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Abstract – The aim of this study was to analyze somatic cell counts which is an indirect criterion.
to assess susceptibility to mastitis. Data analyzed were weekly records (6448 somatic cell scores)
out of 159 primiparous Holsteins and Holsteins x Normande cows raised at the INRA“ Le Pin au
Haras” experimental farm, France. Given the longitudinal structure of this data set, the analysis con-
sists of modeling both the mean and the individual profiles. This was achieved via the use of mixed
models including fixed effects for the average profiles and random effects for the adjusted individual
profiles. As far as fixed effects are concerned, the main issue is to fit a time trend to the average
profiles. For this, we employed the technique of fractional polynomials described in Royston and
Altman (Appl. Stat. 43 (1994) 429–467) under several variance-covariance structures. The best sec-
ond degree polynomial involved an intercept plus the time at the power (–1/3) (i.e., ) plus the
latter times the logarithm of the time (i.e.,  × log (t)). Regarding random effects, model comparisons
involved random coefficient models, exponential stationary stochastic processes and heterogeneous
variances. The models that simultaneously included all these three structures turned out to be the
best. For instance, random coefficient models did not fit the variance function well, even when the
degree of the polynomial was high. This phenomenon partly justified the introduction of heteroske-
dastic models.

longitudinal data / mixed models / fractional polynomials / robust estimators / somatic cell
scores

Résumé – Analyse statistique des scores de cellules somatiques par la méthodologie des modèles
mixtes appliquée à des données longitudinales. L’objectif de cette étude est d’analyser les
comptages de cellules somatiques, qui constituent un critère indirect d’appréciation de la sensibilité
aux mammites. Les données analysées étaient relatives à 6448 contrôles hebdomadaires de cellules
somatiques du lait effectués sur 159 génisses de race Holstein et croisées Holstein x Normande,
entretenues au domaine expérimental INRA-Le pin au Haras. Eu égard à la structure longitudinale
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des données, l’analyse a consisté à modéliser les profils moyens et individuels de réponse. À ce
propos, ont été mis en œuvre des modèles mixtes dont les effets fixes décrivent les profils moyens
et les effets aléatoires les profils individuels. Concernant les effets fixes, on a utilisé la technique
des polynômes fractionnaires, décrite par Royston et Altman [29] assortie de différentes structures
de variance-covariance. Le meilleur ajustement est fourni par un polynôme de second degré
comportant un terme constant, le temps à la puissance moins un tiers (i.e., ) et ce même terme
multiplié par le logarithme du temps (i.e.,  × log(t)). Concernant la partie aléatoire du modèle,
les modèles mis en comparaison faisaient appel à une régression sur le temps à coefficients aléatoires,
à des processus stochastiques stationnaires et à des variances hétérogènes. Ce sont les modèles qui
incluaient simultanément ces trois structures qui se sont avérés les meilleurs. Ainsi, les modèles
polynomiaux à degré élevé ne rendaient pas compte de l’évolution réelle de la variance avec le temps
d’où le recours à des modèles hétéroscédastiques.

données longitudinales / modèles mixtes / polynômes fractionnaires / estimateurs robustes /
scores de cellules somatiques

1. INTRODUCTION

Somatic cell count (SCC) has been
widely advocated as an indicator trait for
mastitis [17, 30]. In many countries, SCC is
measured on a large scale in national milk
recording systems (usually on a monthly
basis) and used as an indirect criterion in
genetic selection for mastitis resistance
[17]. Genetic models for SCC are mostly
based on lactation average somatic cell
scores (SCS = log transformed SCC to
achieve normality of distribution, [2]). This
average of SCS at the individual level does
not take into account the dynamics of
somatic cell count in the course of lactation
and also serial correlations among measure-
ments made on the same individual.

The purpose of this study was to propose
and compare models taking into account
such phenomena. A class of models for
such longitudinal data consists of mixed
linear models including fixed effects for
describing the average profiles and random
effects for the adjusted individual profiles.
This study was based on experimental data
produced and collected under controlled
environmental conditions and with accu-
rate follow-up of SCS over time in each
individual in order to fully explore the
potential of these models and to make com-
parisons among them. In the materials and
methods chapter, we will first describe the
data set and secondly the statistical models
with a separate presentation for means and

variances. Mean models will be based on
polynomial fitting on time with both con-
ventional and fractional polynomials. Var-
iance models aimed at describing the vari-
ance-covariance structure of SCS over time
via random variables such as random
regression coefficients and stochastic time
processes, with or without heterogeneity of
variances. The results are presented along
the same pattern considering the means and
variances separately. The paper finishes
with a general discussion about the models
considered here and possible alternatives.

2. MATERIALS AND METHODS

2.1. Data

The study was based on a survey con-
ducted on an INRA experimental farm (Le
Pin au Haras, Normandie, France) between
1998 and 1999 with the objective of assess-
ing the relationship between somatic cell
count and mastitis. Because the mean pro-
files of somatic cell scores between primi-
parous and multiparous were not the same
[31], the data set used here was restricted to
159 primiparous purebred (Holstein cows)
and F1 cows (Holstein x Normande cross-
bred), calving between 1998 and 1999.
Available information consisted of 6448
SCS, i.e., one record per week and per cow
over a period running from day 5 to day 305
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after calving. In this data set, the animals
can differ both in the number of records and
in the length of the time intervals between
them. About 40 records per animal were
used for modeling the SCS curve all over
the lactation period.

The distribution of the number of records
and animals according to calving year
(2 levels), calving season (3 levels) and
calving age (3 levels) are shown for pure
and crossbred heifers in Table I.

2.2. Statistical model

One of the most frequently used approaches
in longitudinal data analysis is the linear

mixed effects model [12] allowing for both
a description of time trend and a specifica-
tion of the correlation structure of the data.

