
HAL Id: hal-00889623
https://hal.science/hal-00889623v1

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of available software for dynamic modeling
Jaap J. van Milgen, R Boston, R Kohn, J Ferguson

To cite this version:
Jaap J. van Milgen, R Boston, R Kohn, J Ferguson. Comparison of available software for dynamic
modeling. Annales de zootechnie, 1996, 45 (Suppl1), pp.257-273. �hal-00889623�

https://hal.science/hal-00889623v1
https://hal.archives-ouvertes.fr

Comparison of available software for
dynamic modeling

J Van Milgen1 R Boston2 R Kohn2 J Ferguson2
’Institut National de la Recherche Agronomique, Station de Recherches Porcines, 35590 Saint-Gilles, France
2University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, 382 West Street Road, Kennett

Square PA 19348-1692, USA

Summary - During the last few years, mathematical modeling of nutritional problems has become
increasingly popular due to rapid development and availability of both computer hardware as well
as problem-oriented software packages. In this review we discuss software tools that can be used
for solving systems of differential equations. Four software packages (STELLA, Scientist, SAAM,
and ACSL/SimuSolv) were used to re-create a model describing a full 300-day lactation period in a
dairy cow. The model included a continuous milking function (simulating calf drinking) or a discrete
milking function (machine milking). No software package met all the requirements for efficient
model development. Because different modelers have different modeling objectives, no specific
criteria for software selection can be given. For occasional modelers, ease-of-use and integration
with other packages under the same operating system can be important issues. On the other

hand, performance and flexibility are likely to be key criteria if large and complex models are to be
created.

Introduction

Modeling is not a new science. Ever since

people have been involved in research,
conceptual, qualitative models have been built.
However, with the onset of the computer era,
the quantification of conceptual models has
become increasingly popular. Today, many
nutrition models are used in research,
education, and extension. In research, models
are typically developed to integrate existing
knowledge about a system. Putting the pieces
of the puzzle together may identify sensitive
parts of the system and can expose lack of
knowledge in certain areas. The resulting
mechanistic models are used as a guide
directing future research. These mechanistic
models can also be used in education to
illustrate biological phenomena. The main
reason to develop models for agricultural
extension is the prediction of production. The
consequences of different scenarios can be
evaluated before management decisions are
taken. In general, extension models tend to be
more empirical in nature than research models.

In order to characterize a system, two
different approaches can be employed. By far
the most frequently used approach is the one
where a (sub)system and its model is

represented by a single, explicitly defined
equation. The model, more or less empirical in

nature, is characterized by a limited number of
parameters which are obtained by fitting the
model to the data using nonlinear parameter
estimation procedures. Alternatively, in
simulation modeling, a system is described by
a (large) number of (differential) equations and
parameters for which an explicit solution may
not exist. Although both approaches have their
niche in scientific research, we will focus here
on software that is to be used in latter

approach.

Dynamic model development

The changing user environment

Development of computers has made it

possible to solve complex mathematical and
logical operations rapidly and efficiently. The
first analog computers became commercially
available in the late forties. However, wide-
spread utilization was limited due to cost and
availability. A major breakthrough came in the
late seventies when personal computers were
developed. To illustrate the rapid development,
the first Intel processor (8086) was introduced
in 1978 and contained 29000 transistors
whereas the first Pentium processors (1993)
contained 3.1 million transistors. In 1979, an 11 I
MB hard drive cost almost $1800 (which is

currently the price of a 4.3 GB drive).
Not only the hardware but also the

software environment has changed dra-
matically bringing comprehensive and effective
methods to nutritional modelers. The first
nutritional models were created using
procedure-oriented programming languages
such as FORTRAN, BASIC, and PASCAL. As
a result, creation of models was restricted to
those nutritionists willing to spend resources in
computer programming. The advantages of
procedure-oriented languages (generality,
flexibility) have to be weighed against its
disadvantages (all routines have to be

programmed). Today, several problem-oriented
computer packages exist that may help
researchers in their modeling efforts. Many of
these require little or no background in-
formation about computer programming.
Moreover, some incorporate user-friendly
interfaces and are targeted towards a large
scientific audience. They range from easy-to-
use packages that can be run on personal
computers to sophisticated packages that need
the computational power of a mini-computer or
mainframe. The choice between a procedure-
oriented and problem-oriented language
depends largely on the modeling objective.
Procedure-oriented languages are ideally
suited to building models that are intended to
be used rather than developed (e.g., extension
models). In contrast, if the objective is model

development, the use of a problem-oriented
language will allow the researcher to focus on
the (changing) problem rather than on

programming procedures.

The portents of these changes

Where computers were once tools that
required specialized personnel, today a
computer is part of standard office equipment.
Computers and problem-oriented simulation
software are within the financial reach of most
researchers. Although models can add value to
biological research, it is important to realize
that modeling remains a costly and time-
consuming exercise. Computers can help
scientists in their modeling efforts but do not
substitute for skills in mathematics, statistics,
and computer science. Investments in these
areas have to be made in order to create

quantitative nutrition models. It is important to
realize that the computer is an extension of the
human mind, and not a replacement for it.

Requirements of modeling software for
the efficient development of models

In as much as models are developed in the
nutrition area for a wide variety of quite
legitimate reasons, software facilitating that
development needs to address the specific
nuances of the diversity of purposes. And
whereas software of limited scope and

flexibility can often be used by skilled

investigators in sophisticated and flexible ways,
users rapidly appreciate the additional power
and utility of software less limited in scope and
flexibility. In this section of our review we rank
software features in regard to their capacity to
facilitate aspects of model development and
model analysis.

