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Abstract – Rice is the staple food for about half of the world’s population. Although global production has more than doubled in the last
40 years, food security problems still persist and need to be managed based on early and reliable forecasting activities. This is especially true
since the frequency of extreme weather events is forecasted to increase by the intergovernmental panel on climate change (IPCC). The most
advanced crop yield forecasting systems are based on simulation models. However, examples of operational systems implementing models
which are suitable for reproducing the peculiarities of paddy rice, especially on small scales, are missing. The rice model WARM is used within
the crop yield forecasting system of the European Commission. In this article we evaluated the WARM model for the simulation of rice growth
under flooded and unflooded conditions in China and Italy. The WARM model simulates crop growth and development, floodwater effect on
the vertical thermal profile, blast disease, cold-shock induced spikelet sterility during the pre-flowering period and hydrological peculiarities
of paddy soils. We identified the most relevant model parameters through sensitivity analyses carried out using the Sobol’ method and then
calibrated using the simplex algorithm. Data from 11 published experiments, covering 13 locations and 10 years, were used. Two groups of rice
varieties were identified for each country. Our results show that the model was able to reproduce rice growth in both countries. Specifically,
the average relative root mean square error calculated on aboveground biomass curves was 21.9% for the calibration and 23.6% for validation.
The parameters of the linear regression equation between measured and simulated values were always satisfactory. Indeed, intercept and slope
were always close to their optima and R2 was always higher than 0.79. For some of the combinations of country and simulated variable, the
indices of agreement calculated for the validation datasets were better then the corresponding ones computed at the end of the calibration,
indirectly proving the robustness of the modeling approach. WARM’s robustness and accuracy, combined with the low requirements in terms
of inputs and the implementation of modules for reproducing biophysical processes strongly influencing the year-to-year yield variation, make
the model suitable for forecasting rice yields on regional, national and international scales.

WARM / Oryza sativa L. / simulation model / flooded conditions /micrometeorology / TRIS / yield forecast / climate change

1. INTRODUCTION

Rice is the most important food crop worldwide, repre-
senting the staple food for more than three billion people
(Confalonieri and Bocchi, 2005). Since problems with food se-
curity still persist in many areas of the world where rice is one
of the most important sources of dietary calories, robust and
reliable tools for early forecasting of rice yields are needed.
This is especially true since the frequency of extreme weather
events, able to decidedly affect final yield, is forecasted to in-
crease (IPCC, 2007).

Crop models have increasingly been used since the 70s to
analyze the interactions between plants and factors driving
their growth such as weather, soil and management practices.
In the first years the activity was mainly focused on formal-

* Corresponding author: roberto.confalonieri@unimi.it

izing the knowledge on different physiological processes into
integrated systems. This led to very detailed simulation mod-
els of physiological processes and did draw attention to gaps
in understanding (Monteith, 1996). Examples of these mod-
els are those belonging to the SUCROS family of models,
described and reviewed by Van Ittersum et al. (2003). Start-
ing from the mid-80s, crop modelers focused their attention
on developing management-oriented models suitable for field
decision-making, e.g. EPIC (Williams et al., 1984). In the last
few years, technological development has favored the small-
scale application of crop models, with the aim of monitoring
crop conditions (Bezuidenhout and Singels, 2007) or eval-
uating the impact of different management practices or cli-
matic scenarios (Olesen et al., 2007). In this context, one of
the most important applications is the use of crop models for
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yield forecasting on regional, national and international scales
(Bannayan and Crout, 1999).

The Joint Research Centre of the European Commission
developed the MARS (Monitoring Agriculture with Remote
Sensing) Crop Yield Forecasting System in the early nineties
with the aim of providing timely, independent and objec-
tive yield estimates to support the Common Agricultural Pol-
icy (Genovese et al., 2001). The system is based on low-
resolution satellite data, on historical series of statistics on
yields and acreages, and on the Crop Growth Monitoring Sys-
tem (CGMS), which in turn is currently based on three crop
models: WOFOST (Van Keulen and Wolf, 1986) as a generic
crop simulator, WARM (Confalonieri et al., 2006a) for rice
and LINGRA (Rodriguez et al., 1999) for pastures. LINGRA
and WARM were implemented to allow CGMS to take into
account the peculiarities of pastures and flooded rice systems.