Let yij be the jth measurement (j = 1,
2, ..., ni) recorded on the ith animal (i = 1,
2, ..., I) at time tij . Models considered here
are within the class of regression models,
i.e.:

(1)

where  represents a linear combination
of p explanatory variables (row vector 
including discrete factors and/or continu-
ous covariates) with unknown linear coef-
ficients (vector β) and εij is the random

Table I. Characteristics of the data set.

(a) Number of animals
(number of observations) 

purebred

Number of animals
(number of observations) 

crossbred

Calving year

1998 36 (1438) 38 (1492) 74 (2930)

1999 19 (779) 66 (2739) 85 (3518)

55 (2217) 104 (4231) 159 (6448)

(b)

Number of animals
(number of observations) 

purebred

Number of animals
(number of observations) 

crossbred

Calving season

1: August–Sept. 26 (1055) 70 (2847) 96 (3902)

2: Oct.–Nov. 15 (622)  23 (958) 38 (1580)

3: Dec.–May 14 (540)  11 (426)  25 (966)

55 (2217) 104 (4231) 159 (6448)

(c)

Number of animals
(number of observations) 

purebred

Number of animals
(number of observations) 

crossbred

Calving age
(age at first calving)

1: < 25 months 28 (1148) 24 (957) 52 (2105)

2: 25 to 31 months 14 (568) 27 (1111) 41 (1679)

3: > 31 months 13 (501) 53 (2163) 66 (2664)

55 (2217) 104 (4231) 159 (6448)

yij xij′ β εij+=

xij′ β
xij′
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component. In matrix notation, this model
can be written as follows:

(2)

where yi = {yij}, εi = {εij}, Xi(ni × p) = (xi1,
xi2, ...; xini)’.

We will assume that data are correlated
(Cov(yij, yij’)  0) and normally distributed
so that εi  ~ N(O, Vi), the variance covari-
ance matrix Vi  = V ar(εi) is not diagonal and
is subject itself to some modeling.

Selecting a model is complex because
the choice of the systematic part (fixed
effects) depends on the variance-covariance
structure of observations and vice versa. In
practice, the strategy adopted is as follows:
a structure of the variance-covariance
matrix is assumed and a model is chosen
after selection of some fixed effects; subse-
quently, assuming this model for the fixed
part, different structures for the variance-
covariance matrix are tested. In this paper,
a slightly different approach is considered
to reduce the dependency between choices
at the two steps [24, 25]. This approach con-
sists of making an inference on the fixed
effects via robust estimators with respect to
the structure imposed on the variance-
covariance of observations. This robust
approach is described in the paper of Liang
and Zeger [13]. Then, after selection of the
fixed effects, the second step consists of
selecting and testing several variance-covar-
iance structures of observations.

As far as fixed effects are concerned, the
main issue is to adjust the data for the time
trend. Conventional polynomials (with pos-
itive integer powers) are a classical choice
for modeling the relationship between
response variables and one or several con-
tinuous covariates. However, the curve
does not usually fit the data well both at the
low and high orders of these polynomials
[16, 29]. At low orders, there is little choice
among the curve shapes. At high orders, the
fit is usually bad at the extremes showing
the usual waviness and end-effects. Several
techniques are available to fit more accept-

able models. Among those, we chose the tech-
nique of fractional polynomials, described
in Royston and Altman [29]. This technique
is just an extension of conventional polyno-
mials but with real powers and is described
in the “Models for the mean” section.

Different variance covariance structures
(random coefficients, exponential station-
ary stochastic processes and heterogeneous
variances) will be described and compared
in the “Variance covariance structure” sec-
tion.

Inference is based on the maximum like-
lihood (ML) and on residual likelihood pro-
cedures (REML, [18]) for the location and
dispersion parameters respectively; and com-
putations are made using the MIXED pro-
cedure of the SAS software [33].

2.3. Models for the mean

Description of the mean profile of
somatic cell scores (SCS) requires to adjust
the appropriate time trend for modeling the
average trend of SCS during lactation and
to select significant fixed effects (environ-
mental factors, interactions between them
and interactions between environmental
factors and time trend). Time trend is mod-
eled here via fractional polynomials, due to
their simplicity, flexibility and parsimony.
Fractional polynomials are an extension of
conventional polynomials but with real
powers.

2.3.1. Fractional polynomials

The family of fractional polynomials
represents a linear combination of func-
tions of time with real powers. Let t be a
positive real covariable, p = (pj; j = 0, 1, ...,
m) a (m + 1) vector of ordered powers called
the vector of degree m and ξ = (ξj; j = 0,
1, ..., m) the vector of the corresponding real
coefficients. A fractional polynomial of
degree m is defined as follows:

φm(t, ξ, p) = (3)

yi Xiβ εi+=

≠

 ξjHj t( )
j 0=

m

∑
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where Hj(t) =  if pj  pj–1 and Hj(t) =
Hj–1(t) ln(t) if pj = pj–1. At the origin (for j =
= 0), H0(t) = 1 and p0 = 0.

In this last formula,  represents the
Box-Tidwell transformation [3] i.e.,  =

 if pj  0 and  = ln t if pj = 0.
For example, for m = 3 and p = (0, 0, 0,

4), the third order fractional polynomial is
given by the function: φ3(t; ξ, p) = ξ0 +
ξ1 ln t + ξ2 (ln t)2 + ξ3t4.

For modeling a data set using fractional
polynomials, we need to determine the best
value of m (degree of the polynomial) and
of the power vector p. The procedure for
selecting the power (p) and the degree of the
fractional polynomial (m) is breifly described
in Appendix 1.