User interface

If modeling is to be accessible as a scientific
technique to the widest appropriate assembly
of nutrition researchers, the tools allied to it
need to be cast in syntactical and semantic
forms to which such investigators are, or can
become quickly accustomed. Here we see the
pre-eminence of the software user interface
surfacing ... modeling software with its diversity
of responsibilities needs to offer the user a
consistent, reliable, and predictable envi-
ronment within which research efforts may be

efficiently and productively advanced. To this
end software needs to address the following:
- predictable and expandable environment
- menu organization facilitating access to critical
software functionality
- appropriate iconification of modeling objects
- intuitive functional structure underpinning
graphical objects
- comprehensive graphical manipulation of
modeling objects
- task grouping for efficient yet protective
software use
- context sensitive and expert level user help
- consistent use of fonts, colours, and

navigational controls
- capacity to reverse/undo and log actions
- accelerated mode of use via hot keys and
command language

Data manipulation

One of the major activities associated with
nutrition modeling involves the interpretation
and analysis of nutrition and related data. In

order to accomplish this step using modeling
software we need ways to represent and
manage data. For this, software (to varying
degrees) support the following:
- entry of data
- data storage and retrieval
- statistical characterization and weight
assignment
- data screening, summarization, inspection,
and description
- representation of different data forms (e.g.,
string, date, enumeration)
- transformation and auto-transformation (e.g.
normalization)
- block manipulation (e.g., include/exclude,
expose/hide, transpose, join)

Model specification

To efficiently build and manipulate models calls
for an array of modeling constructs. The richer,
or more extensive, this array the greater
the diversity of model forms that can be
represented. The more symbolic and

functionally intuitive the modeling constructs
are the greater ease we will experience in
assembling the model. Nutrition models in
particular have demonstrated a need for a wide
variety of model components, in part because
of the need to represent processes from the
sub-cellular level to the whole animal level, and
in part because of the need to represent
processes themselves ranging from growth, to
transport, from production to excretion. To
build and manipulate models, software usually
supports the following model management
steps and tasks:
- entry
- inspection and modification
- retention and retrieval
- automated diagnostic analysis
- compilation and allied integrity analysis
- depiction and printing
- functional linkage to parameters
- functional association with variables
- internal documentation

- redundancy checking

Model solving

In order to gain a sense of confidence in a

model, its prediction ought to be consistent
with data at hand, or its profile should at least
demonstrate the features characteristic of the

system for which it is being developed. Either

way, the investigator needs access to model
solutions and in this regard the following
features are often available in modeling
software:
- flexible and intuitive array of «solvers»

.explicit linear equations

.implicit linear systems

.explicit nonlinear equations

.implicit nonlinear systems

.ordinary differential systems

.stiff differential systems

.differential algebraic systems

.partial differential equations
- (automated) selection of appropriate solver
- (automated) solver parameter refinement
- capacity to handle discrete events
- retention and retrieval of annotated solutions

Experimental protocol

Much time and money can be wasted if

inadequate preparation is undertaken prior to
conducting experiments. One of the most
powerful uses of modeling methodology is
linked to the planning of experiments. Here
through simulation analysis injection sites,
observation points, sampling times etc. can be
evaluated in regard to their capacity to expose
some «unique» feature of a system. To help
evaluate experimental protocol, modeling
software supports the following tasks:
- setting initial conditions
- representing observations
- solving the system at sampling points or to
steady state
- representing experimental perturbations
- automatically managing experimental/model
object units
- graphically portraying experimental protocol
- simulating experimental error
- predicting data information levels
- calculation of experimental design points

Model fitting

Through its constructs a model may, for

example, encapsulate metabolic pools,
metabolic pathways, and reaction mechanisms
as a reflection of our understanding of the
science surrounding our domain of

investigation. A key ingredient of the modeling
exercise is in judging the degree to which data
reinforces these ideas. Without compromising
our scientific ideas, it is not unreasonable,
under certain circumstances, that small (or

possibly even large) variations to the

magnitude of model parameters may be found
to achieve acceptable consistency between our
model and the data. This step is known as
model fitting and in conjunction with it modeling
software supports the following:
- linear and nonlinear parameter fitting
- automated separation of linear and nonlinear
adjustable parameters
- incorporation of known parameter information
into fitting scheme
- accommodation of adjustment boundaries on
parameters
- gradient and non-gradient search techniques
- include and exclude capability for adjustable
parameters
- control over the objective function
- capacity to deal with under-identified systems
- clear association between model and data set
for model fitting
- lossless interruption capability during model
fitting
- automated fitting procedure parameter
refinement
- control over parameter updating following
model fitting
- automated selection of appropriate fitting
algorithm
- graceful termination if fitting problems
encountered

- intelligent reuse of calculated values to save
time
- detailed reporting of fitting convergence
information

Statistical analysis

In order to ascertain whether, within the
bounds of experimental error, a treatment has
caused certain significant quantitative shifts in

aspects of a model we require statistical
information in regard to the original model and
the newly refined model. This type of concern
often arises in the analysis of nutrition models
and for it, and other statistical issues, modeling
software offers the following to assist with
statistical analysis:
- estimates of parameter values and their
uncertainties
- statistical description of observations
- model prediction uncertainties
- propagated error analysis for dependent
functions

- post-fitting residuals analysis:

*Durbin-Watson determination and test

*R2, and R2 determination
*serial plots for residuals
*outlier analysis
*heteroscedasticity analysis
*Kruskal-Wallis normality test

- robust estimates of parameter confidence
intervals
- simultaneous analysis of data sets from
independent experiments including parameter
comparisons
- model selection analysis (Akaike Information
Criterion; Akaike, 1973)
- leverage analysis (x and y variables; Hoaglin
and Welsch, 1978)
- robust estimation support
- support for model (re)parameterization

Graphics and printing

Considerable time and expense associated
with scientific analysis and reporting can be
saved if (publication quality) outputs of critical
aspects of an investigation can be obtained
directly as the investigation advances. In

recognition of this, we find the following array
of utilities emerging in modeling software:
- model structure and model output
- publication-quality graphics and graphic
printout
- control over display (print) features:

*functions and observations displayed
on a plot
*form of display of each plot item
*ordinate and coordinate scale and value

ranges
*ordinate and coordinate forms; linear,
logarithmic, normal
*plot item annotation

- preconfigured model fitting diagnostic plots:
*normality, heteroscedasticity, leverage

- format to journal specifications
- extensive printer support
- (dynamic) linkage graphs and data to word
processors, spreadsheets, etc.
- sensible defaulting of plot specifications

General features

Finally, if software, for any intended purpose, is
to be adopted by a user group it needs to

specifically target that group and commit itself
(via its development team efforts) responsively
in a variety of ways to that group. Successful

products usually address the following issues
in this regard:
- user group
- on-line friendly user help
- quality documentation including:

*reference manual
*user guide
*expert assistance sections
*tutorials covering diversity of product use

- competitive pricing
- graded level of software use (user protection)
- user meetings and workshops
- serialized publications updating users on:

*meetings, new features, new applications,
program updates
*changes in support structure, new

platforms supported
- support for a wide variety of platforms
- robust, efficient, and reliable product
- company responsive to user requirements
- local representatives
- variety of means for support (phone, fax,
e-mail, World Wide Web)

Evaluation of four model development
environments

Evaluation environments

There is currently a wide selection of software
available for simulation modeling. Table I lists
the names of some software product and
vendors. The simulation software reviewed
here included STELLA II (version 3.06),
Scientist (Windows version 2.0), SAAM
(version 31 and ACSL/SimuSolv (version 11 1
and 3, respectively). Selection of the software
was based on familiarity of the authors
with these packages. The software was
evaluated on a personal computer (P5-75) with
16 MB of memory (STELLA 11), a Gateway
2000 P5-90 personal computer (32 MB of
memory) (Scientist and SAAM), and a Sun
SPARCstation 10 model 30 (128 MB of mem-
ory) using the Solaris operating system (ACSL
and SimuSolv). The packages were evalua-
ted by using a lactation model published

by Neal and Thornley (1983). The model
predicts milk production in a cow milked twice

(or three times) daily or continuously
(simulating calf drinking) over the entire 300
days lactation. Model parameters were those
as listed in table II of the manuscript by Neal
and Thornley. The model is based on hormone
concentration (H), number of secretory cells in
the mammary gland (C.), quantity of milk in
animal (M), and average quantity of milk in
animal (M). The model contains the following
particularities:
- The model uses two integration step-sizes for
machine milking. A short (0.001 d) integration
step-size is used during milking and a longer
one (0.1 d) between milkings. The model
requires even a considerably smaller step-size
during milking if solutions are to 1) precisely hit
milking points, and 2) allow for both milk
removal and gland refilling moderately
smoothly during each milking episode.
Furthermore, to realistically represent this
situation required uncoupling integration and
solution steps since it is not minute by minute
based calculations we require but rather daily
or weekly (see figures in Neal and Thornley’s
paper).
- To achieve a sigmoidicity in the affect of milk
accumulation on death rate of secretary cells,
the latter contains the term (M/Mh) which is
raised to the power 10 in the article. This may
cause floating point problems in evaluation of
this term for small M.
- The differential equations for differentiated
secretory cells (Cs) and milk in animal (M) are
highly nonlinear, particularly, as Neal and
Thornley observe, for a milk removal constant
(KM) of about 5 kg.
- Neal and Thorley use case-sensitive naming
of parameters (e.g., KM for milk removal
constant and kM for milk secretion constant).

STELLA //

Technical data
STELLA II is an graphical-oriented modeling
package developed by High Performance
Systems Inc. (USA). Originally developed for
the Macintosh, a Microsoft Windows com-

patible version has been available since 1994.
The minimum configuration requires 4 Mb of
RAM (8 Mb recommended), at least 5 Mb of
free disk space, and Microsoft Windows 3.1

(Windows version) or System 6.0.4 (Macintosh
version). The core package costs $715 but

significant discount is available for universities

and students. To support model distribution, an
authoring module (for creation of specific user-
interfaces) and run-time versions of STELLA
are available.

Help and User support
The software comes with extensive docu-

mentation including manuals for getting
started, technical aspects, and the methods
and tools used in STELLA II. Although there is
no on-line help, the input syntax of functions is
displayed when entered incorrectly. High
Performance Systems, through their foreign
representatives, offer workshops for training.
To promote exchange between users, a
subscription to six-monthly published list of

STELLA II users is available ($10 per year).

Functional supports for

Model specification/manipulation
The model specification in STELLA is based on
two main levels of information, the map layer
and the model construction layer. At the map
layer, the general structure of the model is

depicted in sectors. Each sector, which
consists of a series of related model elements,
can be individually run, documented and
illustrated with text, pictures or movies
(Macintosh version). Relations between
sectors are indicated by bundled flows which
are based on flows defined in the model

construction layer.
The actual model specification is done in

the model construction layer. State variables
(stocks), rate variables (flows), and auxiliary
variables and constants (converters) are
represented as graphical building blocks.
During model construction, building blocks are
picked from an icon bar and placed in a
diagram of the model construction layer (Fig 1).
Each building block will carry a unique name
(long names are possible but names are case-
insensitive). A question mark appearing in the
building block indicates that information is

missing. Double-clicking on the building block
will open it and will allow entry of specific
information (e.g., initial values for stocks). Each
building block can be individually documented.
Functional relations between building blocks
are performed by connecting these with an
arrow (connector) after which the relation can
be specified. Ghost images (i.e., copies) of
building blocks can be used in the diagram

serving as anchors for connectors thereby
avoiding lengthy connections between (spatial)
distant elements. For complex models, the
search utility is helpful in relocating model
elements.