The WARM model (Confalonieri et al., 2006a) was de-
veloped in the last three years by an open group of re-
searchers aiming at developing a coherent model for rice at
mid-latitudes. Compared with the rice models already avail-
able available such as CERES-Rice (Singh et al., 1993) and
ORYZA (Kropff et al., 1994), WARM takes into account some
relevant processes influencing the final yield usually not con-
sidered, e.g. micrometeorological peculiarities of paddy fields
and diseases, and adopts a consistent level of complexity in
the reproduction of the biophysical processes involved. There
are no processes modeled in a very detailed way and oth-
ers which are reproduced using rough approaches acting on
the same variables. Moreover, all parameters describing cul-
tivar morphological and physiological features have a bio-
physical meaning and can be directly measured or derived
from measured data. The peculiarity of a rice-based cropping
system was analyzed and led to specific modules for the sim-
ulation of the floodwater effect on the vertical thermal pro-
file (Confalonieri et al., 2005), the simulation of blast dis-
ease, the simulation of the typical hydrology of paddy soils
and the simulation of the yield losses due to cold shocks dur-
ing the pre-flowering period. The model has proven to be suit-
able and robust for small-scale simulations, where information
for parameterizing and feeding models is characterized by a
high degree of uncertainty (Wit et al., 2005). WARM was re-
cently included in APES (Agricultural Production and Exter-
nalities Simulator – http://www.apesimulator.org), the modu-
lar, multi-model system being developed within the EU Sixth
Framework Research Programme SEAMLESS (http://www.
seamless-ip.org/).

With 218 000 ha, Italy is the largest European producer of
rice, followed by Spain with less than half of the area (96000).
Portugal, Greece and France have around 20 000 ha each (EU-
ROSTAT New Cronos database; http://ec.europa.eu/eurostat).
Although these figures place European grown rice as a sec-
ondary crop for this continent, at the world level it is the most
important food crop (Solh, 2003).

We present the results of (i) a Monte Carlo-based sensitivity
analysis of WARM for China and Italy and (ii) the calibration
and validation of two sets of model parameters (representing
two groups of varieties) for each of the two countries.

2. MATERIALS AND METHODS

2.1. Experimental data

Data used for this study include 11 datasets collected in
field experiments carried out between 1999 and 2002 in China
and between 1989 and 2004 in Italy under flooded and un-
flooded conditions (Tab. I and Fig. 1). In any case, soil mois-
ture never limited crop growth: the only biophysical effect in
the absence of flooding was the absence of the floodwater ef-
fect on temperature. These conditions are suitable for evalu-
ating a rice model, looking at situations where water-saving
management could play a major role.

Experiment No. 1 was carried out in Changping (China,
Beijing) and is described by Bouman et al. (2006). Two rice
varieties were grown under aerobic conditions and five irri-
gation water treatments in order to assess their performance
using a water-saving management. During the Jiangpu exper-
iment (No. 2; China, Nanjing; Jing et al., 2007), long-cycle
japonica rice varieties were grown under different nitrogen
fertilization treatments to explore different options to com-
bine high yields with high nitrogen-use efficiencies in irrigated
rice. Fields were submerged during the entire growing season.
Experiment No. 3 was carried out in Gaozhai Village (China,
Henan; Feng et al., 2007). Three water treatments were com-
pared: continuous flooding in puddled soil, alternate wetting
and drying in puddled soil and flush irrigation in non-puddled
aerobic soil. All treatments received 180 kg N ha−1, applied
in three events. The aim of Experiment No. 4, carried out in
Tuanlin (China, Hubei), was to evaluate the effectiveness of
alternate submerged-non-submerged management in subtropi-
cal areas (Belder et al., 2004). The rice received 180 kg N ha−1.
Experiments Nos. 5, 6, 7 and 8 were carried out in the Po
Valley (Northern Italy) and are described by Confalonieri and
Bocchi (2005) and Confalonieri et al. (2006b). During these
experiments, rice was grown under flooded conditions and
different levels of nitrogen fertilizer split into two or three
events. During experiments Nos. 9, 10 and 11 (Confalonieri
and Bocchi, 2005), different varieties were grown; japonica-
type with different cycle lengths in experiments Nos. 9 and 10;
and indica- and japonica-type varieties in experiment No. 11.
In the experiments where nitrogen was not one of the factors,
the amount distributed was adequate to assure unlimited sup-
ply of this nutrient. Where different nitrogen amounts were
applied, data from the treatment assuring non-limiting condi-
tions were used. In the case of unflooded conditions, only the
treatments where water was not a limiting factor were used.
The same was done when different water treatments were com-
pared. In any case, plots were kept free of weeds and received
an optimal control against pests and diseases.