2.3.2. Selection of other fixed effects

The model for other fixed effects (breed,
calving year, calving season, calving age)
and for the interaction between them and
with transformed covariates was selected
using the robust procedure of testing fixed
effects proposed by Liang and Zeger [13]
and described by Robert-Granié et al. [24,
25]. This test is relatively insensitive to the
structure of the variance covariance
assumed for the data. The so-called “sand-
wich estimator” for var( ) proposed by
Liang and Zeger [13] is obtained by replac-
ing var(yi) by riri’  where ri = yi – Xi . The
resulting estimator can then be shown to be
consistent, as long as the mean is correctly
specified in the model [36].

To that respect, the simplest choice con-
sists of fitting β  by ordinary least squares.
Comparisons between robust and standard
estimators are described in the paper of
Robert-Granié et al. [25].

2.4. Variance covariance structure

Several ways are available for modeling
individual profiles. Currently, the most com-
mon one relies on random coeffcient mod-
els [5, 15]. Random coefficient models are
basically regression models incorporating

random effects for the coefficients in order
to explain the between subject component
of variation observed in longitudinal data.
Other tools may be envisioned e.g., stochas-
tic time processes. In any case, one has to
find a compromise between the quality of
fit and the number of parameters used in the
parametric functions for variances and cov-
ariances.

As presented by Diggle [4], εij in model
(1) can be decomposed as the sum of 3
sources of variation (between subjects,
between times within a subject and meas-
urement errors):

.

The first term ( ) represents

the additive effect of K random regression
factors uik on covariable information zijk
(usually a (k–1)th power of time) and which
are specific to each ith individual. The sec-
ond term wi(tij) is a term sampled from copies
of a stationary Gaussian process resulting in
serial correlations between measurements
of the same subject. The third term eij is a
residual representing, either a pure meas-
urement error for observations made at the
same time or, as here, a pseudo measure-
ment error estimated indirectly as a devia-
tion from the parametric model. In matrix
notation, this model can be written as fol-
lows:

εi = Ziui + wi + ei

where Zi(ni × K) = (zi1, zi2, ..., )’,
zij(K × 1) = , ui(K × 1) =  for k = 1,
2, ..., K, wi =  and ei =  for j =
1, 2, ..., ni. We will assume that εi  ~ N(0, Vi)
with Vi = ZiGZi’  + Ri where G(K × K) =
V ar(ui) is a symmetric positive definite matrix.
For instance, for a linear regression G =

 where g00 refers to the variance

of the intercept, g11 to the variance of the
linear regression coefficient and g01 to their

t pj( ) ≠

t pj( )

t pj( )

tpj ≠ t pj( )

β̂

β̂

εij  zijkuik wi tij( ) eij+ +
k 1=

K

∑=

        zijkuikk 1=

K∑

zinizijk{ } uik{ }
wi tij( ){ } eij{ }

g00     g01

g10     g11 
 
 
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covariance. Ri has the following structure
in the general case: Ri = σ2Hi +  Ini,
where Ini = var(ei), and for stationary
Gaussian simple processes, σ2 is the variance
of each wi(tij) and Hi =  the (ni × ni)
correlation matrix among them such that

 = f(ρ, dij,ij’) can be written as a func-
tion f of a real positive number ρ and of the
absolute time separation dij,ij’ = |tij – tij’|
between measurements j and j’ made on the
individual i. A classical example of such
functions is the power function: f(ρ, d) = ρd.
Notice that for equidistant intervals, this
power function is equivalent and reduces
the autoregressive process to a first order.

We can extend this model to take into
account heterogeneous variances both at
the temporal (in G matrix) and residual (in
R matrix) levels [6, 8, 10, 20, 21, 23, 32]
which enlarges the range of potentially use-
ful models for longitudinal data analysis.

A convenient and parsimonious proce-
dure to handle heterogeneous variances is
to model them linearly via a log link func-
tion [6, 7, 32]. Here, this model for log-
residual variances can be simply written as:
ln  = a0 + a1tij where a0 and a1 are
unknown real coefficients and tij represents
the stage of lactation (in days) of the jth
measurement recorded on the ith animal.

The aim of this part was to compare these
different approaches (conventional polyno-
mials, fractional polynomials, stochastic
processes, heterogeneous variances) and to
evaluate their behavior (separately or by
combining them) for modeling individual
profiles. The models compared are pre-
sented in Table II. We shall also rely on
graphical diagnosis tools to assess how
models based on variances over time agree
with empirical values.

The selection of random effects was
based on the likelihood ratio tests (REML
version) when the models were nested and
based on the Akaike criteria (AIC) for the
other models. For nested models, the null
hypothesis (H0) can be described as a point
hypothesis with parameter values on the
boundary of the parameter space which

implies some change in the asymptotic dis-
tribution of the likelihood ratio statistic
under H0 [34, 35]. Actually, the asymptotic
distribution of the likelihood ratio test sta-
tistitic (REML version) under the null
hypothesis is a mixture  of the

usual chi-square with one degre of freedom
 and of a Dirac (probability mass of one)

at zero (usually noted ) with equal
weights. This results in a P-value which is
half the standard one i.e., P-value =

where δ represents a restricted

likelihood ratio statistic of two tested mod-
els (see [35] for a similar application). For
non nested models, the best model will be
the one having the highest value of the
Akaike criteria (or the lowest value of
–2 AIC).

3. RESULTS

3.1. Models for the mean

3.1.1. Plot of data

With longitudinal data, an obvious first
graph to consider is the empirical mean pro-
file of somatic cell scores according to the
stage of lactation (in days). This graph
(Fig. 1) illustrates a sharp decrease in the
first thirty days and, thereafter, a gradual
increase until the end of lactation. Variation
in the shape and level of the SCS pattern is
related to udder infection status and to indi-
vidual cows [31].