Fig 1 shows the model construction layer
of the Neal model. Through its use of stocks

and flows, the STELLA architecture ensures
that no material is inadvertently lost. In the
Neal model, the cumulative milk production is
the cumulation of all the milk taken from the

animal. The use of a flow ensures that the

outflow from M (milk in animal) always equals
the input in Y (cumulative milk production). Unit
conversions between two stocks (e.g., from
mole to g) can be indicated in a flow. The

milking function was modeled using a

combination of the STELLA modulo func-

tion and logical commands (i.e.: mt = if

((mod(time,1 »0.25 and mod(time,l)<0.255)
or (mod(time,l)>0.75 and mod(time,i)<0.755))
then rm else 0).

Stocks can be operated as conveyors,
queues or ovens to delay flow of material. A
conveyor has a defined capacity and potential
for leakage (in nutrition, the conveyor could
represent the gastro-intestinal tract where
leakage is absorption). Queues can be used in
processes that require a first in - first out type
of operation whereas an oven may be suitable
for modeling batch processes. In addition to

commonly found functions, STELLA II can

report a series of statistics related to the time
spent «in process» based on a time-stamp
introduced at (the beginning of) a flow chain.

Complex models can be managed more
easily by the creation of sub-models. Sub-
models are represented at the model
construction layer as special icons, but are
actually comprised of a series of building
blocks which can be displayed or hidden on
request.

Apart from the built-in functions and
constants, STELLA II also allows the use of

tabular data as model input (up to 1500 data
points per series). Incorporation of data from
external files can be performed using the
Macintosh version, but not under the Windows
version of the program (copy and paste of a
series is supported). In addition, if no detailed

data are available, a graphical relation of
variables can be drawn and used as model

input.

Model compilation
No specially compiled version of the model can
be constructed. Model construction and model

solving are done in the same environment.

Model solving
Three fixed step-size integration methods are
available in STELLA (Euler (default), 2nd and
4th-order Runge-Kutta) and only one method
can be used during model solving. Moreover,
the integration step-size cannot be changed
during solving (as required by the Neal model).
The model will not run if simulation run is long
compared to the chosen integration step size.
Running the Neal model (300 d) with the short
integration step-size (0.001 d) resulted in an

error message which can be resolved by
shortening the simulation run or increasing the
step-size. The maximum simulation run for the
short integration step-size was 32 days of
lactation, which required 3 minutes and 45
seconds to solve on a P5-75 with 16 MB of

memory. Models are run for a predefined time
(a pause function is available) but cannot be
terminated depending on model conditions.

Parameter values can be changed
between runs, but cannot be saved separately
from the model definition. Discrete events are

generally handled correctly but care must be
taken if they are scheduled at times that do not
coincide with sampling points. For example,
the modulo function described above will not
be executed correctly if the integration step is

greater than 0.05 (the equivalent STELLA
PULSE command will work correctly but
ignores the dynamics during milking).

Model fitting
STELLA II does not include a module for model

fitting.

Sensitivity analysis
The sensitivity analysis capabilities of STELLA
II are rather limited. The value of the parameter

under study is changed (either to conform to an
incremental series, a distribution, or user-

specified) and its effect on a single model
variable will be displayed graphically or
tabularly. STELLA II will not calculate statistics
related to the sensitivity analysis.

Graphics, printout, and links with other

packages
STELLA 11 can display and print different types
of information related to the model structure
and model output. At the model specification
level, the map layer (overview of the model)
and model construction layer (detailed model
structure) can be printed. In addition, all

underlying equations, including the docu-
mentation of model elements are available as

output. As a Windows (or Macintosh) program,
program output can be printed on any device
for which a driver is available. Graphical output
can be defined as a time-series (up to five
variables per graph) or scatter plot (one X-
variable and one Y-variable). Previous plots
can be conserved in order to compare output
between simulation runs. Few options exist to
modify the lay-out of the graph (e.g., color, line
styles, fonts, supplemental information) and the
standard graph is unlikely to be conform a
journal’s standards. Therefore, the user will
have to export data to a third-party graphics
package. STELLA II does support direct links to
external packages for import or export of data
but only in the Macintosh version.

Conclusion
STELLA 11 is highly intuitive package that will
allow users to create a model within an hour of
installation. It’s main strength is the graphical
interface (layering concept and building blocks)
and printed documentation. However,
drawbacks include lack of on-line help, limited
integration methods, no model fitting
capabilities, and lack of integration with other
packages (Windows version). Although it may
serve better as a tool for demonstration and

education than for scientific model

development, its graphical interface can be
useful during the initial phases of model
development.

Scientist

Technical data
Scientist is a Microsoft Windows program

which brings together the entire power and
functionality of a suite of scientific software
developed and refined for the last nine years
at the MicroMath corporation. The target
application of the package is, and has always
been, the scientist’s work bench.
Scientist is only available for the PC and runs
under all Intel processor chips upward from the
80386/80387 combination. The software

requires at least 4 Mb of RAM (though 8 Mb is
recommended) and also requires at least 5 Mb
of secondary storage.

Help and User support
The Scientist program comes with one
instructive (500 pages) manual which
combines reference material, tutorial guides,
and «manual style» information. Windows
format on-line help is available as well as
context-based information in the software
status bar. For particularly difficult problems,
the user can contact MicroMath for direct
assistance.

Functional supports for

Model specification/manipuiation
The functionality of Scientist is accessed via a
series of windows; a data or spreadsheet
window, a plotting window, a model window, a
worksheet window, and a general text window,
and the functions available are automatically
configured to match the needs of the current
(uppermost) window. In the model window,
models are created using a pseudo-
mathematical syntax in which persistent
identifiers, in various classes, need to be
declared (see example below) ... temporary
variables need not be declared.

Whilst at first entry into this window a
model template is available, to facilitate initial
model development, there is in fact no

assignment of identifiers, by name or form, to
any subsequent role (in contrast to SAAM’s
modeling syntax). Identifiers may be of any
length but are not case-sensitive.

