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Abstract – Soil-bound intensive greenhouse production has been scrutinized for its sustainability due to contamination of ground water by
over-fertilization resulting in leaching of nutrients. As environmental guidelines are becoming more restrictive worldwide, and especially in
Europe, many greenhouse growers have converted to more sustainable production systems including rockwool culture with recycled water and
organic cropping systems in soil. The increase in popularity of organic production systems has amplified the debate whether organically grown
produce is healthier than conventional produce. So far, little is known about the variations in fruit quality associated with production systems
for greenhouse grown tomatoes. Thus, two organic (organic fertilization with and without straw amendment) and three conventional tomato
cropping systems (regular and increased nutrient solution in rockwool and regular fertilization in soil) were compared in order to evaluate
differences in nutrient availability and effects on fruit quality over a three-year period. Three modern medium-sized round tomato cultivars and
one old cultivar were compared. There were no significant interactions between cropping systems and cultivars, so that main effects of systems
and cultivars could be evaluated. Fruit yields in the organic systems were similar to those obtained in the conventional soil-bound system, but
15% lower than in the regular rockwool system, even though nitrogen concentrations in soil were not limiting in any of the production systems.
Frequent organic amendments resulted in higher soil NO2−

3 contents in the organic system without straw than in the other soil-bound systems,
indicating that the organic systems were not yet stable in terms of nutrient availability after three years. A fruit quality index, based on the
contents of compounds such as lycopene, β-carotene and vitamin C, was similar in all cropping systems. The old cultivar had a significantly
higher quality index, but a lower yield than the other cultivars. According to this study, high quality tomatoes can be obtained through proper
adjustment of the quantity and the source of nitrogen fertilizers in organic and conventional cropping systems and the use of selected cultivars
with a high nutrient use efficiency for organic systems.

greenhouse tomato / organic / conventional / nitrogen uptake / xylem sap / fruit quality

1. INTRODUCTION

In certified organic greenhouses in the Netherlands, veg-
etable production must take place in natural soil. Nutrients
need to be supplied from the soil amended with organic mate-
rials such as cover crops, composted manure or green waste.
Organic methods of production have long been recognised

* Corresponding author: gravelv@agr.gc.ca

as friendly to the environment. However, questions still re-
main about the possible effect of organic management on
fruit quality (Brandt and Mølgaard, 2001; Magkos et al.,
2003; Williams, 2002). Numerous investigations have proven
that organic plant products contain fewer nitrates, nitrites
and pesticide residues but more vitamin C, phosphorus and
potassium (Bourn and Prescott, 2002; Rembialkowska, 2000).
Nevertheless, knowledge about the nutritive value and the an-
tioxidant contents, such as lycopene, β-carotene and flavonols,
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of organic crops is still insufficient, especially in the case of
organic greenhouse crops.

Secondary plant metabolites such as lycopene and pheno-
lic compounds may function as defence mechanisms against
plant pathogens and pests, but may also function as pro-
vitamins and antioxidants in humans and are considered as
anti-carcinogenic substances. The contents of these metabo-
lites are currently suboptimal for human health (Brandt and
Mølgaard, 2001). Organic vegetables and fruits may contain
more of these compounds than conventional ones, as organi-
cally produced plants may be exposed to more pests, diseases
and other stress factors (Brandt and Mølgaard, 2001).

Two different theories have been put forward to describe
the physiological mechanisms involved in the possibly higher
content of secondary plant metabolites in organic plant prod-
ucts. The C/N balance theory states that when nitrogen is
readily available, plants will primarily make compounds with
high N content whereas when N-availability is limiting for
growth, plant metabolism changes towards carbon contain-
ing compounds, such as lycopene or β-carotene which are
present in relatively high amounts in greenhouse tomatoes
(Bryant et al., 1983; Coley et al., 1985). The GDBH theory
(growth-differentiation balance hypothesis) states that a plant
will assess the resources available to it and optimise its invest-
ment in processes directed towards growth or differentiation
(Herms and Mattson, 1992; Lorio, 1986). Based on this the-
ory, Lundegårdh and Mårtensson (2003) suggested that organ-
ically produced plant foods could be more health-promoting
than conventional foods due to enhanced activation of plant
resistance mechanisms in the absence of pesticides, enhanced
interactions between plant roots and a variety of microbes and
more balanced mineral nutrient availability and uptake.

The types of fertilizers used and the N form available for
plant uptake play a major role in plant development and fruit
quality of tomato plants (Heeb et al., 2005; Toor et al., 2006).
When using organic nitrogen sources, the organic material is
mineralized to amino-compounds and ammonium, which is
subsequently converted to nitrate, depending largely on oxy-
gen availability and the activity of microorganisms in the rhi-
zosphere (Clarholm, 1985). While nitrate is the preferred N-
form for plant uptake, ammonium and organic N compounds
can also be taken up by the plant and its associated mycor-
rhizal fungi under low nitrate conditions (Hodge et al., 2001;
Näsholm et al., 1998, 2000). So far, little is known about the
forms of N taken up by tomato plants in organic versus con-
ventional greenhouse systems, and the relation between N up-
take and fruit quality.