3.1.2. Time trend

The best fractional polynomial model
was found with the model defined in (2) and
a variance-covariance structure Vi = Ini .
When assessing competing fractional pol-
ynomial models of degree 1 or 2, it is often
informative to plot the gain G (see
Appendix I) against the chosen powers

σe
2

σe
2

hij , ij ′{ }

hij , ij ′

σeij
2

1
2
---χ0

2 1
2
---χ1

2
+

χ1
2

χ0
2

1
2
---Pr χ1

2 δ>[ ]

σe
2



Statistical analysis of somatic cell scores 265

(Fig. 2); for m = 1, here denoted p1 rather
han p, so p = (p0 = 0, p1). For the m = 2 mod-
els, we have p = (p0 = 0, p1, p2), the gain G
may be plotted against p1 on the same graph

as a sheaf of curves indexed by the chosen
values p2. For m = 1, the plotted curve (p2 =.
in Fig. 2) essentially depicts the profile
deviance function for p1 when p1 is

Table II. Models with different variance covariance structures.

Groups Models Zi G Ri # par

A [0] 1

[1] g00 2

[2] ( , ti) g00 g01
g01 g11

4

[3] ( , ti, ) g00 g01 g02
g01 g11 g12
g02 g12 g22

7

B [4] 2

[5] 3

C [6] g00 4

[7] ( , ti) g00 g01
g01 g11

6

[8] ( , ti, ) g00 g01 g02
g01 g11 g12
g02 g12 g22

9

D [9] g00 ln  = a0 + a1 tij 3

[10] ( , ti) g00 g01
g01 g11

ln  = a0 + a1 tij 5

[11] ( , ti, ) g00 g01 g02
g01 g11 g12
g02 g12 g22

ln  = a0 + a1 tij 8

E [12] g00 5

with ln  = a0 + a1 tij

[13] ( , ti) g00 g01 7

g01 g11 with ln  = a0 + a1 tij

[14] ( , ti, ) g00 g01 g02
g01 g11 g12
g02 g12 g22

with ln  = a0 + a1 tij

10

# par: the number of estimated dispersion parameters.
A: Random coefficient models; B: Time process model (+ possibly measurement error); C: Random coef-
ficient models + time process + measurement error; D: Random coefficient models + heteroskedastic
measurement error; E: Random coefficient models + time process + heteroskedastic measurement error.
ti: is the ni × 1 vector of lactation stage at which measurements are made on individual i, Hi = {hi,tt’ =

.}

Oni σe
2Ini

1ni σe
2Ini

1ni σe
2Ini

1ni ti
2 σe

2Ini

Oni σ2Hi
Oni σ2Hi σe

2Ini+

1ni σ2Hi σe
2Ini+

1ni σ2Hi σe
2Ini+

1ni ti
2 σ2Hi σe

2Ini+

1ni σeij
2

1ni σeij
2

1ni ti
2 σeij

2

1ni σ2Hi σeij
2+

σeij
2

1ni σ2Hi σeij
2+

σeij
2

1ni ti
2 σ2Hi σeij

2+
σeij

2

ρ ti ti'–



266 C. Robert-Granié et al.

regarded as a parameter of the non-linear
model: ξ0 + ξ1 . If a curve has a peak, the
value p1 corresponding to the maximum G
is the MLE , so the plot gives an idea of how
close  is to  (see Appendix I for the def-
inition of ). For m = 2, the family of
curves indexed by p2 illustrates graphically
the power vectors (0, p1, p2) which give
high values of G (indicating a good fit)
and those which are associated with a less
good fit.

The results for the first two degrees (m =
1, 2) are shown in Figure 2. Gain is plotted

against p1 values with different curves for
p2 values. The best p and sub-optimal p
value models are shown in Table III. Opti-
mum p values are p1 = p2 = –1/3 (i.e., ξ0 +
ξ1t–1/3 + ξ2t–1/3 ln t) with a gain G of 102.28.
However, there are several combinations of
p1 and p2 values which lead to gains very
close to the maximum one, thus allowing
some flexibility in the choice of the final
model (see Tab. III). The p1 and p2 values

t p1

p̂1p̃1 p̂1p̃1

Figure 1. Mean profile of somatic cell score
during lactation.

Table III. Gain values for the best and sub-
optimal fractional polynomial models: m = 2 and
power vector p = (0, p1, p2).

p1 p2 Deviance Gain

–1/3 
–1/2 
–1/2 
–1 
–1/3 
–1 
–1/2 
–1 0 
–1/2
–1/2 

–1/3 
0 

–1/3 
1/3 
0 

1/2 
–1/2 

0
1/3
1/2 

23848.95
23849.42
23851.00
23851.17
23851.63
23851.93 
23855.38 
23855.83
23855.87
23861.16 

102.28
101.80
100.22
100.05
99.59
99.29
95.85
95.40
95.35
90.07

Figure 2. Gain plotted against p1 for the fractional models: φ1(t; ξ=(ξ0, ξ1); p = (0, p1)) and for φ2(t;
ξ = ( ξ0, ξ1, ξ2); p = (0, p1, p2)) with different values of p2.
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found here were in good agreement with a
non linear fit of the data for which = 
= –0.30 with a gain of 102.42. This was
achieved by using the procedure nlin of the
SAS software [33].

Fractional polynomial models of degree
3 were tested but the gain obtained with the
best model with m = 3 (G = 103.2) was not
significantly different from that obtained with
the best model with m = 2 (G = 102.28).

Therefore, we recommend using the sec-
ond order fractional polynomials, found with
this data set: φ2(t; ξ, p) = ξ0 + ξ1t–1/3 + ξ2t–1/3

ln(t) with p = (0, –1/3, –1/3).
Incidentally, a quartic conventional pol-

ynomial (for which G = 50.9) with m = 4 and
p = (0, 1, 2, 3, 4) was unable to produce a
fit as good as that of the best second order
fractional polynomial model.