Scientist supports around sixty common
scientific and programming-oriented functions
making it possible to create quite sophisticated,
and discontinuous models extremely easily.

The software has a number of innovative
and helpful features to expedite investigations,
e.g. it is capable of solving implicit nonlinear
equations; there is considerable flexibility
regarding parameter value, integration range,

and other solution information entry; and there
is virtually no ordinal significance connected
with the information entry into the model
window.

Many of the features of model specification
using Scientist can be seen in our rep-
resentation of the Neal model in Fig 2. We note
that the 4 state variables, H, Cs, M, and M, are
identified as «dependent variables» and are
defined in their respective state equations
(denotes derivative). They are initialized as
needed. The milking function uses a similar
approach as for SAAM in which a periodic
function is cropped at the appropriate level. We
have set the integration range from t=0 to
t=300 and our abstraction of «t» units is day.

Model compilation
Model compilation can be independently
invoked (from most windows) and serves
largely to verify model syntax and to isolate
linear parameters. A compiled model cannot be
used separately from the package

Model solving
Scientist supports six integrators, two fixed
step-size (Euler and Runge-Kutta) and four
variable step-size (Bullirsch-Stoer, error-
controlled Runge-Kutta, Adams, and Episode’s
stiff integrator). Selection of an integrator
automatically exposes the appropriate inte-
grator parameter set for which assignment may
be made ... though each procedure is sensibly
defaulted and restoration of defaults is quite
simple. Some dimming errors and apparently
conflicting assignment options obscured initial
attempts to invoke fixed step integration.

To solve the Neal milk production
equations, the fixed step Runge-Kutta
integrator was used with a step size of 0.001 d.
Approximately 19 min of processing time was
required for the 300 day lactation solution, and
in Fig 2 we present plots of Neal’s «Milk in
Animal&dquo; and «Average Milk in Animal!·
functions.

Model fitting
Scientist has comprehensive weaponry to
facilitate model fitting and includes versions of
Steepest Descent, Levenberg-Marquardt,
Powell, and Simplex minimization algorithms.
In addition, and in conjunction with model
fitting, Scientist can automatically identify linear
parameters and it takes advantage of this as it

attempts nonlinear estimation.

Following model fitting, Scientist is able to
calculate many critical statistical details

concerning the fitting process. Indeed its

capacity to provide residuals analysis to-
gether with optimal data transformation for
data/residual homogeneity is quite unique.

Sensitivity analysis
Although not explicitly supported, the
mathematical/numerical tools available within

Scientist, including its capacity to differentiate
and integrate functions provide most of the
computational machinery necessary to perform
sensitivity analysis.

Graphics, printout, and links with other
packages
Scientist has a very handsome and quite
manageable graphics window permitting, for

example, displays in 2D rectangular, 2D polar,
3D surface, 3D curve, and 3D bar modes.
Although, in our estimation, a little too sticky,
plot templates can be easily created, saved,
and re-invoked to avoid rebuilding complex plot
descriptors each time re-plotting is needed.

Graphs can be output to meet a wide
assortment of drivers.

With the addition of an equation editor, the
capacity of Scientist to manage and output text
and related information is such that the user
need never leave a (modeling) session
between initial data entry and putting the final
touches on a paper ... oh if life were so simple.

In recognition that the Scientist user may
perhaps be more comfortable with data
entry/manipulation using one of the variety of
spreadsheets and database systems currently
around, the developers have thoughtfully

incorporated translation linkages between their
spreadsheet and at least six other popular
ones.

Conclusion
Scientist is a creative program which equips
the serious investigator with all the tools
needed to rapidly and effectively advance data
analysis and model fitting. The Neal and
Thornley model was quickly formulated in

Scientist’s modeling language and solved with
the required precision for the entire lactation
cycle.

Some minor shortcomings of Scientist
were its lack of case sensitivity, its lack of

integration across certain of its operational
windows, and its somewhat excessive

processing time (approximately 19 min) to
solve the Neal model on a Gateway 2000 P5-
90 computer.

SAAM

Technical data
SAAM is a kinetic modeling program suite that
has been developed and refined for over thirty
years. It has been used in conjunction with the
analysis and publication of many thousands of
kinetic investigations in areas embracing
digestion, metabolism, pharmacokinetics, and
radiation dosimetry.

The SAAM software is offered in two

versions, a batch version (SAAM 31) and a
command-line oriented interactive version

(CONSAM). They are developed, and

distributed for Microsoft Windows. To run the

programs requires approximately 5 Mb of
memory, a 80386/80387 or better Intel

processor and at least 5 Mb of secondary
storage. The programs are distributed freely on
two disks from the Laboratory of Mathematical
Biology at the US National Institutes of Health.

Help and User support
There are three manuals that accompany
SAAM and CONSAM: The SAAM Manual, The
CONSAM User’s Manual, and The CONSAM
User’s Guide. Two of the manuals come on the
distribution disks. In addition, there is available
a well documented instructional tutorial set

embracing many features of the SAAM

vocabulary and the CONSAM instruction set.
Furthermore, interactive help is available while
using CONSAM to assist with syntactic and
semantic problems.

SAAM user meetings are held up to three
times a year and are either woven into the

agenda of scientific meetings or held under
industry auspices for select participation and
specific problem issues. Visitors are welcome
at NIH or at the University of Pennsylvania
where they may receive personalized guidance
in SAAM and CONSAM use.

Functional supports for

Model specification/manipulation
CONSAM incorporates a command line

interactive shell through which models are
created, manipulated and explored. In

essence, the CONSAM commands can be
classified as editing commands, processing
commands, and i/o commands. Using the
editing commands, the user creates and
modifies models in the SAAM syntax. Here a
set of pre-defined modeling constructs and
operational units with their specific functional
underpinnings are lexically manipulated by the
user to enable the rapid creation of quite
complex (differential) models.

