisemblance

1. INTRODUCTION

Many economically important traits in
livestock vary in a discontinuous manner
but are not inherited in a simple Mendelian
fashion. For example, disease resistance
traits in animals may be recorded in binary
or ordered categories. These traits, nor-
mally called categorical or threshold traits
[5], are presumably controlled by many
genes with expressions modified by envi-
ronmental effects like quantitative traits. In
human genetics, such traits are termed as
complex discrete traits [20]. Owing to the
recent advances in marker technology, the
molecular dissection of heritable quantita-
tive traits into their individual Mendelian
components or quantitative trait loci (QTL)
is now conceivable. Novel statistical tech-
niques to detect and map individual genes
affecting quantitative traits have been de-
veloped and subsequently refined. Most
methods of QTL mapping are based on
the interval mapping approach, using ei-
ther least squares regression or maximum
likelihood [6, 8, 13, 15, 26, 30]. The QTL
concept is also used for traits with discrete
distribution for which a continuous under-
lying process can be assumed [25]. How-
ever, most QTL mapping methods share a
common assumption that the phenotypes

follow a normal distribution and hence are
not appropriate for categorical traits. Thus,
new methods are needed for QTL mapping
for categorical traits. However, mapping
QTL for categorical traits is more challeng-
ing than for continuously distributed traits
due to the nonlinear relationship between
the observed phenotype and unobservable
genetic effects, especially when the map-
ping population contains multiple outbred
families [3,14,26]. The threshold model or
generalized linear model (GLM) would be
the key techniques for QTL mapping for
categorical traits.

Methods for QTL mapping for binary
traits, which are special categorical traits
with just two categories, have been devel-
oped in line-crossing experiments. Using
the threshold model, Hackett and Weller
[9] and Xu and Atchley [27] developed
methods to map QTL controlling the un-
derlying liability of binary traits. These
methods were based on a logit probabil-
ity model and illustrated using a back-
cross population as an example and can
easily be extended for ordinal traits, since
the threshold model is also valid for this
type of traits. Rao and Xu [19] adapted
the logit probability model used for the bi-
nary trait to the analysis of ordinal traits in
four-way crosses. In the GLM framework,
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Spyrides-Cunha et al. [21] developed a
proportional odds model for testing the
presence of QTL at single-markers. Here,
we present the methodology of QTL map-
ping for binary and ordinal traits in the
GLM framework for half-sib design. The
location and effect of the putative QTL
were estimated using the maximum like-
lihood method. The efficiency and power
of the proposed GLM approach were com-
pared with those of the simple linear model
(LM) where discrete data are treated as if
they were continuous.

2. METHODS

Under the assumption that ordinal traits
are controlled by polygenes, the discrete
phenotype (Y) is assumed to be controlled
by a latent variable, referred to as liabil-
ity (z), which is considered to be contin-
uous and normally distributed and can be
described by the usual linear model

z = x′β +G + g + e

where z is the liability, x′β represents all
fixed effects, G is the QTL genotypic value,
g is the polygenic effect with a distribution
of N(0, σ2

g), and e is the residual with a dis-
tribution of N(0, σ2

e). The discrete pheno-
types are determined by a set of underlying
thresholds (υ1 < υ2 < ... < υc−1), which
define the observed categories, Y, on an or-
dinal scale 1, 2, ..., c, i.e.

υk−1 < Z <υk ⇔ Y = k, k = 1, 2, · · · , c,

υ0 = −∞, υc = +∞.
For binary traits, the observed two cate-
gories are determined by one fixed thresh-
old (υ). When the value of the liability is
above the threshold value, an individual
shows one status of phenotype on the ob-
served scale, otherwise, it shows the other
status of the phenotype.