Our research hypotheses based on the theories presented
above were that organically produced tomatoes would contain
more dry matter, vitamin C and more flavonoids than conven-
tionally grown tomatoes, assuming that the available nitrogen
would be lower in organic systems. The level of carotenoids
was expected to be higher in systems with more available ni-
trogen (Brandt and Mølgaard, 2001).

The objective of this experiment was therefore to compare,
over a 3 year period, organic and conventional greenhouse
tomato cropping systems in terms of nutrient availability and
uptake by the plant, and their effects on plant growth and fruit

quality, especially in relation to the contents of antioxidant
compounds.

2. MATERIALS AND METHODS

2.1. Location and experimental design

Greenhouse experiments were carried out over a period of
3 years (January 2004 to December 2006) in two adjacent
compartments (each 150 m2) at the Unifarm glasshouse of Wa-
geningen University in The Netherlands. The soil was a sandy
soil that had been overlaid with plastic until the start of the
experiment. Soil pH ranged from 5.5 and to 5.9 whereas soil
electrical conductivity (EC) was between 1.6 and 1.9 dS/m.
Climate conditions were similar in the two compartments.
The organic matter content was between 8.6 and 10% at the
beginning of the experiment. Natural daylight was supple-
mented with HPS lamps (100 μmol m−2 s−1 PAR) to main-
tain a photoperiod of 14 h. A ground heating system was used
to maintain adequate temperature. The average temperatures
were 21.0 ◦C (day) and 17.4 ◦C (night). The average relative
humidities were 79.2% (day) and 85.4% (night).

Three consecutive tomato crops, starting in March or
April and ending in December, were cultivated in 4 differ-
ent growing systems. There were two conventional systems
with tomato plants grown in rockwool at two nutrient concen-
trations (CONV-RWL and CONV-RWH) and two soil-based
growing systems: an organic (ORG) system and a conven-
tional soil-based (CONV-S) system. All CONV systems were
located in one greenhouse compartment (each 50 m2) and the
ORG systems were in the adjacent compartment. After the
first year, the initial ORG system was divided into two subsys-
tems by incorporating 200 kg of straw into half of the organic
plots (75 m2) creating 2 treatments: with (ORGWS) or without
straw (ORG).

There were three blocks per system with four plots each
containing four indeterminate tomato (Lycopersicon esculen-
tum Mill.) hybrid cultivars (cv15, cv40, cv45, cv93; De Ruiter
Seeds) with medium-size round fruits. Cv40 was an old cul-
tivar, while the others were modern cultivars. In the CONV-S
and ORG systems, a plot consisted of 2 rows of 5 plants. In the
CONV-RWL and CONV-RWH systems, a plot consisted of 1
row of 5 plants each. The plant density was 2.5 plants m−2.
Because of limitations in the number of greenhouse compart-
ments available, repetitions were done in time (3 years consid-
ered as 3 repetitions). Cultivars (experimental unit) were ran-
domized within each of 3 blocks every year. Within each plot,
three plants were evaluated and border plants were excluded
from measurements.

2.2. Soil fertilisation relative to planting time

Before every crop and during the growing season, soil sam-
ples were sent for analysis to the Blgg laboratory in Naaldwijk
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Table I. Initial fertilization and subsequent amendments for soil-
bound growing systems.

Application rates (ton ha−1)
2004 2005 2006

ORG
Initial fertilisation
Green waste compost 156.7 156.7 156.7
Cow manure 109.3 27.3 27.3
Amendments
Culterra manure pellets (N-P-K: 10-4-6) 2.3 1.5 1.5
Magnesium sulphate 1.2 0.6 0.6

ORGWS
Initial fertilisation
Green waste compost 156.7 156.7 156.7
Cow manure 109.3 27.3 27.3
Amendments
Culterra manure pellets (N-P-K: 10-4-6) 2.3 0.9 0.9
Magnesium sulphate 1.2 0.6 0.6

CONV-S
Amendments
23-23-0 (N-P-K) 0.9
12-10-18 (N-P-K) 1.2
Magnesium sulphate 2.25 2.0 2.0
Magnesamon� (22% N, 7% MgO) 1.3 1.3
Potassium nitrate 1.3 1.3

Crop systems were: organic system in soil with (ORG) or without straw
(ORGWS), and conventional system in soil (CONV-S).

(see below), and fertilisation in all systems was adjusted ac-
cording to the recommendations following the analysis in or-
der to remain as close as possible to the reality of commercial
growers.

