Competition between ruminal cellulolytic bacteria for adhesion to cellulose

Pascale Mosoni, G Fonty, Ph Gouet

To cite this version:

Pascale Mosoni, G Fonty, Ph Gouet. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Annales de zootechnie, 1996, 45 (Suppl1), pp.298-298. hal-00889632

HAL Id: hal-00889632

https://hal.science/hal-00889632

Submitted on 11 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Competition between ruminal cellulolytic bacteria for adhesion to cellulose

P Mosoni, G Fonty, Ph Gouet
INRA, Laboratoire de Microbiologie, C.R. de Clermont-Ferrand-Theix 63122 Saint Genès-Champanelle, France

Competition for growth were observed between the main ruminal cellulolytic bacterial species on cellulose and plant cell-walls (Odenyo et al, 1994, Appl Env Microbiol, 60, 3697-3703) but little is known about the origin of these competitions. Competition for adhesion sites on the cellulosic substrate could be the basic mechanism of these interactions. A competitive adhesion study was therefore undertaken by means of a differential radiolabeling of the bacterial species.

Ruminococcus flavefaciens FD1, Fibrobacter succinogenes S85 and Ruminococcus albus 20 were ${ }^{14} \mathrm{C}$ radiolabeled by growing cells to late log phase on modified medium 10 (Caldwell and Bryant, 1966, Appl Microbiol, $14,794-801$) with sodium ($2-{ }^{14} \mathrm{C}$) acetate or sodium $(1-14 \mathrm{C})$ isobutyrate (370 $\mathrm{kBq} / \mathrm{ml}$). Cell titration was performed with sodium (${ }^{3} \mathrm{H}$) acetate ($370 \mathrm{kBq} \cdot \mathrm{ml}{ }^{-1}$). Bacteria were anaerobically harvested, washed and resuspended as described by Morris and Cole (1987, J Gen Microbiol, 133, 1023-1032). The labeled cell suspension (5 ml ; O.D. $600 \mathrm{~nm}=$ 1 ± 0.1) was gently shaken with 50 mg of microcrystalline cellulose Sigmacell 20 for 45 min at $39^{\circ} \mathrm{C}$. In these conditions, adhesion sites were limited for the three species. The cellulose was sedimented ($500 \mathrm{~g}, 1 \mathrm{~min}$) and after removing the supernatant, washed with mineral buffer. The percentage of bound and free cells was determined by measuring the radioactivity in the cellulose pellet and supernatants respectively. To obtain a measure of adhesion competition between two
species (one labeled with ${ }^{14} \mathrm{C}$, the other labeled with ${ }^{3} \mathrm{H}$), the percentage of adhering cells of each species in coculture was compared with the percentage obtained in the respective monoculture. The two species were incubated with cellulose either simultaneously or sequentially.

On average, the percentages of adherent bacteria in monoculture were $68 \pm 15 \%$ for R. flavefaciens FD1, $75 \pm 9 \%$ for R. albus 20 and $49 \pm 18 \%$ for F. succinogenes S85. The adhesion of R. flavefaciens FD1 was strongly inhibited (53% on average) by the adhesion of R. albus 20, even when FD1 was first in contact with cellulose for 45 min . In that coculture, R. albus 20 adhered as in monoculture. Adhesion of F. succinogenes S 85 was inhibited (55% on average) when 585 and 20 were simultaneously added to cellulose, but no competition between the two strains was observed when S 85 was already adherent. When R. flavefaciens FD1 and F. succinogenes S 85 were introduced simultaneously, the adhesion of both species was slightly decreased (average of 7,5 and $16,5 \%$ respectively) but was not modified in the sequential assays whatever the order of inoculation.

These results underline different mechanisms of adhesion (differences in affinity for cellulose and adhesion sites) of the three strains but explain partly the competitions observed between these three species on cellulose.

