

The effect of mucins on initiating reductive acetogenesis in vitro

D Fiedler, I Immig, C van Nevel, D Demeyer

▶ To cite this version:

D Fiedler, I Immig, C van Nevel, D Demeyer. The effect of mucins on initiating reductive acetogenesis in vitro. Annales de zootechnie, 1996, 45 (Suppl1), pp.322-322. hal-00889644

HAL Id: hal-00889644

https://hal.science/hal-00889644

Submitted on 11 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The effect of mucins on initiating reductive acetogenesis in vitro

D Fiedler 2, I Immig 1, C Van Nevel 3, D Demeyer 3

¹ nstitute of Applied Animal Science, Humboldt University Berlin, 14195 Berlin, Germany ²Forschungsinstitut für die Biologie landwirstschaflicher Nutztiere, 18059 Rostock, Germany ³Onderzoekscentrum voor Voeding, Veelteet en Vleestechnologie, 9230 Melle, Belgium

Hindgut fermentation in a number of animal species differs from rumen fermentation by showing a substantially lower methane production and the presence of reductive acetogenesis. Strong competition between methanogenic and acetogenic bacteria for metabolic hydrogen seems to be responsible for the lack of reductive acetogenesis in the rumen. One factor causing a nonmethanogenic pathway in the hindgut and acetate as the reduced end product could be the presence of endogenous mucins which are not present in the rumen. The replacement of methane by acetate as a hydrogen sink should increase the energy yield available for the ruminant and decrease methane emissions. and thus be benefit to the animal and the environment. The aim of this experiment was to investigate the influence of mucins on reductive acetogenesis in vitro.

Rumen fluid from a canulated sheep was incubated with a buffer solution under

anaerobic conditions (incubation gas: CO_2 , 24 h, 39°C). Substrates were 500 mg hay, 500 mg mucin or 500 mg hay + 500 mg mucin. To test for reductive acetogenesis, hydrogen gas was added (50/50 v/v) to half of the flasks. After incubation, methane and SCFA production were measured by gas chromatography.

Mucins enhanced methanogenesis from 464 $\mu mol/d$ to 727 $\mu mol/d$. Due to a substantially higher SCFA production the amount of CH $_4$ produced decreased from 269 to 148 mmol CH $_4$ /mol SCFA. Fermentation stoichiometry was calculated using the net amounts of end products formed from hay in the presence and absence of mucins. Neither the values obtained for hydrogen recovery, nor the effects of head space hydrogen on acetate production suggest enhancement of reductive acetogenesis. We conclude that in our experiments mucins did not stimulate reductive acetogenesis.

-	Production (μmol)				CH ₄ (mmol/mol	H ₂ -recovery
	Acetate	Propionate	Butyrate	CH ₄	SCFA)	(%)
RF + 500 mg hay	1189 91	391 13	113 8	464 88	266	89
RF + 500 mg mucins	1923 65	674 67	172 16	371 49	126	61
RF + 500 mg hay + 500 mg mucins	3158 205	1186 32	327 26	727 69	148	66