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Summary - For over twenty years dynamic modelling has been used in the biological sciences.
Broadly speaking, biologists have reproduced what has long been used in the physical sciences by
researh workers and engineers. Essentially, they use dynamic system modelling and control
theory. Nevertheless a random component is seldom introduced, although it plays a central role in
biological systems. In this paper we illustrate the major aspects of dynamic system processing, we
also try to show how developments in statistics have introduced new ideas which may be of some
use in this field. The metabolism of glucose in goats is used as an illustration of numerical analysis
and statistics symbiosis.

Introduction

Mathematical biology is a fast growing, even
not clearly defined, subject application of
mathematics. As biology becomes more
quantitative, the increasing use of mathematics
is inevitable. But research and applications in
this field, to be useful and interesting, must be
relevant from a biological standpoint. We are
going to present the most important ideas, to
our mind, and apply them to animal nutrition.
Of course, these ideas are developed in some
important text-books, recently published
(Murray, 1989; Brown and Rothery, 1993;
Pave, 1994): the interested reader will increase
his knowledge by consulting them.

As it is now well established «the efficiency
with which absorbed nutrients are used for fat

synthesis is an important factor in determining
the feed requirements of animal» (Gill et al,
1984). The analysis of fat synthesis is the

analysis of a very complex «system», surely far
away of a simple mathematical modelling. A
mathematical modelling is always a

simplification of a real world; but as a matter of
fact, this simplification imposes to an

experimenter to isolate the most important
effects able to describe the entire system, even
if he has to know that a model is always a
virtual description of a specific reality.

He may use a simplified model as an
instrument to describe a complex situation; but
his ambition may be more important and he
may use the model to analyze situations he is
not able to experiment. As an example, he may

compute parameters he is unable to measure
directly, such as transfer coefficient between
two organs. He may also use the model to

analyze new situations and try to control the
dynamic of the system under consideration.

A specific example: metabolism of
glucose

When studying the metabolism of glucose of a
goat an experimenter may have in mind the
simplified model described in figure 1. This
model is a compartmental one where some
compartments are hypothetical, such as the



existence of two insulin compartments. One of
his aim may be to verify that they really exist
with experimental data.

The aim of such a model is to analyze the
dynamic of this metabolism, when some
injection of glucose are made at the beginning
of the experiment; the same model, with minor
modification, is also used for insulin injection.
The model has six compartments as shown in

figure 1, their definition is the following:
1: glucose in blood
2: insulin in pancreas
3: non esterified fatty acid
4: [3 hydroxybutyrate
5: glycogen in a first compartment only for
transfer
6: glycogen in a second compartment for
stocking

To make measurements, the experimenter
has only access to compartments 1, 2, 3 and 4.
For more details see Sauvant and Grizard

(1992), Ciuperca (1996).

Classical methodological approach

The methodological approach for such models
is based on dynamic modelling which appears
well suited to their processing. This sort of
modelling is classical in physical sciences; the
biologists have made a transposition of ideas
and tools already well known and used with
success by engineers. As we shall see later
this analogical approach has certain limits.

Variables

In such models variables are quantities that
change in time and, as presented by France
and Thornley (1984), they can be considered
under four categories:

- state variables: if there are m states

variables, we shall note them Xi(t) (or simply X,
knowing that this variable is time-dependent),
i= 1,...,m; the total set will be noted as a vector
in bold character:

where the symbol [...]T represents a

transposed vector. Sometimes we only know
values of a subset of n state variables (n<m) at

given times to, t1 ,...,tN; for presentation, there is
no loss of generality to consider them as the
first n X components. For glucose metabolism

introduced previously m = 6, and n = 4. For
these variables at time ti, Xi(tj), we shall have
measurements u;! (the measurements for time
to correspond to initial conditions of the

system):

- rate variables: a rate variable is a quantity per
unit of time; generally, it cannot be measured

instantaneously. A set of rate variables define
the process at a given time; if X is the weight of
an organism, a simple model may be:

the growth rate is obtained by differentiating
both sides of equations (3) with respect of time
t, therefore:

For the whole set of X variables, we note:

- auxiliary variables: sometimes one wishes to
obtain certain extra variables which are more
useful for the experimenter’s convenience.
They may be sum of several state variables or
ratio of two. The relative growth rate (1/X)dX/dt
which involves a state variable (X) and its rate
(dX/dt) is one of the much used auxiliary
variable. As the state variables alone define
the system completely, they are only
additional.