The modeling constructs available include
fractional turnover parameters (L(I,J)): which
define the existence of compartments, the
connections between compartments, and the
nature and rate of material exchange between
compartments; delay parameters (DT(J),
DN(J)): which define transit delays for the
transport of material between compartments;
user-definable linear and nonlinear parameters
and functions (K(J), S(I,J), P(J), and G(J),
respectively. Users exploring linear systems
need only specify L parameters ... the SAAM

interpretative machinery automatically creates
the differential system implied. Indeed it is 1)
its terseness, and 2) its abstraction of routine

mathematics that has led to the popularity of
this software.

The operational unit set extend the user’s
flexibility in two distinct directions. Firstly, and
most obviously, it allows the user to emulate

experiments on the system represented by the
model. Here using initial conditions, input
functions, and sampling switches simulated
consequences of assaults to the system can
be explored. Secondly, using forcing functions,
and other (exotic) tools, we can manipulate
models to synthesize responses possibly
characterizing data originating from quite
diverse situations.

The listing of the SAAM representation of

the Neal model (fig 3) highlights a variety of
modeling constructs and operational units.

There are 4 compartments (1 to 4) or state
variables and 2 of these have linear state
equations (H and M) and 2 have nonlinear
state equations (Cs and M). The nonlinear
equations have been built, in part, using
function dependent transfer modifiers, and, in

part, using nonlinear input rates (UF(2) and
UF(3)). The «8» on the L(0,3) parameter
definition line causes the parameter to take
non-zero values only when the modifier, G(3),
is greater than zero ... indeed it is through this
very switching process that we obtain the Neal
milking machine demand function.

The flexibility of the software is achieved
from this capacity to very easily build and
modify quite realistic nonlinear and dis-
continuous mechanisms.

Model compilation
The second set of CONSAM commands, the
model processing commands, comprise
signals to the SAAM processing machinery to
advance the state of the model. For instance
the DECK processing command compiles the
model (builds equations and encodes data),
performs some syntactic analysis, and, if

possible solves the dependency equations.
Whilst the compiled version of a model can be
saved, the software is still required to continue
to use it.

Model solving
After compiling, the model its state equations
can be solved for the nominated solution points
using CONSAM’s processing command
SOLVE. Whilst SAAM will automatically select
amongst an array of, implicit, explicit, linear,
nonlinear, and quasi-symbolic integrators, one
which is best suited to the problem, the user
can override this choice. Specific integrators
available include Runge-Kutta 4, Runge-Kutta
4/5, Newton-Raphson exponential solver,
Convolution solver, Gear, and Adams-
Bashforth. Tuned parameter values for the
respective integrators are refined by SAAM in
conjunction with the problem details ... again
though these can be altered by the user.

Using the above model we attempted to
solve the milking machine demand model, for a
twice day milking program, over the entire
lactation (300 days) cycle. Unfortunately,
because this system required fixed step
integration, with step size around 0.001 d and
because SAAM neither supports a nonlinear

fixed step integrator nor accommodates more
than 1000 solution points we were unable to
solve the system for more than 2 days.

Model fitting
After solving the CONSAM user can invoke
function fitting using SAAM’s highly refined
nonlinear least squares algorithm. Some
features of this facility includes:
- separation of linear and nonlinear estimation
steps
- generalized least squares objective function
- Marquardt style modification to the Gauss-
Newton algorithm
- known parameter variances admitted into the
fitting process
- boundaries on parameter adjustment ranges
are honored

- step-size scaling and convergence criteria
automatically managed by software
- singular value analysis invoked when non-
uniqueness would otherwise cause inversion
errors

- incorporation of steady state data and steady
state parameters into the model fitting scheme

At the conclusion of model fitting a critical
set of convergence guides is displayed.

Sensitivity analysis
Following model solving and model fitting the
third class of CONSAM commands, the i/o
commands are usually invoked, for example, to
help the investigator to assess the model
adequacy. Here two forms of sensitivity are
available 1) model sensitivity; and 2) data
sensitivity. The model sensitivity, a scaled
version of the partial matrix (each column
representing a particular adjustable parameter)
portrays the temporal sensitivity of the model to
a parameter around its current value.

The data sensitivity, in essence the
variance of a datum divided by the variance of
the entire data, reflects the relative role of each
datum in conjunction with model fitting. Using
this latter information measure investigators
may be assisted in locating observation points
to assure optimal model identifiability.

Graphics, printout, and links with other
packages
Using CONSAM’s i/o commands, most of the
model solution results generated by SAAM can
be displayed graphically, displayed lexico-
graphically, or sent to graphics (HPGL) or
ASCII text files. All the user’s interaction with

CONSAM can be logged to a file though
currently the inputs and outputs are logged to
separate files. CONSAM lacks the capacity to
communicate with other software.

Conclusion
CONSAM and its processing kernel SAAM
comprise an extremely efficient and highly
integrated kinetic modeling environment. It is

very fast and, from the model formulation
perspective, quite amenable for the in-

vestigation of models such as that of Neal.
The greatest shortcomings of CONSAM relate
to 1) its ’older style’ architecture being
command-line oriented makes its difficult to

use; 2) the fact that it is not able to com-
municate through or with other packages; and
3) its limitation of being only able to handle
systems involving no more than 75 state
equations, somewhat limit its utility.
This investigation has demonstrated the clear
need within SAAM of at least one integrator for
which the integration and solution steps can be
independently set. In addition, the importance
of a more flexible method for naming objects
became apparent.