The maximum likelihood method for
the half-sib design developed by Weller

et al. [24] is a convenient method for
QTL mapping for continuously distributed
traits. Empirical studies in animal breed-
ing suggest that the linear model is robust
for departures from normality in the line
cross population [13]. It may be interesting
to show the comparison between the GLM
and the traditional linear method (LM) in
a half-sib population. For half-sib design,
assuming a single QTL with alleles Q and
q coming from heterozygous sires and a
random dam population, the distribution of
the liability of the offspring is a mixture of
three distributions. The probability density
function of the liability of individual j can
be written as

f (z j) =
3∑

i=1

f re j(i) · f(i)(z j)

where f re j(i) = Pr(G = i |M ) repre-
sents the probability of individual j hav-
ing QTL genotype i (i = QQ,Qq, qq) con-
ditional on marker genotype information,
which can be calculated from the known
recombination rates and marker genotypes
[16], f(i)(z j) represents the normal distri-
bution density of z j given QTL genotype
i, with the same variance and different
mean (a, 0,−a) for different QTL geno-
type, where a is the additive effect of the
putative QTL. However, because the liabil-
ity (z) was not observable, we have to con-
struct the likelihood function from the dis-
crete phenotypic value.

Consider N progeny in a half-sib design
and let Y j and G j be the phenotypic and
genotypic values of progeny j, respectively.
Y j can be transformed into a multivariate
vector, W j = [w j1 w j2 · · · w jc ]T , where

w jk =


1
0

if Y j = k
if Y j � k

k = 1, 2, · · · , c.

Conditional on the genotypic value of
progeny j, the transformed multivariate
phenotype W j follows a multinomial dis-
tribution with Pr(w jk = 1

∣∣∣G j ) = P jk.
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Therefore, the likelihood of observing W j

is f j(G j) =
∏c

k=1 P
w jk

jk . Since G j were not
observable, all possible values of G j must
be considered and the expected likelihood
takes the average f j(G j) weighted by the
QTL genotype probabilities. So,

f j =

3∑

i=1

pr(G j = Qi) f j(G j = Qi)

=

3∑

i=1

pr(G j = Qi)
c∏

k=1

P
w jk

jk

where Qi represents the genotypic value
of QTL genotype i, with Q1 = a,Q2 =
0, and Q3 = −a. We now examine the link
between the genotypic value and the phe-
notype. Under the assumption of a normal
distribution for e, P jk is defined by

P jk = Φ(υk − x′β − g j −G j)

−Φ(υk−1 − x′β − g j −G j)

where Φ(ξ) stands for the cumulative stan-
dard normal distribution function with ar-
gument ξ. Analysis involving Φ(ξ) is re-
ferred to as probit analysis. A logistic
model is employed to approximate Φ(ξ)
for estimation purpose [1]. The logistic
model is expressed by ψ(x) = exp(x)

1+exp(x) . The
approximate relationship between a pro-
bit model and a logistic model is Φ(x) ≈
ψ(cx), where c = π/

√
3 [17]. Therefore,

P jk ≈
exp
{
c[υk − (x′β + g j +G j)]

}

1 + exp
{
c[υk − (x′β + g j +G j)]

}

−
exp
{
c[υk−1 − (x′β + g j +G j)]

}

1 + exp
{
c[υk−1 − (x′β + g j +G j)]

} ·

In QTL analysis, the probability pr(G j =

Qi) can be inferred through the conditional
genotype probability f re j(i) = Pr(G j =
i |M ). So, the likelihood function for

progeny j is now rewritten as

f j =

3∑

i=1

pr(G j = Qi) f j(G j = Qi)

=

3∑

i=1

pr(G = i |M )
c∏

k=1

P
w jk

jk

and the overall likelihood function for N
progeny is L =

∏N
j=1 f j. The parameters

σ2
g, σ

2
e and a can be estimated via max-

imum likelihood estimation (MLE). The
test of H0 vs. H1 can be carried out by us-
ing the likelihood ratio (LR) statistic. The
distribution of LR can be approximated to
a chi-square distribution with two degrees
of freedom [22, 27] or empirically derived
via simulation under the null hypothesis
[19].

3. SIMULATION STUDY

A simulation study was carried out to in-
vestigate the efficiency and behavior of the
method proposed above.