Figure 3 shows the mean profile of
somatic cell scores fitting by different func-
tions: (1) the best fractional polynomial
found previously with m = 2 and p = (0, –1/3,
–1/3); (2) the best conventional polynomial
(with integer powers) found among all con-
ventional polynomials (m = 3 and p =
(0, 1, 2, 3)); (3) the Ali and Schaeffer function 

[1] defined by: 

and often used

to fit the mean profile of the milk produc-
tion in dairy cattle. This function can also
be interpreted as a fractional polynomial of
degree m = 4 with p = (0, 0, 0, 1, 2). The
last model leads to a deviance of D =
23847.3 and a gain of G = 103.92 sightly
better (but not significantly) than the one
obtained with the previously selected best
second order fractional polynomial. More-
over, the second order fractional polyno-
mial involves less parameters and fits seem-
ingly better the right part of the curve at the
end of lactation (see Fig. 3). The best con-
ventional polynomial (degree 3 and integer
powers) found among all conventional pol-
ynomials, shows the usual waviness and
end-effects that are often associated with

high degree polynomials. The conventional
polynomial fits data very poorly at the
beginning of lactation. Finally, the frac-
tional polynomial described somatic cell
scores almost as well as the Ali & Schaeffer
specification.

3.1.3. Selection of fixed effects using 
robust estimators

As explained in the “Models for the
mean” section, the fixed effects were
selected using robust estimators [13]. Prac-
tically, the resulting standard errors can be
requested in the SAS Mixed procedure by
adding the option “empirical” in the proc
mixed statement. Table IV presents the
value of the F-type statistic described in Lit-
tell et al. [14] on page 502 and the P-value
associated with each fixed factor consid-
ered. In view of these results, the list of
fixed effects retained in the model was: a
second order fractional polynomial in time,
breed, calving year, calving season, calving
season × breed and calving season × year
interactions. The interactions between factors
and the time function were not significant.

3.2. Variance covariance structure

For a given mean model, there are different
competing variance covariance structures
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Figure 3. Mean profile of somatic cell scores
fitted by different functions.



268 C. Robert-Granié et al.

that can be compared. The models consid-
ered in this application are presented in
Table V. These models do not constitute an
exhaustive list, since there are other possi-
ble specifications.

The results in Table V show large values
for the likelihood ratio statistics. The mod-
els included in each group (A, B, C, D and
E) are nested. We can then compare these
models within each group using the likeli-
hood ratio test and between groups, the
Akaike criterion can be used to compare the
best models from each group.

The fractional polynomial with m = 2
and p = (0, –1/3, –1/3) were also considered
for fitting the individual part of the model.
This model, similar to model [3] of Table V,
including 7 parameters, had a value of
–2 log-likelihood equal to 17508.00 and of
–2 AIC equal to 17522.00. A conventional
second degree random coefficient model
(model [3] of Tab. V) appears to be better
than the fractional polynomial. This exam-
ple clearly shows that functions selected at
the expectation level are not necessarily
adequate for the covariance level.

The model finally accepted is model [1]:
a random coefficient model (with a second
degree polynomial function in time to
describe the individual part) plus a station-
ary gaussian simple process (with a power
function) and a heteroskedastic measure-
ment error (the logarithm of the residual
variance is modeled by a linear function of
time).

In addition, a graphical diagnosis was
performed to check whether the 3 best mod-
els generate a variance function against
time (in weeks) which is close enough to the
empirical one. Figure 4 shows variance
functions obtained with different models
considered in Table V. The dotted curve
(“Empirical variance plotted against time”
in Fig. 4) represents the variance function
obtained from a fixed model (model [0])
where residuals are assumed independant
(for each week, the variance of residuals has
been computed). The bold curve (“Smoothed
empirical variance” in Fig. 4) is obtained by
smoothing the observed squared residuals
against time; and the last three curves rep-
resent the variance function of models [12],
[13] and [14], described in Tables II and V.
On the basis of this graph, model [12] turns
out to fit the smoothed empirical variance
better. The variance function generated by
model [13] shows the usual pattern of the
linear random regression models whereas
the variance function under model [14] suf-
fers from a waviness pattern (usually observed
with the adjustment of conventional poly-
nomials with integer powers and m ≥ 2).

Table IV. Selection of fixed effects by robust
estimators.

Fixed effects Value of F-test P-value

t–1/3 25.73 < 0.0001*

ln(t) × t–1/3 64.97 < 0.0001*

Breed (2 levels) 2.43 0.1215

Calving year (2 levels) 0.35 0.5538

Calving season (3 levels) 1.38 0.2539

Calving age (3 levels) 0.32 0.7291

Breed × Calving year 1.97 0.1631

Breed × Calving season 3.54 0.0316*

Breed × Calving age 0.65 0.5228

Calving year × Calving 
season 

3.82 0.0242*

Calving year × Calving 
age

0.92 0.4027

Calving season × Calving 
age 

0.54 0.7044

t–1/3 × Breed 0.12 0.7238

ln(t) × t–1/3 × Breed 1.95 0.1622

t–1/3 × Calving year 0.36 0.5461

ln(t) × t–1/3 × Calving year 0.43 0.5124

t–1/3 × Calving season 1.44 0.2362

ln(t) × t–1/3 × Calving 
season

0.66 0.5169

t–1/3 × Calving age 0.16 0.8487

ln(t) × t–1/3 × Calving age 0.31 0.7339

*: significant at the level α = 5%.
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Figure 4. Variance functions.

Table V. Model selection statistics for alternative variance-covariance structures.