Initial fertilization and subsequent amendments in soil-
bound systems are presented in Table I. The organic plots re-
ceived the following organic amendments before planting. In
October 2003, 3 m3 (2350 kg) of green-waste compost and
2 m3 (1640 kg) of cow manure were added to the organic
greenhouse compartment (150 m2) and incorporated to a depth
of 25 cm. A cover crop consisting of vetch and rye was then
sown and 4 months later turned under in the soil. On March
18th 2004, tomato plants were transplanted. In January 2005,
3 m3 (2350 kg) of green-waste compost and 1/2 m3 (410 kg)
of cow manure were added to the organic greenhouse compart-
ment and once again incorporated to a depth of 25 cm. A cover
crop of rye only was then sown and incorporated 2 months
later. On April 28th 2005, tomato plants were transplanted. In
January of 2006, the same amount of compost and manure as
in 2005 was added but no cover crop was planted. On March
20th 2006, tomato plants were transplanted. Each year, crop
cycles ended in December at which point plants were removed
and cover crops sown.

In addition to these initial amendments, ORG plots (6.25 m2

each) were fertilized 6 times during the growing cycles with 4
to 7.5 kg of Culterra manure pellets (N-P-K:10-4-6) and 2 to
4 kg of magnesium sulphate in 2004. In that year, CONV-S

plots were fertilized 3 times with 1.58 kg of 23-23-0 (N-P-K)
and 2.25 kg of magnesium sulphate followed by 2 applications
of 3 kg of 12-10-18 (N-P-K) with 2.25 kg of magnesium sul-
phate. In 2005 and 2006, ORG plots were fertilized 3 times
with 3.76 kg of Culterra manure pellets (N-P-K:10-4-6) and
1.41 kg of magnesium sulphate. ORGWS plots were fertilized
twice with 3.76 and 2.82 kg of Culterra manure pellets (N-
P-K:10-4-6) and 3 times with 1.4 kg of magnesium sulphate.
CONV-S plots were fertilized 7 times per season with 0.94 kg
of Magnesamon� (magnesium ammonium nitrate; 22% N and
7% MgO), 0.94 kg of potassium nitrate and 1.41 kg of magne-
sium sulphate. In all cases, solid fertilizers were applied in the
first 10 cm on the soil surface.

The compositions of the nutrient solutions, supplied
through fertigation, in the rockwool systems were the same
in all years, namely for the high EC system (per 100 000 L):
Ca(NO3)2·4H2O (296.1 L), NH4NO3(15.1 L), HNO3 (77.8 L),
H3PO4 (34.0 L), H2SO4 (81.7 L), MgSO4(244.3 L), K2O
(140.3 L), chelated iron DTPA 6% (2325.0 g), chelated iron
DTPA 3% (3.6 L), MnSO4·H2O 32% (210.0 g), ZnSO4·7H2O
23% (215.0 g), Borax (285 g), CuSO4·5H2O (23 g) and
Na2MoO4 (12 g) (as recommended by Blgg laboratory). For
the low EC system, the nutrient solution contained (per 100
000 L): Ca(NO3)2·4H2O (146.6 L), NH4NO3(15.1 L), HNO3

(46.6 L), H3PO4 (20.3 L), H2SO4 (33.1 L), MgSO4(120.8 L),
K2O (69.5 L), chelated iron DTPA 6% (2325.0 g), chelated
iron DTPA 3% (3.6 L), MnSO4·H2O 32% (210.0 g),
ZnSO4·7H2O 23% (215.0 g), Borax (285 g), CuSO4·5H2O (28
g) and Na2MoO4 (12 g) (as recommended by Blgg laboratory).

2.3. Plant growth

For the ORG and ORGWS treatments and the CONV-S
treatment, seeds were sown in sowing flats containing an or-
ganic potting mixture. After 10 days, seedlings were trans-
planted into 1-litre pots containing the same mixture. Six
weeks later, plants were transplanted into the soil of each pro-
duction system. For the CONV-RWL and -RWH treatments,
plants were sown and raised in rockwool plugs. For the ORG
and CONV-S treatments, sprinklers were used to irrigate the
plants whereas drip fertigation was used for the CONV-RW
systems. In the CONV-RW systems, plants were irrigated with
either a nutrient solution of low EC (RWL, 2 dS m−1) or with
a solution of high EC (RWH, 5.3 dS m−1). The compositions
of the nutrient solutions are outlined above.

Plants were grown using the high wire system. Axillary
shoots were removed and plants were lowered on a weekly ba-
sis. Biological control was used to control pests such as white
flies and red mites. Sulphur dust was used to control powdery
mildew in all systems.

Fruits were harvested on a weekly basis. The numbers of
fruits and their weights were recorded. Numbers of leaves and
trusses were counted on a weekly basis and the growth rate
was calculated. Bottom leaves were removed as needed. At
every leaf removal time, the surface area and the dry weight of
the leaves were measured. Specific leaf area (SLA) was calcu-
lated as the surface area per g of dry weight. Relative growth
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rates (RGR) for leaves, trusses and SLA were obtained by fit-
ting a logistic curve to the collected data using the statistical
software SAS (SAS Institute Inc.).