- driving variables: driving variables are data
inputs to a model; they may vary autonomously
with time, if q such variables exist, we shall
note them:

They may be used to analyze the effects of
a specific drug, in order to control the dynamic
of the entire system. In metabolism of glucose,
we have two exclusive such variables (q = 2)
either input of glucose or input of insulin, for a
short time beginning at to.

Parameters and constants

We also need the introduction of parameters
and constants which will appear in the

equations of models that do not vary with time.
The density of water or the number of minutes
in a day are typical constants; if constants
status is unambiguous, it is not the same for



parameter status. The value of a Michaelis-
Menten constant in enzyme kinetics may be
well established, in this case it may be
considered as a constant; but as the case may
be it has to be determined. If there are p such

parameters we shall note:

For glucose metabolism we shall introduce
ten parameters (p = 10).

Differential equations

The m state variables define the system at time
t. A deterministic model consists of m first-
order differential equations which describes
their change in time:

where the fi denote some generally empirical
functions of the state variables X, of the
parameters a, of the driving variables I, and

perhaps of time; these functions have no to
contain all the variables (state, parameters,
driving). For the complete set of state variables
we may write:

Sometimes, it is also interesting in the

modelling process to make the current value
dX/dt depend upon the value of X not only of
time t, i.e. through X(t), but also of time T ago,
X(t-T). An equation as dX/dt = f(X} is replaced
by:

This is called a discrete lag, and perhaps T
has to be considered as a new parameter and
could be estimated. More realistic, but more
complicated, is use of a distributed lag.

Numerical problem

Numerical integration

Given the parameters values a, the driving
variables I and the initial conditions:

the differential system can be solved by
integrating equations (7) or equivalently (8); the
solution is a set of predicted values at different

time values. Seldom, the system can be solved
analytically; the only classical case arises
when parameters are linearly introduced in

the model, as it occurs in classical linear

compartmental analysis. In this case (8) may
be written:

where A is a m*m matrix of coefficients

(parameters and constants), where state
variables do not appear. In this case the

analytical solution is (Tomassone et al, 1993):

In (12) h, 12,...,m are the eigen values of A.
Except for this case, it is necessary to use
numerical integration techniques to obtain
solutions:

Now good computer softwares are doing
this quite easily, but a lot of difficulties still exist
and the experimenter cannot ignore them. One
of the most important is linked with the

modelling process itself. A typical animal model
may represent conversions between molecules
(they occur in few milliseconds), constructions
of new membranes (hours or days) and
productions of new organs (weeks). A
numerical integration must take account of this:
we have, or perhaps the computer software
has, to choose an integration interval. An
interval that suits the slow process will give rise
to instable and increasing oscillations with the
fast one; conversely, if it suits for the fast one,
it may be too long in time for the slow one. This
is known as stiff equations.

The fitting to data

As noted previously, parameters have seldom
perfectly known values, and the integration
results may give some important distortion
when compared to real data. In this case the
model has only a qualitative interest;
sometimes it may be sufficient.