For experiments Nos. 1, 2, 3 and 4, ECMWF (European
Centre for Medium-Range Weather Forecast; http://www.
ecmwf.int/) meteorological data were used. Data resolution
is one degree latitude × one degree longitude. Weather data
for experiments Nos. 5 and 6 were collected with a float-
ing micrometeorological weather station placed inside the
field (Confalonieri et al., 2005). For the simulations related
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Table I. Datasets used for model calibration and validation. * Aboveground biomass; ** leaf area index; § flooded at the 3rd leaf stage.

Experiment Country Location Latitude, Years Measured Variety Sowing Variety Calibration Flooded
No. Longitude variables date group

1 China Changping
40◦02’ N,

2001
AGB*, LAI**

HD297 May 16 ChE

116◦10’ E
JD305 April 25 ChE X

2002
HD297 May 15 ChE
JD305 April 20 ChE X

2 China Jiangpu
32◦24’ N, 2001

AGB, LAI Wuxiangjing9
May 15 ChL X

118◦46’ E 2002 May 11 ChL X X

3 China Gaozhai
34◦02’ N,

2001 AGB, LAI XD90247 May 9 ChE
114◦51’ E X X

4 China Tuanlin
30◦52’ N, 1999 AGB

2You725
April 18 ChL X

112◦11’ E 2000 AGB, LAI April 10 ChL X X

5 Italy Opera
45◦22’ N,

2004 AGB, LAI Gladio
9◦12’ E May 24 ItI X X

6 Italy
Vignate

45◦29’ N,
2002 AGB, LAI Sillaro

April 29
9◦22’ E ItI X X

Opera
45◦22’ N,

2002 AGB, LAI Thaibonnet
9◦12’ E ItI X

7 Italy
Velezzo 45◦9’ N,

1999 AGB Thaibonnet April 1
Lomeina 8◦44’ E ItI X§

8 Italy

Castello 45◦14’ N,
1996

AGB Drago
May 8

d’Agogna 8◦41’ E ItJ X

Mortara
45◦14’ N,

1996 May 7
8◦41’ E ItJ X X

9 Italy Vercelli
45◦19’ N, 1989

AGB Cripto
May 8 ItJ X

8◦25’ E 1990 May 10 ItJ X X

10 Italy
Gudo 45◦22’ N,

1990 AGB Cripto April 14
Visconti 9◦00’ E ItJ X

11 Italy
Castello 45◦14’ N, 1994

AGB Ariete
April 29 ItJ X

d’Agogna 8◦41’ E 1995 May 10 ItJ X X

to experiments Nos. 7, 8, 9, 10 and 11, weather data were
collected with standard automatic weather stations installed
near the fields.

2.2. Simulation model

Temperature is one of the most important driving variables
for the simulation of crop growth and development. In paddy
rice systems, this meteorological variable is greatly influenced
by the presence of floodwater. In WARM, the micrometeoro-
logical model TRIS proposed by Confalonieri et al. (2005)
is adopted to take into account the floodwater effect on the
vertical thermal profile. TRIS generates hourly and daily tem-
peratures for both the water body and the air layers above the
air-water interface (18 layers of 0.1 m each). In particular,
the temperatures generated by TRIS at the meristematic apex
height are used for simulating the processes related to plant de-
velopment and spikelet sterility. Average canopy temperature
is used for simulating thermal limitation to photosynthesis and
leaf aging.