2.4. Soil and solution nutrient analyses

Soil samples were collected (4 times in 2004 and every
month in 2005 and 2006) from each plot of the ORG and
CONV-S systems at two depths (0–25 cm and 25–50 cm). Soil
samples were dried at 40 ◦C and then sieved through a 2 mm
mesh. To determine the NO−3 and NH+4 content at the labo-
ratory of the Biological Farming Systems Group, 3 g of soil
were mixed with 30 mL of a 0.01 M calcium chloride solution.
Samples were shaken for 2 h at room temperature and the mix-
ture was then centrifuged (1800 g) for 10 min. Subsequently,
10 mL of the supernatant were mixed with 0.1 mL of 1 M
hydrochloric acid. Samples were then analyzed for NO−3 and
NH+4 using a segmented-flow analyzer. For total nutrient anal-
yses, soil samples (depth of 0–25 cm) and solution samples
from the rockwool slabs were collected and sent to the Blgg
Naaldwijk Laboratory (Naaldwijk, The Netherlands). In 2004,
soil and rockwool were sampled 6 times whereas in 2005 and
2006, they were sampled 3 times.

2.5. Xylem sap analyses

The amounts of NO−3 , NH+4 and total amino acids were
measured in the xylem sap of leaves in October of 2004 and
of 2005. Both times, the 5th leaf from the top was removed
from each sampled plant early in the morning. Each petiole
was put through a stopper and the leaf was placed inside of
a pressure bomb (10 bars for 15 to 20 min). The sap col-
lected with a syringe (150–350 μL) was kept at –19 ◦C until
analysis. Samples were analyzed directly for NO−3 and NH+4
with a segmented flow analyzer. Malate dehydrogenase activ-
ity in the xylem sap samples was measured in order to de-
tect contamination with cell compounds or phloem sap (Yu
et al., 1999). Contaminated samples were not used in the
analyses. Amino acid concentration was evaluated in the sap
using the Ninhydrin procedure as described by Jones et al.
(2002). Briefly, 100 μL of xylem sap sample was mixed with
50 μL of Ninhydrin color reagent and heated for 25 min
at 100 ◦C. After cooling, 1 mL of 50% ethanol was added.
The absorbance at 570 nm was measured using a spectropho-
tometer. The amino acid standard consisted of a mixture of
methionine, alanine, lysine, arginine, glutaminic acid, serine,
valine, phenylalanine, leucine, isoleucine, tyrosine, cysteine,
glycine, asparagine nonhydrate, proline, histidine and treo-
nine (L-isomeres; each at 0.4 μmol/mL in 0.1 M HCl). The
amino acid content was calculated using the following equa-
tion: Amino acids (μM) = ((ON- BN-AN)/ SN) × 100 [ON : ab-
sorbance of the sample mixed with the ninhydrin reagent; BN :
absorbance of the blank; SN : spectrometer reading of 100 μM
amino acid standard; AN = ACN × ARN /ASN(ACN : ammo-
nium concentration in the sample (μM); ASN : ammonium con-
centration of standard (μM); ARN : absorbance of the ammo-
nium standard using the ninhydrin colorimetric procedure)].

2.6. Chemical analyses of leaves, stems and fruits

At the end of each crop, leaves and stems were collected
and dried at 40 ◦C. Total N and total C contents were deter-
mined using the Dumas Method with a CHN1110 Element
Analyzer (CE instruments, Milan, Italy). Fruit samples were
harvested three times during each crop at the same growth
stage of the plant. Five fruits per plot were collected from
the sampling plants. Tomato fruits were cut into 8 pieces and
2 pieces from each fruit from a same plot were pooled and
quickly frozen in liquid nitrogen in order to stop enzymatic
processes. Samples were freeze-dried and stored at –80 ◦C.
Just before quality analysis, samples were stored in a dessica-
tor at –5 ◦C in the dark.

Ascorbic acid content was evaluated according to the
method described by Helsper et al. (2003). Carotenoid con-
tent was determined according to the methods described by
Konings and Roomans (1997) and by Helsper et al. (2003).
Flavonoid content was evaluated according to the method de-
scribed by Hertog et al. (1992). Carbohydrates and anion con-
tents were determined according to the methods described by
Hajjaj et al. (1998).

2.7. Fruit quality index

The fruit quality index, similar to the one presented by Fr-
usciante et al. (2007), was calculated using the following equa-
tion: FQI =

∑
(CS *KX)/CO, where CS is the concentration of

the quality parameter in the sample, KX is the coefficient at-
tributed to this quality parameter and CO is the average optimal
concentration of this same parameter in tomato fruit according
to literature (Tab. II). Lycopene, β-carotene, ascorbic acid, glu-
cose, fructose, sucrose, nitrate and oxalate content were taken
in consideration for the quality index.

2.8. Statistical analyses

The effects of crop systems, cultivars and the interaction of
these fixed effects on xylem sap content, relative growth rates,
fruit yield and fruit quality index were analyzed using the SAS
Mixed Models procedure (SAS Institute, Cary, NC) with repli-
cates (years) and location (blocks) of plots as random effects.
When needed, means were compared by the Tukey’s multi-
ple range test. The Pearson correlation coefficients between
the relative growth rates or the fruit quality and the nutrient
content in the soil were determined using the SAS Correlation
procedure.