Groups Modelsa # par –2RLb Comparisons ∆[–2RL]c Distrd P-value –2AICe

A [0]
[1]
[2]
[3]

1
2
4
7

23884.2
18669.9 
17742.7 
17318.0 

[1]–[0] 
[2]–[1] 
[3]–[2] 

5214.3 
927.2 
424.7 

0:1 
1:2 
2:3 

< 0.0001 
< 0.0001 
< 0.0001 

23886.2
18673.9
17750.7
17332.0

B [4]
[5]

2
3

17536.0 
16639.4 [5]–[4] 896.6 0:1 < 0.0001 

17540.0
16645.4

C [6]
[7]
[8]

4
6
9

16595.4 
16568.7 
16537.2 

[7]–[6] 
[8]–[7] 

26.7 
31.5 

1:2 
2:3 

< 0.0001 
< 0.0001 

16603.4
16580.7
16555.2

D [9]
[10]
[11]

3
5
8

18320.5 
17401.3 
16960.9 

[10]–[9] 
[11]–[10] 

919.2 
440.4 

1:2 
2:3 

< 0.0001 
< 0.0001 

18326.5
17411.3
16976.9

E [12]
[13]
[14]

5
7
10

16337.8 
16321.5 
16297.7 

[13]–[12] 
[14]–[13] 

16.3 
23.8 

1:2 
2:3 

< 0.0001 
< 0.0001 

16347.8
16335.5
16317.7

A: Random coefficient models; B: Time process model (+ possibly measurement error); C: Random coef-
ficient models + time process + measurement error; D: Random coefficient models + heteroskedastic
measurement error; E: Random coefficient models + time process + heteroskedastic measurement error.
a: All these models are described in Table II; b: –2RL = –2 × Log restricted likelihood; c: Likelihood ratio
statistics of two tested models; d: Asymptotic distribution of the likelihood ratio under the null hypothesis:
mixture of chi-squares (for instance 1:2 represents a mixture in equal proportions of two chi-squares with
1 and 2 degrees of freedom respectively); e: –2AIC = –2 × the Akaike criterion.
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4. DISCUSSION AND CONCLUSION

Relative to current genetic models based
on lactation average of SCS, the models for
test day observations should account better
for short term environmental variation and
allow using all information without restric-
tion on the number of records available or
length of time intervals. To that respect, test
day models may also account more pre-
cisely for short time variation of SCC than
average lactation models and be more effi-
cient in predicting clinical cases and infec-
tions in general [31].

The use of models including continuous
covariates is widespread but it has long
been recognized that conventional polyno-
mials often fit data poorly [16, 29]. How-
ever, it seems that few low dimensional par-
ametric alternatives to, or extensions of,
conventional polynomials have been sug-
gested. Existing alternatives such as cubic
splines, and non parametric smoothers often
work well but also have drawbacks: they are
computationally intensive, the application
of theory of these methods is often difficult
(choice of the number of knots, choice of a
parameter to control the degree of smooth-
ing), they do not yield compact expressions
for prediction and the coefficients do not
lend themselves to mechanistic interpreta-
tion. Eventually, the non parametric meth-
ods as some conventional polynomials,
generate some artificial waviness because
these methods tend to stick to the data.

As far as models for means are con-
cerned, fractional polynomials turn out to
be a flexible and easy to implement tech-
nique as compared to alternative ones (e.g.,
cubic splines). In particular, this ability was
clearly illustrated in the case of the mean
profile of SCS during lactation, the pattern
of which remains quite complicated. We
were able to fit this mean profile with just
a second degree polynomial, thus indicating
how parsimonious this procedure can be.

Regarding the random part of the model,
we showed that functions selected at the
expectation level are not necessarily ade-

quate for the covariance level; this contra-
dicts standard specifications used in most
genetic test-day models. In many studies
especially in animal breeding, the authors
assume the same regression structure on the
fixed and random effects. This is neither
mandatory in theory nor desirable in prac-
tice, since variation between populations
and between subjects within populations do
not necessarily have the same pattern. In
practice, the order of polynomials for fitting
the random part of the model (adjusted pro-
files) is usually lower than that of the fixed
part (population trend). Petim-Batista et al.
[19] have compared several polynomial
adjustments on each part of the genetic
model of somatic cell scores (fixed effects,
genetic and permanent environmental
parts). They eventually retained a model
with the Ali and Schaeffer function for the
fixed effects and the permanent environ-
mental effects; and a fractional polynomial
with m = 2 and p = (0, –1/3, –1/3) for the
genetic effects. This application clearly
illustrates again that the function selected
for the mean profile is not necessarily the
same as the one selected for the individual
profiles. Similar results are found in Robert-
Granié et al. [26].

A general study must be undertaken both
at the mean and the variance-covariance
levels to select the appropriate degrees and
P-values of the polynomial adjustments to
use for these two levels. The choice of the
final joint model is not an easy one since
there is a strong dependency between the
choices of the mean and the covariance
structures. Eventually, this choice should
be based not only on the usual information
criteria (AIC, BIC, DIC) but also in relation
to the final objective for adjusting SCS
(indicator of mastitis) and their genetic var-
iation and interpretation. In this applica-
tion, we show that the model selected with
the graphic tool of diagnosis (variance
functions, Fig. 4) was not the same as that
obtained when using the likelihood ratio
tests (comparison models, Tab. V). Further
analyses are needed to compare models not
only on a criterion based on variance function
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but also by analyzing and comparing the
empirical correlation function with those of
several models considered. Furthermore,
more analysis is needed to extend model
comparisons by considering models with
stochastic processes of higher order and by
considering complete heteroskedastic mod-
els (for instance, heterogeneous individual
and residual variances, [9, 22, 25, 26]).

