

Deficiencies of sodium and iodine in grazing sheep in northern China

Dg Masters, Jr Lindsay, Sx Yu, Dx Lu, S Harali, Cl Kang

▶ To cite this version:

Dg Masters, Jr Lindsay, Sx Yu, Dx Lu, S Harali, et al.. Deficiencies of sodium and iodine in grazing sheep in northern China. Annales de zootechnie, 1995, 44 (Suppl1), pp.329-329. hal-00889486

HAL Id: hal-00889486 https://hal.science/hal-00889486v1

Submitted on 11 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Deficiencies of sodium and iodine in grazing sheep in northern China

DG Masters 1, JR Lindsay 1, SX Yu 2, DX Lu 3, S Harali 4, CL Kang 5

¹CSIRO Division of Animal Production, Private Bag, PO, Wembley, WA 6014 Australia; ²Institute of Animal Science, Chinese Academy of Agricultural Science, Haidian, Beijing; ³Inner Mongolia Academy of Animal Science, The Western Suburbs of Huhehot City, Inner Mongolia Autonomous Region; ⁴Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region; ⁵Lanzhou Institute of Traditional Veterinary Medicine, Chinese Academy of Agricultural Science, Xiaoxihu, Lanzhou, Gansu, China

An examination of the mineral status of grazing sheep at 3 sites in northern China has provided evidence of inadequate mineral intakes (Masters et al, 1993, Asian Austral J Anim Sci, 6, 99-113). Because of the small number of sites used in these studies, it is necessary to be cautious in generalising from the results. Consequently, the aim of the study reported here was to provide more extensive data by evaluating the mineral status of sheep on 15 farms in northern China.

Five farms were selected in each of the Xinjiang Uygur and Inner Mongolia Autonomous Regions, 3 in Gansu Province and 2 in Qinghai Province. On each farm, 20 breeding ewes were sampled at 4 times during the year, and plasma, parotid saliva, faeces and pasture collected. Samples of milk were collected once. These samples were analysed for a range of elements; results are presented here for sodium and potassium in saliva and iodine in milk.

The table shows the range of seasonal means. Many of the sheep had a sodium: potassium (Na:K) ratio in saliva indicative of an inadequate intake of sodium (10:1), the Na:K ratio was below 10:1 on 6 of the 15 farms in summer. Sheep on 3 farms produced milk with an iodine level below or close to the level that indicates an inadequate iodine intake (76 µg/l). It is concluded that production from grazing sheep in some regions of China may be depressed by a lack of sodium and/or iodine at some times of the year.

Province	Farm	Potassium in saliva (mM)	Sodium in saliva (mM)	Na:K ratio	lodine in milk (µg/l)
Gansu	Sunan	8.3 - 11.9	140 - 157	14 - 17	443
Gansu	Tianzhu	6.9 - 31.4	114 - 148	4 - 29	227
Gansu	Shandan	7.5 - 10.5	154 - 160	14 - 20	178
Qinghai	Sanjiaocheng	4.5 - 31.1	119 - 148	4 - 33	96
Qinghai	Heka	5.4 - 23.8	127 - 142	6 - 28	134
Xinjiang	Altai	1.9 - 11.4	95 - 166	15 - 74	238
Xinjiang	Baicheng	7.0 - 11.8	134 - 140	13 - 21	132
Xinjiang	Bazhou	9.5 - 11.8	90 - 144	10 - 15	118
Xinjiang	Gongnaisi	7.3 - 11.8	106 - 141	13 - 18	247
Xinjiang	Tacheng	4.0 - 12.8	92 - 135	10 - 84	157
Inner Mongolia	Balinyougi	4.1 - 64.9	98 - 137	2 - 36	213
Inner Mongolia	Tonghetai	2.9 - 7.2	129 - 141	23 - 77	92
Inner Mongolia	Honggetala	4.6 - 21.0	123 - 149	6 - 34	202
Inner Mongolia	Wuyi	4.7 - 10.6	129 - 140	16 - 39	70
Inner Mongolia	Gaolinton	3.0 - 7.6	128 - 150	17 - 57	431

This research was supported by the Australian Centre for International Agricultural Research and the Ministry of Agriculture, China.