3.1. Experimental design

A half-sib design was used for link-
age analysis of putative QTL and genetic
markers. There were 10 sires, each mating
with 50 dams and producing 50 half-sib
progeny. So, the total number of progeny
was 500. All sires and dams were un-
related with each other and matings be-
tween sires and dams were random. The
traits were determined by many genes of
small effect each and by a relatively major
QTL with two alleles, Q and q, with fre-
quencies of p and 1 − p, respectively. The
putative QTL was situated between two
flanking biallelic markers, with distances
d1 and d2 to the left and right marker, re-
spectively. The distance between the two
markers was D and was assumed known.
The Haldane mapping function was as-
sumed when transforming the distances to
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recombination rates. The linkage phase be-
tween QTL and markers was assumed to be
known or estimated with a high degree of
accuracy.

3.2. Data simulation

The flanking markers were 45.8 cM
apart with a QTL located between them
with distances 17.8 and 28 cM to the
left and right marker, respectively. Pater-
nal marker-QTL haplotypes and maternal
marker haplotypes received by progeny
were sampled according to the population
frequencies of 0.5 for all alleles and the
linkage between QTL and marker loci.

Two kinds of ordinal traits with two and
four ordered categories, respectively, were
simulated. For both kinds of traits, two sets
of incidences were considered, (0.20, 0.60,
0.15, 0.05) and (0.20, 0.40, 0.40, 0.20)
for the four-category trait, and (0.80, 0.20)
and (0.50, 0.50) for the two-category trait.
The QTL effect was expressed as the ratio
of QTL variance (σ2

G) to the total genetic
variance (σ2

GT = σ2
G + σ

2
g), i.e. ∆QT L =

σ2
G

/
σ2

GT . The genotypic values of the three
QTL genotypes were defined as a, 0, and
–a, respectively. For the sires and dams,
the QTL genotypic values were determined
according to Falconer’s model [5] and the
polygenic effects were generated via sam-
pling from N(0, σ2

g) for given heritabil-
ity (h2), ∆QT L, and σ2

e . For the offspring,
the QTL genotypic values were generated
according to the haplotypes produced by
their parents. The polygenic effects were
generated as u = 0.5gs + 0.5gd + m, where
gs and gd represent the polygenic value of
the sire and dam, respectively, and m repre-
sents the Mendelian sampling effect, which
follows a normal distribution with mean
0 and variance σ2

m = 0.25σ2
g. The liabil-

ity values were generated as the sum of
the polygenic effect, QTL genotypic value,
and random residual effect which was gen-
erated from N(0, σ2

e). The liability values

were transformed to discrete phenotypes
in accordance with the fixed thresholds,
which were determined according to the
given incidences.

In the simulation, three levels of QTL
effect (∆QT L = 0.05, 0.10, and 0.30) and
two levels of heritability of the liability
(h2 = 0.1 and 0.4) were considered to
examine their influence on the accuracy
and power of QTL mapping. For each pa-
rameter combination 1 000 replicates were
simulated. For each replicate, the presence
of a QTL was tested and the parameters
(position and QTL genotypic value) were
estimated using the method presented in
Section 2, and for comparison, the linear
model method described by Weller et al.
[24] as well.

3.3. Hypothesis testing and power
of the test

The critical values for testing the pres-
ence of a QTL within the marker inter-
val were obtained by generating an empir-
ical distribution of the test statistic (LR)
by simulating 2 000 replicates under the
null hypothesis of no QTL being present.
The power of the test was calculated as
the percentage of the replicates for which
the null hypothesis was rejected among the
1 000 replicates simulated under the alter-
native hypothesis (QTL is present).

4. RESULTS

4.1. Estimation of QTL position

The means and standard errors of the es-
timated QTL position using the two meth-
ods are given in Table I. The results showed
that in all cases the means of the estimated
QTL position obtained by the GLM ap-
proach were closer to the true value with
smaller standard errors than that obtained
by the linear model approach. But the dif-
ferences were generally small. Compared
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Table I. Mean estimates of QTL position and their standard errors (in parentheses) over 1 000 repli-
cates (the true position is 17.8 cM from the left marker).