For crop development, the thermal time accumulated be-
tween a base temperature and a cut-off temperature is

computed. The accumulated thermal time can be optionally
corrected with a factor accounting for photoperiod. Base and
cut-off temperatures can be set to different values for the peri-
ods sowing – emergence and emergence – physiological matu-
rity. Similar to SUCROS-derived models, development stages
are standardized by converting growing degree-days (GDDs)
into a numerical code (DVS) from 0.00 to 2.00 (respectively,
emergence and physiological maturity, with DVS = 1.00 cor-
responding to flowering), useful for synchronizing the simu-
lation of different processes. There variables are obtained as
follows (Eqs. (1, 2)), respectively, for the periods emergence-
flowering and flowering-physiological maturity:

DVS =
(GDDcum −GDDem)

GDDflo
(1)

DVS =
1 + (GDDcum −GDDem −GDDflo)

GDDmat
(2)

where GDDcum (◦C-day) are the cumulated GDDs, GDDem

(◦C-day) are the GDDs required to reach emergence, GDD f lo

(◦C-day) are the GDDs required to reach flowering, and
GDDmat (◦C-day) are the GDDs required to reach physiologi-
cal maturity.
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Figure 1. Locations where experiments used for calibration and validation were carried out.

The net photosynthesis rate is simulated using a radiation-
use efficiency (RUE)-based approach (Eq. (3)):

AGB = RUEact · 0.5 · Rad ·
(
1 − e−k·LAI

)
(3)

where AGB (kg m−2 d−1) is the daily accumulated above-
ground biomass, RUEact (kg MJ−1) is the actual RUE, Rad
(MJ m−2d−1) is the daily global solar radiation (with 0.5 ×
Rad being an estimate for PAR), (1-e−kLAI) is the fraction of
PAR intercepted by the canopy, k is the extinction coefficient
for PAR. RUEact is derived from the potential RUE (RUEmax,
kg MJ−1) crop parameter, using equation (4):

RUEact = RUEmax · Tlim · Rad_F · DVS _F · CO2_F (4)

where Tlim, Rad_F and DVS_F are unitless factors in the range
0 (maximum limitation) – 1 (no limitation) accounting for
temperature limitations, saturation of the enzymatic chains,
and senescence phenomena, respectively. CO2_F (unitless) ac-
counts for the effect of atmospheric CO2 concentration on
RUE according to an approach derived by Stöckle et al.
(1992). Other factors, accounting for nitrogen supply and oc-
currence of diseases, also play a role in affecting RUE in
WARM. They will not be documented here because they are
not within the scope of this work, carried out at potential pro-
duction level.

The factor accounting for thermal limitation to photosyn-
thesis (Tlim) is calculated using a beta function (Eq. (5)):

Tlim =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(

Tavg − Tb

Topt − Tb

)
·
(
Tmax − Tavg

Tmax − Topt

) Tmax−Topt
Topt−Tmin

⎤⎥⎥⎥⎥⎥⎥⎥⎦
C

(5)

where Tavg (◦C) is the mean daily air temperature; Tb (◦C),
Topt (◦C) and Tmax (◦C) are, respectively, the minimum, opti-
mum and maximum daily mean temperature for growth; C is
an empiric parameter set to 1.8 to make the beta distribution
function assume the value of 0.5 when Tavg is the average of
Tb and Topt.

The factors accounting for saturation of the enzymatic
chains involved in photosynthesis (Rad_F) and for the effect of
senescence (DVS_F) are calculated using the following func-
tions (Eqs. (6, 7)):

Rad_F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 Rad < 25 MJ m−2 d−1

2 − 0.04 · Rad Rad � 25 MJ m−2 d−1
(6)

DVS _F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 DVS < 1

1.25 − 0.25 · DVS DVS � 1
(7)

where DVS is the development stage numerical code.
AGB accumulated each day is assigned to leaves using

a parabolic function (Eq. (8)) which assumes the maximum
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value (input parameter RipL0) at emergence and zero at flow-
ering:

LeavesAGBday =⎧⎪⎪⎪⎨⎪⎪⎪⎩
AGBday ·

(
−RipL0 · DVS 2 + RipL0

)
DVS < 1

0 DVS � 1
(8)

where LeavesAGBday (kg m−2 d−1) is the AGB partitioned daily
to leaves and AGBday (kg m−2 d−1) is the AGB accumulated in
the day.