Further analysis is needed to include
genetic and permanent environmental effects
into the model and to predict mastitis
occurence based on SCS profiles. For this
last point, new promising approaches have
been developped, e.g. an extension of the
multiprocess Kalman Filter [11]. This tech-
nique can be relevant for SCS and allows to
provide probabilities of mastitis and hope-
fully will be able to detect mastitis earlier.
An alternative would also be to consider
pure non linear mixed models based on dif-
ferent typical functions that describe SCS
subject patterns (see e.g. [27, 28]). This anal-
ysis is in fact the first stage of the study. The
second stage would be to use the individual
profiles of SCS to predict the occurence of
mastitis.

ACKNOWLEDGEMENTS

The authors wish to thank H. Larroque
(INRA) and J.J. Colleau (INRA) for providing
the data set.

REFERENCES

[1] Ali T.E., Schaeffer L.R., Accounting for cov-
ariances among test day milk yields in dairy
cows, Can. J. Anim. Sci. 67 (1987) 637–644.

[2] Ali A.K.A., Shook G.E., An optimum trans-
formation for somatic cell concentration in
milk, J. Dairy Sci. 63 (1980) 487–490.

[3] Box G.E.P., Tidwell P.W., Transformation of
the independent variables, Technometrics 4
(1962) 531–550.

[4] Diggle P.J., An approach to the analysis of
repeated measurements, Biometrics 44 (1988)
959–971.

[5] Diggle P.J., Liang K.Y., Zeger S.L., Analysis
of longitudinal data, Oxford Science Publica-
tions, Clarendon Press, Oxford, 1994.

[6] Foulley J.L., Gianola D., San Cristobal M., Im
S., A method for assessing extent and sources
of heterogeneity of residual variances in
mixed linear models, J. Dairy Sci. 73 (1990)
1612–1624.

[7] Foulley J.L., San Cristobal M., Gianola D.,
Im S., Marginal likelihood and Bayesian
approaches to the analysis of heterogeneous
residual variances in mixed linear Gaussian
models, Comput. Stat. Data Anal. 13 (1992)
291–305.

[8] Foulley J.L., Quaas R.L., Thaon d'Arnoldi C.,
A Link function approach to heterogeneous
variance components, Genet. Sel. Evol. 30
(1998) 27–43.

[9] Foulley J.L., Robert-Granié C., Heteroske-
dastic random coefficient models, 7th World
Congress on Genetics Applied to Livestock
Production, Montpellier, France, August 19-
23, 32 (2002), pp. 157–160.

[10] Jaffrezic F., White I.M.S., Thompson R., Hill
W.G., A link function approach to model het-
erogeneity of residual variances over time in
lactation curve analysis, J. Dairy Sci. 83
(2000) 1089–1093.

[11] Korsgaard I.R., Lovendahl P., An introduc-
tion to multiprocess class II mixture models,
7th World Congress on Genetics Applied to
Livestock Production, Montpellier, France,
August 19-23, 32 (2002), pp. 185–188.

[12] Laird N.M., Ware J.H., Random effects mod-
els for longitudinal data, Biometrics 38 (1982)
963–974.

[13] Liang K.Y., Zeger S.L., Longitudinal data
analysis using generalized linear models,
Biometrika 73 (1986) 13–22.

[14] Littell R.C., Milliken G.A., Stroup W.W.,
Wolnger R.D., SAS System for Mixed Mod-
els, SAS institute Inc., 1996.

[15] Longford N.T., Random coefficients models,
Clarendon Press, Oxford, 1993.

[16] McCullagh P., Nelder J.A., Generalized linear
models, Chapman and Hall, London, 1989.

[17] Mrode R.A., Swanson G.J.T., Genetic and sta-
tistical properties of somatic cell count and its
suitability as an indirect means of reducing the
incidence of mastitis in dairy cattle, Anim.
Breed. Abs. 64 (1996) 847–857.

[18] Patterson H.D., Thompson R., Recovery of
interblock information when block sizes are
unequal, Biometrika 58 (1971) 545–554.



272 C. Robert-Granié et al.

[19] Petim-Batista F., Foulley J.L., Robert-Granié
C., Silvestre A., Colaço J., SCS analysis in
Portuguese dairy cows using random coeffi-
cients models, 7th World Congress on Genetics
Applied to Livestock Production, Montpel-
lier, France, August 19-23, 32 (2002), pp. 227–
230.

[20] Robert C., Foulley J.L., Ducrocq V., Genetic
variation of traits measured in several envi-
ronments. I. Estimation and testing of homo-
geneous genetic and intraclass correlations
between environments, Genet. Sel. Evol. 27
(1995) 111–123.

[21] Robert C., Foulley J.L., Ducrocq V., Genetic
variation of traits measured in several envi-
ronments. II. Inference on between-environ-
ment homogeneity of intraclass correlations,
Genet. Sel. Evol. 27 (1995) 125–134.

[22] Robert-Granié C., Ducrocq V., Foulley J.L.,
Heterogeneity of variance for type traits in the
Montbeliarde cattle breed, Genet. Sel. Evol.
29 (1997) 545–570.

[23] Robert-Granié C., Bonati B., Boichard D., Barbat
A., Accounting for variance heterogeneity in
French dairy cattle genetic evaluation, Livest.
Prod. Sci. 60 (1999) 343–357.

[24] Robert-Granié C., Foulley J.L., Inférence
robuste sur les effets fixes en modèle linéaire
mixte pour l’analyse de données répétées,
XXXIIIes Journées de Statistiques, Nantes,
France, 2001.

[25] Robert-Granié C., Heude B., Foulley J.L.,
Modelling the growth curve of Maine-Anjou
beef cattle using heteroskedastic random
coefficients models, Genet. Sel. Evol. 34
(2002) 423–445.