Type of trait Incidences Heritability Contribution Mean estimates (SE)
of QTL variance GLM LM

Binary 0.20, 0.80 0.10 0.05 22.31(7.42) 23.90(7.83)
0.10 20.57(6.87) 21.25(7.26)
0.30 16.34(6.36) 16.12(6.75)

0.40 0.05 19.23(6.48) 20.02(6.86)

0.10 16.47(4.65) 19.73(5.27)
0.30 18.82(4.46) 19.36(4.74)

0.50, 0.50 0.10 0.05 22.16(7.41) 22.63(7.67)
0.10 21.21(5.88) 21.32(6.54)
0.30 18.46(5.35) 19.38(6.13)

0.40 0.05 19.44(5.34) 21.38(6.10)
0.10 18.46(4.15) 19.15(5.28)
0.30 18.22(4.21) 18.61(4.73)

Four 0.20, 0.60, 0.10 0.05 20.77(6.34) 22.31(7.12)
categories 0.15, 0.05 0.10 19.28(4.56) 20.02(6.23)

0.30 18.55(5.27) 19.28(5.61)

0.40 0.05 17.19(3.52) 19.76(5.72)
0.10 17.12(3.15) 19.23(4.05)
0.30 18.19(2.76) 18.34(3.43)

0.20, 0.30, 0.10 0.05 21.36(7.25) 21.72(6.89)
0.30, 0.20 0.10 19.43(5.45) 21.28(5.72)

0.30 18.47(4.57) 19.36(5.55)

0.40 0.05 18.67(4.78) 19.23(5.75)
0.10 18.55(3.53) 18.96(3.79)
0.30 17.46(3.21) 18.58(3.64)

with the results for the four-category trait,
the estimates of QTL position for the bi-
nary trait had larger deviations from the
true position and the standard errors of the
estimates were also larger for binary cate-
gories. In general, the accuracy of QTL po-
sition estimates increased with the increase
of the heritability and QTL effect.

4.2. Estimation of QTL genotypic value

The means and standard errors of the es-
timated QTL genotypic value (a) using the

two methods are given in Table II. The dif-
ferences of the means of the estimates from
both methods were generally small (from
0.0009 to 0.0319) although the estimates
from the LM approach were slightly accu-
rate in most cases, but the standard errors
from the GLM approach were smaller than
those from the LM approach in all cases.
The differences were getting smaller when
the incidences of different categories were
getting balanced. In general, for both meth-
ods, the QTL effects were significantly
overestimated when the QTL effects were
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Table II. Mean estimates of QTL genotypic value and their standard errors (in parentheses) over
1 000 replicates.

Type of Incidences Heritability Contribution True Mean estimates(SE)
trait of QTL genotypic GLM LM

variance value

Binary 0.20, 0.80 0.10 0.05 0.1054 0.1233(0.0876) 0.1349(0.1035)
0.10 0.1491 0.1146(0.0923) 0.1275(0.1127)
0.30 0.2582 0.1926(0.1245) 0.2147(0.1334)

0.40 0.05 0.2582 0.2025(0.1343) 0.2163(0.1526)
0.10 0.3651 0.3125(0.1212) 0.3236(0.1324)

0.30 0.6325 0.5643(0.1426) 0.5762(0.1558)

0.50, 0.50 0.10 0.05 0.1054 0.1321(0.0756) 0.1367(0.0847)
0.10 0.1491 0.1187(0.0734) 0.1223(0.1032)
0.30 0.2582 0.2178(0.0741) 0.2169(0.0962)

0.40 0.05 0.2582 0.2326(0.1121) 0.2247(0.1068)
0.10 0.3651 0.3319(0.1207) 0.3364(0.1326)
0.30 0.6325 0.5856(0.1133) 0.5813(0.1365)

Four 0.20, 0.60, 0.10 0.05 0.1054 0.2245(0.1077) 0.1926(0.0923)
categories 0.15, 0.05 0.10 0.1491 0.2336(0.0829) 0.2447(0.1130)

0.30 0.2582 0.3108(0.0932) 0.2879(0.1025)