AGB partitioning to panicles starts at the panicle initiation
stage (PI) and is assumed as maximum at the beginning of the
ripening phase, when all the daily accumulated AGB is parti-
tioned to panicles. Like for the allocation of AGB to leaves, a
parabolic function is used (Eq. (9)):

PanicleAGBday =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 DVS < 0.6

AGBday ·
(
−1.9 · DVS 2+5.4 · DVS − 2.9

)
0.6�DVS �1.5

1 DVS > 1.5
(9)

where PanicleAGBday (kg m−2 d−1) is the AGB partitioned
daily to panicles. DVS = 0.6 represents PI, DVS = 1.5 is the
beginning of the ripening phase.

Stem biomass is computed by subtracting panicle and leaf
biomasses from total AGB.

A daily factor accounting for spikelet sterility due to cold
shocks during the period between PI and heading is calculated
using equation (10):

SterilityF =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
24∑

h=1
(Tthresh − Th) .

[
1

y.
√

2.π
.e
−
(

(DVS−DVS 11)2

2.y2

)
. δ

]
0.6≤DVS ≤0.9

0 otherwise
(10)

where Tthresh (◦C) is the threshold temperature below which
cold-induced sterility damage is caused, Th (◦C) are the hourly
temperatures (generated from the daily inputs according to
Denison and Loomis, 1989), DVS11 is the DVS of the 11th day
before heading (DVS = 0.8), and γ and δ are coefficients used
to discriminate between varieties sensitive for few or many
days around the 11th before heading, which corresponds to
the middle of the period PI–heading. The integral of SterilityF
is used to reduce PanicleAGBday.

Leaf area index (LAI, m2 m−2) is computed by multiplying
the leaf biomass by the specific leaf area (SLA, m2 kg−1), the
latter varying according to the development stage (Eq. (11)):

SLA =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SLAtill−SLAini

0.352 · DVS 2 + SLAini DVS � 0.35

SLAtill DVS > 0.35
(11)

where SLAini and SLAtill (m2 kg−1) are input crop parameters
identifying the SLA at the emergence and mid-tillering stages
(DVS = 0.35).

Each day, leaf senescence is calculated by subtracting the
dead LAI from the total one. Production of daily green leaf
units starts at emergence and each leaf unit will cease to
live once a threshold amount of degree-days (crop parameter
LeafLife, ◦C-day) is accumulated. The crop phenology model
is coupled to the simulation of leaf area units’ life through a
correspondence between degree-days and leaf units produced
in each day after emergence.

2.3. Sensitivity analysis

A sensitivity analysis was carried out on the model pa-
rameters involved in crop growth. The analysis was based on
the model output aboveground biomass at physiological ma-
turity since it is a synthetic representation of the culmination
of many biophysical processes and it is influenced by all crop
parameters. The variation in aboveground biomass in response
to changes in crop parameter values was investigated using the
Sobol’ method (Sobol’, 1993) as made available in the SimLab
library (http://simlab.jrc.ec.europa.eu/) via the tool integrated
into the WARM modeling environment.

The method of Sobol’ is a variance-based global sensitiv-
ity analysis method. This method assumes that the function
f (x1, x2, . . . , xk), i.e. the model, is assumed to be defined in
the k-dimensional unit cube:

Kk = (X | 0 � x1 � 1, 0 � x2 � 1, ..., 0 � xk � 1) (12)

where k is the number of factors.
According to Sobol’ (1993), f can always be decomposed

into summands of increasing dimension. The total variance D
of f (X) can be written as:

D =
∫

Kk
f 2(X)dX − f 2

0 (13)

while each partial variance, corresponding to a generic term
fi1...is (all the fi1...is are orthogonal) can be written as:

Di1...is =

∫ 1

0
...