3. RESULTS AND DISCUSSION

3.1. Nutrient availability and nitrogen uptake

This experiment represented the first 3 years following the
conversion from a conventional system to a certifiable or-
ganic production system. Therefore, this experiment had to
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Table II. Optimal concentration and K coefficient of the quality parameters used to calculate the quality index (FQI) of tomato fruits.

Quality parameters Optimal concentration K coefficient
(μg mg−1 of dry weight)

Lycopene 1.16 20 (Frusciante et al., 2007)
β−carotene 0.06 10 (Frusciante et al., 2007)
Vitamin C 1.49 15 (Frusciante et al., 2007)
Glucose 220.00 5 (Rosales et al., 2007)
Fructose 250.00 5 (Rosales et al., 2007)
Sucrose 10.00 5 (Rosales et al., 2007)
Nitrate 2700.00 5 (Christou et al., 2002)
Oxalate 6.77 5 (Raffo et al., 2002)

Figure 1. NO−3 content in the soil (depth from 0 to 25 cm) of the three crops systems over the 3 years of the experiment. Considerable variations
in NO−3 content in soil were observed in 2004. In 2005, following straw incorporation, a trend showing a higher NO−3 content in the organic
system without straw started to emerge. This trend continued in 2006 with a significantly higher NO−3 content in the organic system without
straw compared to the other soil-bound systems.

face challenges similar to those encountered by tomato grow-
ers going through the process of converting their production
system. One of the main concerns in organic tomato crop-
ping is adequate fertilisation and especially the availability of
nitrogen. There were large variations in the NO−3 content in
the soil (depth of 0–25 cm) in 2004 (Fig. 1). This was ex-
pected considering that it was the first year following the ini-
tial soil preparation and organic fertilisation. In 2005, trends
in treatment differences with respect to NO−3 content emerged
although variations were still quite important but in 2006, the
soil in the ORG system had a significantly higher NO−3 con-
tent than the other soil-bound systems (Fig. 1). No significant
difference was observed among crop systems in N content at
a depth of 25 to 50 cm (data not shown). The nutrient (P, K,
Ca, Mg, and SO4) contents in the CONV-RW systems were
significantly higher than in the ORG, ORGWS and CONV-S
systems but no significant difference was observed between
the three soil-bound systems (data not shown).

Xylem sap of leaves was evaluated for various N forms in
the different cropping systems. Similar trends were observed
in 2004 and 2005. Only the results from the 2005 analyses are

shown (Tab. III) since more complete data were obtained. The
concentration of amino acids was significantly higher in the
xylem sap of leaves of tomato plants grown in the ORG sys-
tem (Tab. III). A cultivar effect was also observed for the con-
centration of amino acids, NO−3 and the ratio of amino acids to
NO−3 (Tab. III). The higher amino acids content in the xylem in
organic systems, especially without the addition of straw, sug-
gests that tomato plants are able to selectively take up nitrogen
in forms other than NO−3 when grown in systems where other
forms of N, such as organic N and NH+4 , are readily available
even if NO−3 is not limiting (Fig. 1).

Even though tomato plants are believed to take up NO−3
preferably over NH+4 , which can even be harmful to tomato
plant development (Benton Jones, 2004), the results from this
study suggest that tomato plants can take up N either in the
form of amino acids or in the form of NH+4 and convert it
rapidly to amino acids prior to translocation in the xylem
(Andersen et al., 1999). Considering that the NO−3 concentra-
tion in the xylem sap did not vary among the treatments, this
could indicate that nitrate was not a limiting factor in the case
of this experiment. The concentration of NO−3 available in the
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Table III. Concentrations of amino acids, NO3, NH+4 , and the ratios of amino acids/ NO−3 and amino acids/NH+4 in the xylem sap of tomato
plants grown under five different cropping systems with four tomato cultivars in 2005.

Crop systems Amino acids (μM) NO−3 (μM) NH+4 (μM) Ratio aa/ NO−3 Ration aa/NH+4
Crop systems
ORG 38.91 a 915.27 a 39.84 a 0.04 a 1.43 a
ORGWS 32.53 ab 749.72 a 24.80 a 0.05 a 1.60 a
CONV-S 30.59 b 803.18 a 36.93 a 0.05 a 1.32 a
CONV-RWL 29.60 b 701.70 a 29.98 a 0.04 a 1.01 a
CONV-RWH 27.52 b 750.63 a 38.95 a 0.04 a 1.71 a
P values 0.0501 0.3643 0.3164 0.6791 0.5591

(0.0070)a (0.7250)a (0.0050)a

Cultivars
15 34.74 bc 914.57 a 41.79 A 0.04 b 1.25 a
40 36.50 c 752.18 ab 27.72 A 0.05 a 1.93 a
45 26.01 a 649.66 b 30.58 A 0.04 b 1.51 a
93 29.99 ab 819.19 ab 36.31 A 0.04 b 0.95 a
P values 0.0031 0.0421 0.1229 0.0008 0.0951

(0.0026)a (0.0004)a (0.4201)a

a P values for the 2004 analyses.