0.40 0.05 0.2582 0.3163(0.1346) 0.2904(0.0780)
0.10 0.3651 0.4126(0.1055) 0.3975(0.1246)
0.30 0.6325 0.5882(0.1221) 0.5746(0.1416)

0.20, 0.30, 0.10 0.05 0.1054 0.2155(0.1142) 0.2038(0.1038)
0.30, 0.20 0.10 0.1491 0.2167(0.1081) 0.2132(0.1231)

0.30 0.2582 0.2935(0.0827) 0.2828(0.0964)

0.40 0.05 0.2582 0.2963(0.1133) 0.2831(0.1049)
0.10 0.3651 0.3997(0.1174) 0.3825(0.1323)
0.30 0.6325 0.6022(0.1336) 0.5811(0.1358)

small and underestimated when the QTL
effects were large. The biases for the four-
category trait were generally larger than
those for the binary trait. Very interest-
ingly, for the binary trait, the bias increased
with the increase of the QTL effect and her-
itability, while for the four-category trait,
it decreased in the same situations. For all
different QTL effects and heritabilities, the
biases were smaller when the incidences of
different categories were balanced.

4.3. Power of QTL detection

The empirical statistical powers of the
QTL detection at 0.05 significance levels
are given in Table III for the two meth-
ods. The GLM method, in general, had
a higher power than the LM method, es-
pecially in the cases of binary trait, low
heritability, and small QTL effect, where
the power of the GLM method were about
10% higher than that of the LM method.
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Table III. Power of QTL detection using the GLM and LM methods based on empirical thresholds
obtained from 2 000 simulations at 5% significance level.

Type of trait Incidences Heritability Contribution of Power (%)
QTL variance GLM LM

Binary 0.20, 0.80 0.10 0.05 28.4 17.5
0.10 35.9 32.7
0.30 55.3 50.5

0.40 0.05 35.2 29.6
0.10 50.3 48.7
0.30 90.8 82.4

0.50, 0.50 0.10 0.05 28.7 18.1
0.10 37.3 32.6
0.30 56.2 51.1

0.40 0.05 35.4 29.5
0.10 52.0 49.6
0.30 91.8 83.2

Four categories 0.20, 0.60, 0.10 0.05 36.5 30.2
0.15, 0.05 0.10 49.7 46.6

0.30 83.8 81.3

0.40 0.05 43.5 39.4
0.10 59.4 55.0
0.30 92.2 87.5

0.20, 0.30, 0.10 0.05 35.5 31.3
0.30, 0.20 0.10 51.9 46.6

0.30 85.2 81.8

0.40 0.05 40.8 36.4
0.10 61.5 57.1
0.30 92.8 89.3

When plotting the averages of the test
statistics over 1000 replicates against the
map positions, it showed that all curves
were peaking near the true QTL position
(17.8 cM) (figure not shown). In general,
the power increased with the increase of
the QTL effect and the heritability. For the
same QTL effect and heritability, the power
for the four-category trait was higher than
that for the binary trait. However, the trait
incidence showed very little effect on the
power of QTL detection in all cases.

5. DISCUSSION

In this paper, we developed a novel tech-
nique in the GLM framework based on the
principles of the threshold model [19, 27]
under a generalized linear model (GLM) to
map QTL for a binary and ordinal trait in
the half-sib design. The developed method
was tested and compared with the usual
linear model method through a set of simu-
lations. The results showed that the thresh-
old model has certain advantages in QTL
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location estimation (Tab. I) and power
of QTL detection over the linear model
method (Tab. III). The estimates of QTL
position were 0.11∼1.59 cM (0.78 on aver-
age) less biased with smaller standard er-
rors and the power of QTL detection was
1.6∼10.9% (5.1% on average) higher. The
greatest advantage was observed for the bi-
nary trait with a low heritability and small
QTL effect.