ACSUSimuSolv

Technical data
ACSL (pronounced axel) is an acronym for
Advanced Continuous Simulation Language
and has been developed by Mitchell and
Gauthier Associates Inc (USA). SimuSolv,
which uses the ACSL simulation language, has
been developed since 1983 by The Dow
Chemical Company. Its major purpose is to
solve optimization problems or to estimate
model parameters given an ACSL model and
experimental data. Both packages are

marketed in Europe by Rapid Data Ltd (UK).
Since January 1996, the DOW Chemical
Company has stopped development of

SimuSolv for use outside the company.
Mitchell and Gauthier Associates Inc have
announced a new module for ACSL (ACSL
/Optimization) that will have at least the same
functionality as SimuSolv.

ACSL is available for a variety of mini-
computers and mainframes (multi-user license)
as well as for PC and Macintosh (single-user
license). In contrast, SimuSolv is available only
for mini-computers and mainframes. Both
ACSL and SimuSolv require a FORTRAN
compiler (not included). A single-user ACSL

license costs $1500 (educational price),
whereas a multi-user license costs $3500 for
the first year plus a $1000 annual license fee
(educational price). A multi-user SimuSolv
educational license is $2000 for the first year,
and $500 thereafter.

Help and User support
The ACSL documentation consists of a single
technical manual and several brochures for
installation and testing. Technical docu-
mentation containing reported problems and
suggested solutions are distributed on a
quarterly basis. The SimuSolv documentation,
which covers both ACSL as well as specific
SimuSolv commands, is more extensive and

includes many examples. A separate
Introductory Guide discusses the main features
of SimuSolv. Both Mitchell and Gauthier
Associates Inc (ACSL) and The Dow Chemical
Company (SimuSolv) publish free newsletters.
In addition, training sessions are being
organized on a regular basis. Developers and
their European representative can be reached
by e-mail.

Functional supports for

Model specification/manipulation
An ACSL model consists of two parts: the
model definition file and the run-time
commands. The model definition involves

establishing mathematical equations for the
system to be modeled. Model conditions
are executed through run-time commands or a
runtime command file. The advantage of
this design is that the internal model structure

can be kept constant, whereas the model
conditions (e.g., the values of model

parameters) can be varied for different
simulations.

The model definition (an ASCII file) of an
ACSL model consists of three main sections:

INITIAL, DYNAMIC, and TERMINAL. The
INITIAL-section is executed only once at the
beginning of a simulation run. In contrast,
statements in the DYNAMIC-section are
executed numerous times during the simulation
run. It may contain differential equations that
describe the evolution of state variables, as
well as discrete events (i.e., events that only
occur at a specified time or under specified
conditions). For this purpose, DERIVATIVE-
blocks and DISCRETE-blocks can be defined
within the DYNAMIC-section. Finally, a

TERMINAL section may be defined for those
events that need to be calculated only at the
end of a simulation run.

ACSL makes use of a large library of
internal functions and operators. In addition,
user-defined functions based on FORTRAN
can be included in the models. Constants may
be defined as scalars or multi-dimensional

arrays. Interpolation between external data
points (up to 10000) is possible through
linearization or smoothing methods. Missing
data are permitted and questionable data can
be marked and will be ignored in statistical

analyses.
ACSL and SimuSolv allow the use of

macros and FORTRAN procedures, which can
be used to create forms for data entry and
requests for data analysis. Being a FORTRAN-
based program, ACSL and SimuSolv impose
some restrictions on the format of the model

definition file. Names of variables and
constants cannot exceed six characters in

length (31 in ACSL), and a maximum of 72
characters per line can be used. Model

documentation can be included in the model
definition as quoted text and is ignored during
compilation. The model definition file in ACSL
is case-insensitive; as a result the naming in
the following ACSL model definition file

deviates somewhat from the naming
convention used by Neal and Thornley (Fig 4).

The DYNAMIC section contains one
DERIVATIVE-section (which contains the
differential equations and integration
instructions) and two DISCRETE-sections (to
turn machine milking on and off and to change
the integration step-size). The model run can
be terminated (TERMT) based on the value of
the run-time variable (TIME) or any other
model condition. Parameter values are
declared in the model definition file, but can be
changed on the command line.

Model compilation
The ACSL model definition and command files
are ASCII files and can therefore be used
under any operating system. In order to be run,
the model definition file needs to be compiled
under FORTRAN. Once compiled, run-time
commands can be entered on-line or read from

the command file. Any change in the model
structure (i.e., the model definition file) requires
re-compilation. The ACSL software does not
impose a limit on the program size or number
of state variables.

on line-printers or plotted on various output
devices (Tektronix, HP, postscript, X-windows,
Sunview, Microsoft Windows compatible
devices). To assess the effect of changing
model conditions (e.g., changing parameter
values), outputs from successive simulation
runs can be displayed in a single graph.
Parameter estimation behaviour (e.g.,
confidence regions) can be studied by three-
dimensional plotting of the objective function
versus two parameters.

Recently, a graphical user-interface for
ACSL (Graphic Modeller) has been developed
which allows users to visually program,
execute, and analyze simulation models rather
than using a text-based program and
command-line execution. ACSL vision is a

product that allows animations to be included
with an ACSL model whereas ACSLrt is a
module for real-time simulation. Also other,

external products can be linked with ACSL
(e.g., SimuSolv, MATLAB). The Microsoft
windows version makes use of DDE, allowing
exchange of data between ACSL and, for
example, graphics packages and spread-
sheets.

Conclusion
The combination of ACSL and SimuSolv

comprise a very powerful tool for simulation
modeling. The use of a program definition file
in ASCII ensures portability between different
operating systems and platforms. Depending of
the computational power required, a modeller
can choose platforms ranging from personal
computers to supercomputers. A disadvantage
is the fact that, compared to a product like
STELLA, ACSL requires considerable in-
vestments, both in time and finance. Larger
models may require considerable thoughts on

Model solving
ACSL and SimuSolv not only provide several
integration algorithms (Euler, Runge-Kutta 2
and 4, Runge-Kutta-Fehlberg 3 and 5, Adams-
Moulton, and Gears’s BDF) but also allows
users to write their own integration algorithms
in FORTRAN. More than one integration
method can be used in the model and the

integration step-size can be changed during
the simulation run (as required by the Neal
model). The definition of DISCRETE sections
ensures that scheduled events will coincide
with solution points. On a SPARCstation 10,
the system for a 300-day lactation period with
machine milking was solved in 0.25 seconds

(0.7 seconds on a P5-133). To solve the
system with a single integration step-size of
0.001 day required 7 seconds.