Crop systems were: organic system in soil with (ORG) or without straw (ORGWS), conventional system in rockwool with a high nutritive solution
concentration (CONV-RWH), conventional system in rockwool with a low nutritive solution concentration (CONV-RWL), and conventional system in
soil (CONV-S). The interaction between crop systems and cultivars was not significant and therefore, only the main effects were considered. For each
parameter (crop systems and cultivars), within each column, values followed by a similar letter are not significantly different according to Tukey test
(P � 0.05).

ORG and CONV systems was under 50 ppm for most of 2005,
which is lower than the available NO−3 in the rockwool systems
(more than 1200 mg/L of NO−3 in the slabs).

3.2. Plant growth

Significant cultivar effects were observed for the relative
growth rates of leaves, trusses and specific leaf area, with
cultivar 40 always having the lowest values (Tab. IV). Vari-
ations in fertilization among the cropping systems had no ef-
fect on plant growth as no differences were observed in the
three relative growth rates among treatments (Tab. IV). This
indicates that fertilization and nutrient availability were not
limiting the growth rates of the plants. It has long been rec-
ognized that conventional hydroponic tomatoes are often over-
fertilized. This study shows that the overfertilization of tomato
plants in the high EC treatment did not have a beneficial effect
on plant growth as the relative growth rates in both rockwool
systems were similar. Surplus in nutrients in the high EC so-
lution exceeded plant needs and were therefore not necessary
for normal plant growth.

No significant difference was observed in the C and N con-
tent in the leaves and stems (data not shown). Differences
among cropping systems were, however, observed for fruit
yields in this experiment. Yields in both organic systems (with
or without straw) were around 85% of the yield obtained in the
conventional rockwool system with low EC (Tab. V). The high

Table IV. Relative growth rates (RGR) of leaves, trusses and specific
leaf area (SLA) of tomato plants.

RGR leaves RGR trusses RGR SLA
Crop systems
ORG 0.017 a 0.021 A 0.028 a
ORGWS 0.017 a 0.021 A 0.025 a
CONV-S 0.017 a 0.022 A 0.030 a
CONV-RWL 0.019 a 0.021 A 0.026 a
CONV-RWH 0.018 a 0.021 A 0.029 a
P values 0.0750 0.1881 0.5072

Cultivars
15 0.019 c 0.022 C 0.027 ab
40 0.016 a 0.019 A 0.024 a
45 0.019 c 0.023 C 0.029 bc
93 0.018 b 0.020 B 0.031 c
P values <0.0001 <0.0001 0.0188

Crop systems were: organic system in soil with (ORG) or without straw
(ORGWS), conventional system in rockwool with a high nutritive solu-
tion concentration (CONV-RWH), conventional system in rockwool with
a low nutritive solution concentration (CONV-RWL), and conventional
system in soil (CONV-S). The relative growth rate (RGR) was obtain
by fitting a logistic curve. Specific leaf area was calculated as the surface
area/g of dry weight. The interaction between Cultivars and Crop systems
was not significant and therefore, only the main effects were considered.
For each parameter (cultivar and crop system), within each column, val-
ues followed by a similar letter are not significantly different according to
Tukey test (P � 0.05).
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Table V. Tomato fruit yield of four different cultivars grown in or-
ganic or conventional crop systems.

Weight of fruits Number of fruits
(g/plant/week of harvesting) (nb/plant/week of harvesting)

Cultivars
15 441.3 c 4.9 c
40 286.0 a 4.1 b
45 372.7 b 4.9 c
93 418.7 c 3.2 a
P values 0.0001 0.0001

Crop systems
ORG 373.12 ab 4.3 bc
ORGWS 376.08 ab 4.0 ab
CONV-S 312.60 a 3.8 a
CONV-RWL 441.75 c 4.7 c
CONV-RWH 394.85 bc 4.7 c
P values 0.0121 0.0087

Crop systems were: organic system in soil with (ORG) or without straw
(ORGWS), conventional system in rockwool with a high nutritive solu-
tion concentration (CONV-RWH), conventional system in rockwool with
a low nutritive solution concentration (CONV-RWL), and conventional
system in soil (CONV-S). The interaction between Cultivars and Crop
systems effect was very weak (P value = 0.0306) and, therefore, only
the main effects were considered. For each parameter (cultivar and crop
system), within each column, values followed by a similar letter are not
significantly different according to Tukey test (P � 0.05).

EC of the nutrient solution seemed to have a detrimental, al-
though not significant, effect on fruit yield. The yield of ORG
tomatoes was higher, although not significantly, than the yield
in the CONV-S system and similar to the yield in the CONV-
RWH system. These results are, therefore, in accordance to
earlier reports where similar tomato yields were obtained in
organic compared to conventional soil-bound systems (Clark
et al., 1998; Colla et al., 2000; Heeb et al., 2005). Once again,
a strong cultivar effect was observed for fruit yields, cultivar
40 having the least total fruit weight (Tab. V).