Statistical methods of QTL mapping
in line crosses and outbred populations
have been developed for binary charac-
ters [4, 9, 11, 27]. In a GLM framework,
Visscher et al. [23] suggested a logistic
regression approach for binary traits us-
ing either a probit or a logit link func-
tion, and found that both link functions
gave similar results. When compared to
the classical linear regression (RIM) ap-
plied on binary data, the logistic regression
gave similar power of QTL detection. Yi
and Xu [29] developed a fixed-model ap-
proach to map QTL for complex binary
traits for multiple full-sib families in out-
bred populations, and showed that their
method was efficient when there were a
small number of large families. As the
number of families increases, the fixed
model approach becomes inefficient be-
cause of the large number of parameters to
be estimated. Yi and Xu [28] therefore pro-
posed a random model approach in which
the effect of each allele was treated as a
random variable so that a single variance
rather than individual allelic effects were
to be estimated and tested. Kadarmideen
et al. [12] set up a (likelihood-based)
generalized interval mapping method to
map QTL for complex binary traits in
multi-family half-sib designs based on the
threshold theory and implemented using a
Newton-Raphson algorithm for fitting the
likelihood. They showed that the least-
squares-based method and their general-
ized interval mapping method had similar
power of QTL detection. Methods for bi-
nary traits can easily be extended for ordi-

nal traits, since the threshold model is also
valid for this type of traits. Rao and Xu
[19] adapted the logit probability model
used for binary traits to the analysis of or-
dinal traits in four-way crosses. In a GLM
framework, Spyrides-Cunha et al. [21] de-
veloped a proportional odds model for test-
ing the presence of QTL at single-markers.

Among all the studies on mapping QTL
for discrete traits, only a few studies com-
pared the proposed method to standard lin-
ear model interval mapping in terms of
power of QTL detection [12] in the out-
bred population. Mixed threshold models
would be more beneficial than mixed lin-
ear models for the estimation of random
effects for categorical traits because ge-
netic variances are linked to the incidence
of the trait for linear models [7]. Such
mixed model situations arise in QTL map-
ping for binary or other non-normal traits
when implemented via complex pedigree
analysis or random models involving es-
timation of QTL, polygenic and residual
variance components [28]. In fact, Yi and
Xu [28] reported that generalized inter-
val mapping has more power than RIM
to detect QTL for binary traits, which
strengthens the need for threshold models
in mapping QTL for categorical traits. The
advantages of the threshold model over the
linear model could increase as complexity
increases. One such example is from Quaas
et al. [18], who showed that interactions
found for calving ease data on the observed
binary scale were much smaller than on the
liability scale. This again supports the use
of threshold models for the analysis of cat-
egorical data.

Although the linear model method (LM)
is statistically inappropriate for analysis
of discrete data, it is simpler to use and
less computer intensive than the threshold-
model method (GLM). Given this prop-
erty of LM, we investigated the equiva-
lence of the GLM and LM methods for
QTL mapping for discrete data. The re-
sults showed that the two methods were
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in general similar in terms of estimation
of QTL location and QTL effect. The ob-
served similarity is as expected based on
reports from several studies which indi-
cated similarity between linear and thresh-
old models for QTL interval mapping with
binary or ordinal traits [9,11,12,19,27]. In
this study, however, significant differences
were observed between LM and GLM in
power for traits with lower heritability and
smaller QTL effects. In addition, the ad-
vantage of the GLM method was also re-
lated to the number of categories of the trait
phenotype. For the binary trait, the GLM
method showed larger advantage than for
the four-category trait.

In this study we only considered the
half-sib population, but for the general
population, the GLM method can also be
applied. The main differences exist in in-
ferring the linkage phase and the con-
ditional probability of the putative QTL
genotype. In the general population, it is
complex to infer the conditional probabil-
ity of the QTL genotype using the identity-
by-descent (IBD) of the QTL and all
marker loci [2, 14]. Here, we only demon-
strated the GLM method of QTL mapping
in a half-sib design using a single QTL
model. In reality, multiple QTL may be
present. Zeng [31] and Heather [10] ex-
plored a solution for such a problem, which
is referred to as composite interval map-
ping. For the situation of existing multiple
QTL, We can add other QTL effects in the
linear model of the liability to fit this situ-
ation.
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