But if we have measurements u;l (j=1,...,N)
at time values ti, it may seem interesting
to compare them to numerical values Oij
obtained by integration namely X;(a,l,tl) = u;l, or
more concisely X¡(tj)’ The way to obtain the
best predicted values for state variables X
is therefore to consider a parameters as
unknown and to try to obtain the best



estimation a by minimizing an objective
criterion like:

where Xi(tj) are values obtained in (12) when
t = ti, and wq are weight depending of
observations. in physical modelling this is
known as «calibrating» or «tuning», in statistics
as «estimation». This procedure may be
interpreted as a statistical modelling process,
where the values obtained by numerical
integration are considered as random variables

U;i obtained by the following model:

where uij is a realization of this variable and Fij
are random variables such that E{f.ij} = 0 and
var{f.ij} = c¡2. The difficult question concerns
their independence which is seldom ad-
missible.

We must note here that another approach
is to introduce directly in (8) random

components, this give rise to stochastic
differential equations. Theoretically, this
approach is surely more interesting and full of
promise, but we don’t know practical
applications (Gard, 1987).

As noted by France and Thornley (1984)
an epistemological problem concerns the
simultaneous processes of dynamic modelling
and of statistical estimation. Some scientists
think that the parameters should be known
from independent investigations. To our mind,
it would be a pity not to use all the information
contained in an experiment. On the contrary, it
is surely important to take account of it to have
more insight in the modelling process itself, to
validate it, and for sure to improve it.

The role of statistic ideas

We are going to use statistical analysis to
delineate some useful ideas to apply in

dynamic modelling.

Design of experiment t

In a statistical analysis, the first step is to make
an optimal experiment to obtain the best
estimation, generally the most precise and
stable estimators. Here, this aspect concerns
the good choice of times for measurements. It
is well known that in a Michaelis-Menten

model:

if we want to obtain precise estimations for
both a, and a2 we must have observations for t
values near from a2 and for high t values

(theoretically to infinity !). If we don’t do this,
the estimations will be less precise. The
problem is the same for dynamic modelling, but
more complicated (Vila, 1985).

A specific problem may also occur: if we
have to take a blood specimen at different
times, it is physiologically impossible to take it
at short intervals; so we have to impose some
constraints to time values as the difference
between two blood-taking is greater than a
specified value, say 4 minutes.

One of the major problem in non-linear
situation is that designing an efficient

experiment will require knowledge of

parameter, but the purpose of the experiment
is to generate data to yield parameter
estimated ! The experiments to be considered
have two fundamental stages: a static design
in the initial one, followed by a fully adaptive
sequential one in which the design points are
chosen sequentially and using parameter
estimates based on available data (Chaudhuri
and Mykland, 1993).

Reformulations when collinearities are

present

One of the major problem with statistical
models, either linear or non-linear, is the

instability of parameters. As it is known the

minimization of S(a) in (13) is done by iteration;
each step consists in finding the solution of
linear model (regression model). The final
iteration gives a solution a and an usual
variance estimate:

where S2 (a p-p matrix) is computed through
the derivatives of S respect to each component
of a. If this matrix is ill-conditioned the
estimators have large variances and are highly
correlated.

The simplest idea is to obtain linear
combinations of initial p parameters through
the computation of principal components of S2,
and to consider only the first ones associated



with the largest eigen values. If this number is
k (k<p), the p-k remaining may be computed as
linear combinations of the first k. The non-
linear estimation is simplified (Box et al, 1973;
Simonoff and Chih-Ling Tsai, 1989). After
having estimated these k parameters, it is easy
to compute the p-k others with their associated
covariance structure.

Resampling techniques and influential data

The influence of some observations may
modify drastically the estimations. As it is

always difficult to have another experiment to
validate the first result, the idea is to use the

jakknife technique, deleting each observation
one at a time to obtain jackknifed estimations.
This procedure, which is time consuming, is
now quite easy with the increase speed of
computers. Jackknife introduces pseudo-
values which are of the primest interest to
detect observations with great influence on
vector parameters a of the model (or on
functions of these parameters).