Even though relative growth rates were similar in all sys-
tems, strong positive correlations, with a correlation coeffi-
cient of +0.72 and +0.75, were observed between the NO−3
content in the soil of the ORGWS system and the RGR of
leaves or trusses, respectively. This indicates that the availabil-
ity of nitrate can be a limiting factor for plant growth when
straw is added to soil. A negative correlation, with a correla-
tion coefficient of –0.73, was observed between the RGR of
SLA and the NO−3 content in soil. Thicker leaves and the re-
sulting reduced photosynthetically active leaf area could be
associated with the reduced growth rates observed. Opposite
correlations were observed between the growth rates and the
NH+4 content in the soil. Correlation coefficient were –0.64
and –0.66 between NH+4 soil content and RGR of leaves and
trusses, respectively whereas it was +0.63 between NH+4 soil
content and RGR of SLA. This indicates that a too high con-
centration of nitrogen in that form can have a detrimental effect
on plant growth.

Table VI. Tomato quality index of tomato fruits of four cultivars
grown in organic or conventional crop systems.

Quality indexa

Crop systems
ORG 59.36 a
ORGWS 62.45 a
CONV 62.56 a
CONV-RWL 58.51 a
CONV-RWH 60.92 a
P value 0.2520

Cultivars
15 56.25 b
40 78.52 a
45 55.68 b
93 52.52 c
P value < 0.0001

a Quality index=
∑

(CS sample * KX)/CO

Crop systems were: organic system in soil with (ORG) or without straw
(ORGWS), conventional system in rockwool with a high nutritive solu-
tion concentration (CONV-RWH), conventional system in rockwool with
a low nutritive solution concentration (CONV-RWL), and conventional
system in soil (CONV-S). The interaction between Cultivars and Crop
systems was not significant and therefore, only the main effects were
considered. For each parameter (cultivar and crop system), within each
column, values followed by a similar letter are not significantly different
according to Tukey test (P � 0.05).

3.3. Fruit quality

Cropping systems, especially through the differences in fer-
tilization and nutrient sources, are thought to influence fruit
quality. Heeb et al. (2005) demonstrated that reduced N forms
(ammonium or organic nitrogen) used as fertilization improves
fruit taste compared to nitrate fertilization. In this experiment,
a quality index (FQI ) was used to express the overall health
benefit of fruits harvested in the different systems tested. Ly-
copene, β-carotene and ascorbic acid were given high K coef-
ficients as they are considered to play an important role in im-
proving human health, whereas glucose, fructose, sucrose and
oxalate, which are more related to taste were given a lower K
coefficient (Tab. II). Contrary to what has long been believed
(Lundegårdh and Mårtensson, 2003), no significant difference
was observed in this experiment between the organic and the
conventional systems in terms of fruit quality (Tab. VI). This
holds also for individual quality variables presented in Ta-
ble II used to calculate the quality index (data not shown).
The cultivar had a stronger influence on fruit quality than the
cropping system, cultivar 40 having the highest quality index
value (Tab. VI). Mitchell et al. (2007) reported an increase in
flavonoids in field tomatoes over a period of 10 years in an or-
ganic system which had reached equilibrium levels of organic
matter. During the 3 years of this experiment, such equilib-
rium had probably not been reached yet considering the high
availability of N in the ORG soils (Fig. 1), which is known to
negatively influence antioxidant accumulation in tomato fruits
(Toor et al., 2006).
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Figure 2. Correlation between β-carotene content in tomato fruits and
electrical conductivity (EC) (a) or NO−3 in the soil (b). β-carotene is
negatively correlated with soil EC and NO−3 content when all soil-
bound systems are considered with correlation coefficients of –0.77
and –0.61, respectively.

Lycopene and β-carotene were also negatively correlated,
although only significantly in the case of β-carotene, with
the soil EC and NO−3 content when all crop systems in soil
were considered (Tab. VII, Fig. 2). Results for lycopene only
showed a significant correlation with NO−3 in the case of cul-
tivar 93 in ORGWS and cultivar 45 in ORG (Fig. 3). These
results also suggest that organic greenhouse tomatoes, when
grown in systems with less readily available NO−3 could have a
higher lycopene and β-carotene content compared to conven-
tional hydroponic systems. In this experiment, however, there
was no difference in fruit quality between the crop systems,
probably because the organic systems were not entirely stable
yet in terms of nutrient availability. Nevertheless, the lycopene
and β-carotene contents in organic fruits were positively cor-
related (r = +0.43 and r = +0.43, respectively) with the ratio
of amino acids/ NO−3 in the xylem sap. This suggests that the
ratio amino acids/ NO−3 is a good indicator of the health bene-
fit potential of a crop system as a higher ratio was shown to be
associated with a higher content in the antioxidants lycopene
and β-carotene.