[26] Robert-Granié C., Maza E., Rupp R., Foulley
J.L., Use of fractional polynomial for model-
ling somatic cell scores in dairy cattle, 7th
World Congress on Genetics Applied to Live-
stock Production, Montpellier, France, August
19-23, 32 (2002), pp. 153–156.

[27] Rodriguez-Zas S.L., Gianola D., Shook G.E.,
Evaluation of models for somatic cell score
lactation patterns in Holsteins, Livest. Prod.
Sci. 67 (2000) 19–30.

[28] Rodriguez-Zas S.L., Gianola D., Shook G.E.,
An approximate Bayesian analysis of somatic
cell score curves in Holsteins, Acta Agric.
Scand. 50 (2000) 291–299.

[29] Royston P., Altman D.G., Regression using
fractional polynomials of continuous covari-
ates: parsimonious parametric modelling,
Appl. Stat. 43 (1994) 429-467.

[30] Rupp R., Boichard D., Genetic parameters for
clinical mastitis, somatic cell score, produc-
tion, udder type traits, and milking ease in first
lactation Holsteins, J. Dairy Sci. 82 (1999)
2198–2204.

[31] Rupp R., Analyse Génétique de la résistance
aux mammites chez les ruminants laitiers,
Ph.D. thesis, INA-PG/INRA, 2000.

[32] San Cristobal M., Foulley J.L., Manfredi E.,
Inference about multiplicative heteroskedas-
tic components of variance in a mixed linear
Gaussian model with an application to beef
cattle breeding, Genet. Sel. Evol. 25 (1993) 3–
30.

[33] SAS® Institute Inc., Cary NC: SAS® institute
Inc., SAS/STAT Software, version 8, 1999.

[34] Self S.G., Liang K.Y., Asymptotic properties
of maximum likelihood estimation and likeli-
hood ratio tests under nonstandard conditions,
J. Am. Stat. Assoc. 82 (1987) 605–610.

[35] Stram D.O., Lee J.W., Variance components
testing in the longitudinal mixed effects mod-
els, Biometrics 50 (1994) 1171–1177.

[36] Verbeke G., Molenberghs G., Linear mixed
models for longitudinal data, Springer Verlag,
New-York, 2000.

APPENDIX I: BASIC THEORY 
OF FRACTIONAL POLYNOMIALS 

Conditional on given values of m (degree
of the fractional polynomial) and p (power
vector), φm(t; ξ, p) has the form of a linear
predictor in terms of the covariate Hj(t) and
of the parameter ξj. Viewed thus, φm(t; ξ, p)
is a particular suitable candidate for mode-
ling the time trend, the statistical properties
of linear models being of course better (or
easier to establish) than those of non linear
models. It is worth considering the families
φ1(.) an φ2(.) specifically, Royston and
Altman [29] have found that models with
degrees higher than 2 are rarely required in
practice. Fractional polynomials with m ≤ 2
offer many potential improvements in fit
compared with conventional polynomials
(polynomials with integer powers); several
examples are presented in the paper of
Royston and Altman [29]. So, for modeling
a data set using fractional polynomials, we
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need to determine the best value of m and
the power vector p.

Suppose that the elements of p are
allowed to vary continuously (rather than
being restricted to a fixed set), then φm(t,
ξ, p) is a non-linear model with parameters
(ξ, p). Then, the quantity D(m, ξ, p)  – D(m,
ξ, ) where D = –2 × log-likelihood and ,
the maximum likelihood estimate (MLE) of
p, has an asymptotic chi-square distribution
with m (2m + 1 minus m + 1) degrees of free-
dom. In practice, Royston and Altman [29]
have shown that p can be restricted to m val-
ues selected from a fixed set P of powers
(usually fractions but not necessarily).
Here, we took P = {–2, –1, –1/2, –1/3, 0, 1/3,
1/2, ..., max(3, m)}. And this set is suffi-
ciently rich to cover many practical cases
adequately. Let  the power vector associ-
ated with the model of lowest deviance over
the restricted parameter space based on P,
its deviance D(m, ξ, ) is larger than D(m,
ξ, ), so that D(m, ξ, p) – D(m, ξ, ) can
be viewed as a conservative test for a given
value of p. That is why Royston and Altman
[29] proposed to select models for which
the difference is lower or equal to the 90%
quantile of a chi-square distribution with m
degrees of freedom.

Specifically, when m = 1, the criterion
D(1, ξ, 1) – D(1, ξ, ) >  represents
a test with a significance level of about 10%
for p = 1 (linearity) against p  (monot-

onic alternatives) which may be used in an
initial investigation of non linearity.

In practice, for general m, we suggest
choosing models with values of p such that
D(m, ξ, p)  – D(m, ξ, ) <  as the
best fitting among those of degree m.

When deciding whether models with
degree m are adequate or whether degree
m + 1 is required, two extra parameters (a
power and a regression coefficient) are esti-
mated when m is increased by 1. Therefore,
D(m, ξ, ) – D(m + 1, ξ, ) is asymptoti-
cally distributed as a chi-square with
2 degrees of freedom when the degree m
model is adequate (  refers implicitly to
degree m or to degree m + 1 as appropriate).

So, the criterion D(m, ξ, ) – D(m + 1,
ξ, ) <   (= 4.7) is used for preferring
models with degree m + 1 to those with
degree m.

Usually the results are presented as a
“gain” G which corresponds to the decrease
in deviance from a straight line model: G =
G(m, ξ, p) = D(1, ξ, 1)  – D(m, ξ, p).

Since the gain G moves in the opposite
direction to the deviance D, a larger gain
indicates a better fit.

Once m and acceptable models of degree
m have been selected, the final choice must
depend mainly on the appearance of the
curves in relation to the data, especially at
the extreme values of the covariate (t).
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