Analysis of variance strategy (ANOVA)

Sometimes we have several animals
introduced in the same experiment, and one of
the aims of the analysis may be to analyze the
variability between animals. We may use some
ANOVA-like strategy, trying to see if a common
model may be applied to each animal. In this
case we are in a multivariate (MANOVA)
situation, and we may use pseudo-values of
the parameters obtained during jackknife
estimation as «pseudo-data» to compare
animals (Tomassone et al, 1993).

Prediction

One of usefulness of a model is its ability to
explore situations where experiments are not
possible. In metabolism of glucose, we have
said that only four compartments are attainable
by measurements. But the two others, as
elements perhaps hypothetical of the global
system, may be analyzed and their dynamic
may be computed; their evolution may give
insight into what cannot be measured.

Of course, predictions are possible, and
used with statistical assumptions, may give
most probable values for a dynamic associated
with confidence bands for evolution (Audrain
and Tomassone, 1994).

Example

If we look at the model described in section «A

specific example: metabolism of glucose», we
may construct a set of six differential

equations. We don’t give here the details of
these equations which may be found
elsewhere (Ciuperca, 1996). As an example,
the differential equations for fatty acid in

plasma and for f3 hydroxybutyrate are the
following:

where C1 is a constant with known value. The
entire system is highly non-linear. The links
between compartments are indicated in table I,
where the ten coefficients are identified.

The initial data are the four different
concentrations (Xl,X2,X4 and X5) at ten





different times for 24 goats. The values at time
to = 0 are considered as the initial conditions.
The times (in minutes) were the following: 2, 6,
10,14,18,22,30,46,62,88

As a first step, the means of measu-
rements serve as data to be fitted, these data
represent a sort of «mean-goat». The results of
integration are illustrated on figure 2. They
show a quite good fitting, even if the jump at
the beginning for X1, due to glucose injection
input, was difficult to manage.

The quite large instability of estimation is
corrected by the computation of eigen vectors
of the estimated covariance matrix of the a.
Four coefficients (al,a2,a5,a7) are enough to
describe correctly the system, their covariance
matrix is now well conditioned.

To show the differences between different
estimation procedures (and even if these
numerical values have no sense for the reader
in this context) the estimations of the four
retained coefficients are given on Table II. It

appears clearly that the reduction in the

number of parameters induces a decrease of
their standard error. The jackknife estimation
introduces no real improvement in the
estimations themselves, but indicates that
measurements at some times may be crucial in

the estimation: tg for ai, t1Q for a2, t7 for as and

t1Q for a7, as it may be noticed on figure 3.
Of course, the six deleted parameters are

also computed as linear combinations of the
four used in estimation stage; their standard
error is also computed.

On figure 4 we may see the estimated
glucose concentration for every 24 goats; the
same procedure was applied and the

parameters were reestimated. This permits to
identify specific goats for which the different
state variables were badly fitted (as goat line 2,
column 3). The experimenter may come back
to his data and try to find a biological
explanation, and perhaps to delete this goat.

Using the obtained estimations to specify
what could be an optimal design, the times
given in table III were obtained with two
different constraints (1 minute or 4 minutes
between blood-taking).

The result is clear for the experimenter: he
has to make the first six measurements at the

beginning of the experiment and the last ones
immediately after t = 66 (for 1 minute con-

straint) or t = 55 (for 4 minutes constraint). The
criterion for the optimality is a Djo-optimal
design, a design with ten observations; the
criterion is better for 1 minute than for 4. This







information given to the experimenter indicates
that he has to choose times at short intervals at
two crucial periods for the dynamic analysis of
metabolism of glucose.

This result is perfectly coherent with the
influence analysis in which last times were
more influential than the others.

Conclusions

As every work in modelling, these results must
be taken with caution. They furnish to the
experimenter some guidelines he has to
integrate in his own experimental strategy. It is
not evident that such differential models are

perfectly adequate for his purpose. Never-
theless, even poor results may give some
insight on what he has to do to improve his
work.
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