The use of discontinuities such as machine

milking lead to specific characteristics in model
output. For example, the removal of milk from
the animal (daily milk yield; RM(t)) is not a
continuous function as suggested in fig 6 by
Neal and Thornley, but is a series of (quasi)-
spikes that coincide with the milking interval. In
fact, all state variables but the hormone
concentration will be affected by these
discontinuous and are therefore discontinuous
functions (although some state variables are
more affected than others). The false

appearance of continuity is due only to the
selection of the solution points. If one solution

point per day is chosen, we will obtain the
dynamics of a state variable only at that point
in time. If this solution point happens to be
within a milking interval, we will obtain

dynamics of a state variable at a different level
then when the solution point is just before
milking. For example, in Fig 4 we plotted the
quantity of milk in animal (M) displaying
solutions every 1.44 h. If we would have used
one solution point per day, we could have
obtained a false continuity of M with a
maximum of 8 kg or 24 kg only depending on
the selection of the solution point within the day
(i.e., during milking or just before milking).

Model fitting
SimuSolv employs the method of maximum
likelihood in order to obtain parameter
estimates. It allows estimation of parameters
given experimental data for one or more
dependent variables. For example, in the
model described before, data may have been
collected for total cumulative milk yield (Y). The

SimuSolv commands to find the best set of
estimates for kM (milk secretion constant; KM2
in ACSL model definition file) and KR (milk
secretion rate) are:

VARY KM2, KR
FIT Y
OPTIMIZE

As with any non-linear estimation

procedure, reasonable initial values for the

parameters are required in order for the

algorithm to converge. Parameter bounds can
be used to restrict the values of the estimators.
A general error-model can be used in
SimuSolv to account for non-homogeneous
variances (heteroscedasticity) within a data
set. A typical SimuSolv listing includes
parameter estimates with standard deviations,
observed and predicted values for all

dependent variables, initial and final values of
the maximized log-likelihood function (overall
and per dependent variable), weighted sum of
squares, percentage of variation explained, the
heteroscedasticity parameter, the parameter
correlation matrix, and the variance-covariance
matrix.

The OPTIMIZE command in the previous
example cannot only be used to maximize the
log-likelihood function but also to optimize any
other objective function (e.g., maximization of a
state variable). Hypothesis testing cannot be
performed directly with SimuSolv although the
manual contains excellent (illustrated)
instructions to use the SimuSolv output listing
for comparison of both nested and non-nested
models.

Sensitivity analysis
Dependencies between the model responses
and input parameters are studied by
calculating sensitivity coefficients (a(model
responses)/3(modei parameters)). To reduce
computational effort, calculation of sensitivity
coefficients is decoupled from solving the
differential equations. Normalized (to eliminate
bias due to differences in magnitude of
parameter values) sensitivity coefficients are
displayed graphically as a function of the run-
time value allowing the study of both the
magnitude and the dynamics of model

sensitivity.

Graphics, printout, and links with other
packages
ACSL and SimuSolv provide a extensive set of
tools for producing output, which can be listed

model description, not so much for the ACSL
language interpreter, but more to maintain an
overview of the model. SimuSolv integrates
well with ACSL language, but is based on a
slightly older version and is not available for

personal computers. In contrast to ACSL, no
graphical interface is available for SimuSolv.

Conclusion

In this review we have seen a series of
different modelings environments that can be
used for nutritional modeling. The envi-
ronments differ from easy-to-use graphical
environments such as STELLA II to text-based

programs such as ACSL and SAAM. We have
listed requirements for efficient model

development; none of the packages reviewed
here fulfilled all of the requirements.

There are several important issues to
address before purchasing a specific
simulation package. The most important issue
for a software product is that it should fit the
user’s needs. Although this may seem obvious,
it is clear that «full-time» modelers have
different demands (functionality, power) than
those who create models on a Friday afternoon
(ease-of-use). Because user needs may
change over time, it is desirable that the

product evolves with the user, either through
the use of a «light» version of an extensive
product, or through offering of different levels
of access at software functionality. Given the
variety of users, it is important that software
vendors pay considerable attention to the
documentation of the product. This should
include not only a user’s guide but also
technical background information for

experienced users as well as for the non-

mathematically inclined.
An efficient simulation product on the one

hand should integrate well within the operating
system (e.g., provide links with other

packages) and on the other hand should be
available on a variety of platforms (i.e., one
should be able to change platform if additional

computational power is required). These
horizontal (within operating systems) and
vertical (between operating systems)
compatibility issues have to be addressed by
software developers.

The Neal and Thornley model illustrated
the large differences in computational power of
simulation products. Solving the model for a full
lactation with an integration step-size of 0.001
day would require more than 30 minutes for
STELLA compared to 7 seconds for ACSL
(using different platforms). Although the Neal
and Thornley model might be rather specific
(requiring 300 000 evaluations for each state
variable) it is rather simple in structure.

However, numerous more complicated models
exist that require considerable computational
power. For efficient model development, the
human mind should be the limiting factor and
not computational power of a software
product.

Literature cited

Akaike H (1973) A new look at statistical model
identification. EEE Trans Automat Contr 19, 716-
723

Hoaglin DC, Welsch RE (1978) The hat matrix in

regression and ANOVA. Amer Stat 32, 17-22

Neal HDStC, Thornley JHM (1983) The lactation
curve in cattle: a mathematical model of the

mammary gland. J Agric Sci Camb 101, 389-400