The accumulation of certain compounds can also be highly
related to the content of other components. Indeed, fruit anal-
ysis also showed that flavonol content was positively corre-
lated with the content in lycopene, β-carotene, ascorbic acid

μ

Nitrate (ppm)

μ

Nitrate (ppm)

Figure 3. Correlation between lycopene content in tomato fruits and
NO−3 in the organic soil with straw (ORGWS) for cultivar 93 (a) and
between lycopene content in tomato fruits and NO−3 in the organic soil
without straw (ORG) for cultivar 45 (b). Lycopene content for cultivar
93 grown in the organic system with straw is negatively correlated
with soil NO−3 content. Lycopene content for cultivar 45 grown in the
organic system without straw is negatively correlated with soil NO−3
content.

and oxalate (r = +0.53 to +0.77). Strong positive correlations
were also observed between ascorbic acid and lycopene or ox-
alate (r = +0.61 and r = +0.60, respectively). Also of particu-
lar interest was the strong correlation between naringenin and
quercetin (r = +0.69) as well as the correlation between fruc-
tose and glucose (r = +0.85). Fruit quality is furthermore of-
ten related to other factors which are influenced by the plant
nutrition status, such as growth and development. As could be
expected (Veit-Köhler et al., 1999), the relative growth rates of
leaves and of trusses was negatively correlated with β-carotene
and ascorbic acid (r = –0.45 to –0.66) whereas they were posi-
tively correlated with nitrate and sulphate (r = +0.46 to +0.70).
The relative growth rate of trusses was also negatively corre-
lated, although weakly, with glucose and fructose (r = –0.17
and –0.24, respectively).

This experiment clearly shows that fruit quality and plant
growth are highly variable among tomato cultivars. The old
cultivar Cv 40 had a lower growth rate and fruit yield (Tabs. IV
and V) but a significantly higher fruit quality index (Tab. VI)
compared to the other three modern cultivars. This trade-off
between yield and quality suggests that old cultivars could per-
haps be used in breeding for tomato cultivars that are better
suited for organic cropping systems, especially if a higher fruit
quality is the main objective (Kumar et al., 2007).
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Table VII. Correlation coefficients between fruit quality and nutrients in the soil (including conventional and organic systems with or without
straw).

EC pH NO3 P K Ca Mg SO4

Lycopene –0.37 0.06 –0.06 –0.18 0.10 –0.39 –0.50∗ –0.48
β−carotene –0.77∗∗ 0.23 –0.61∗ 0.07 –0.28 –0.79∗∗ –0.76∗∗ –0.77∗∗

Ascorbic acid –0.14 –0.14 0.03 –0.38 –0.01 –0.13 –0.13 –0.16
Quercetin 0.90∗∗ –0.93∗∗ –0.09 0.61∗ 0.60∗ –0.28 0.00 0.64∗

Naringenin –0.02 –0.32 0.07 0.15 0.05 –0.03 0.00 –0.09
Fructose 0.33 –0.36 0.19 –0.11 –0.31 0.46 0.51∗ 0.52∗

Sucrose 0.24 –0.41 0.15 0.20 0.023 0.25 0.36 0.35
Glucose –0.41 0.36 –0.39 –0.07 –0.18 –0.47∗ –0.41 –0.41
Myo-inositol 0.40 –0.22 0.18 0.03 –0.01 0.48 0.54 0.60∗

Oxalate 0.17 –0.41 –0.03 0.36 –0.21 0.25 0.38 0.40

∗ Significant (0.05)
∗∗ Significant (0.01)

EC: electrical conductivity

3.4. Fruit quality

It is important to mention that in the last year of the ex-
periments (2006), corky root (Pyrenochaeta lycopersici) was
observed in all the soil-bound crop systems (data not shown).
Symptoms were the most severe in the organic system with-
out straw. Considering the conditions of the root systems, the
yield in the ORG systems would most likely have been higher
if corky root had not been present, perhaps even reaching the
yield obtained in rockwool with low EC. Symptoms of corky
root were positively correlated with total nitrogen in the soil
(data not shown). The high N availability by apparent over-
fertilization in the organic systems, especially in the absence
of straw, could explain the higher infection rate in the ORG
system (Workneh and van Bruggen, 1994). Losses caused by
corky root are especially severe in cropping systems with lit-
tle or no rotations (Clark et al., 1998), as in this experiment.
Crop rotations are generally limited in organic greenhouse
production, mainly due to the lack of alternative crops that can
be cultivated using similar systems and that are not suscepti-
ble to diseases such as corky root. Both peppers and cucum-
bers, which are commonly used as rotation crops in organic
greenhouses, are highly susceptible to corky root (Grove and
Campbell, 1987).

4. CONCLUSION

In organic greenhouse cropping systems, fertilization is one
of the key elements essential for achieving success. In this ex-
periment, recommendations for soil amendments, which were
similar to those typically given to organic tomato growers,
were high in comparison to organic certification regulations.
Nitrate content in soil was therefore not a limiting factor in the
organic systems for the three years of this experiment. Even
though fruit quality index was not different between conven-
tional and organic systems, it is clear that the content of health-
benefitting compounds, such as carotenoids or flavonoids, is
dependent on nutrient availability. Also, considering that fruit
quality seems highly dependent on tomato cultivar, the focus

should be put on cultivar selection and crop management to en-
hance accumulation of such compounds in organically grown
fruits. This could be achieved, for example, through adjust-
ments of the amounts and sources of organic fertilizers and se-
lection of cultivars with high nutrient use efficiency and fruit
quality potential.
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