∫ 1

0
f 2
i1...is (xi1, ..., xis) dxi1...dxis (14)

where 1 � i1 < . . . < is � k and s = 1, . . . , k.
All the quantities f0, D, Di1...is can be computed by multi-

dimensional Monte Carlo integration. Sensitivity estimates of
the model parameters, which measure the main effect of each
individual or group of inputs on the model output, as well as
all higher-order effects that can be attributed to that parameter,
are then defined as:

S i1...is =
Di1...is

D
(15)

Total effects (S Ti) are also computed for each parameter and
are those used in this study.

http://simlab.jrc.ec.europa.eu/
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Table II. Parameter values and sources of information (C: calibrated parameters; L: literature; E: local experience; M: measured; D: default).
ChE and ChL represent the sets of parameters for, respectively, early and late Chinese varieties; and ItI and ItJ the parameters for indica- and
japonica-type varieties grown in Italy. GDD: growing degree days. AGB: aboveground biomass.

Parameter Units Value Description Determination
ChE ChL ItI ItJ ChE ChL ItI ItJ

Development
TbaseDem ◦C 11 12 11 base T for devel. before emergence L L E, L L
TmaxDem ◦C 42 max. T for devel. before emergence L
GDDem ◦C-days 75 100 120 GDDs from sowing to emergence M
TbaseD ◦C 12 base T for devel. before emergence L
TmaxD ◦C 42 max. T for devel. before emergence L
GDDem-fl ◦C-days 1300 1495 800 850 GDDs from emergence to flowering M
GDDfl-mat ◦C-days 380 555 430 500 GDDs from flowering to maturity M
Growth

RUEmax g MJ−1 1.96 2.00 3.20 2.60 radiation-use efficiency M C M M
k – 0.50 extinction coeff. for solar radiation D
Tb

◦C 12 base T for growth D
Topt

◦C 26 28 26 optimum T for growth C C L, C L, C
Tmax

◦C 35 maximum T for growth L L E, L E, L
LAIini m2 m−2 0.003 0.020 0.010 initial leaf area index C
SLAini m2 kg−1 28 29 28 specific leaf area at emergence D D M M
SLAtill m2 kg−1 18 20 19 18 specific leaf area end tillering D C M M
RipL0 – 0.7 0.8 0.6 0.7 AGB partition to leaves at emerg. C C C D
LeafLife ◦C-days 900 1200 800 600 leaf duration C
ApexHeight cm 100 maximum panicle height D D E E
kc – 1.20 kc full canopy L

The Sobol’ method requires the distributions of the differ-
ent factors in order to manage the a priori knowledge about
factors in a more effective way. Parameter distributions were
retrieved from the literature (van Diepen et al., 1988; Kropff
et al., 1994; Confalonieri and Bocchi, 2005; Boschetti et al.,
2006), as described in detail by Confalonieri et al. (2006a).
The Shapiro-Wilk test allowed one never to reject the hypoth-
esis of normality of the distributions. Average and standard
deviations were: 3 and 0.5 for RUEmax; 0.5 and 0.04 for k; 12
and 0.6 for Tb; 28 and 2 for Topt; 42 and 2 for Tmax; 0.01 and
0.005 for LAIini; 27 and 2 for SLAini; 18 and 3 for SLAtill; 0.7
and 0.1 for RipL0; 700 and 80 for LeafLife; 100 and 20 for
Hmax.

For each location, the sample of parameters’ combinations,
and therefore the number of simulations run using average
weather data, was 12288.

2.4. Model parameterization and validation

WARM version 1.9.6 (9 August 2007; download at: http://
www.robertoconfalonieri.it/software_download.htm) was
used.

Both for China and Italy, two sets of crop parameters were
calibrated and validated: Chinese early and late varieties, re-
spectively, ChE and ChL, and Italian indica- and japonica-type
varieties, respectively, ItI and ItJ. Table I shows the datasets
used for calibrating and validating the four groups of varieties.

Parameters identified as the most relevant by the sensitivity
analysis were calibrated; the others were left to their default

values. For the groups ChE, ItI and ItJ, measured RUE val-
ues were available; measurements for the parameters SLAini

and SLAtill were available for the groups ItI and ItJ. In these
cases, measured values were used for the parameters. Infor-
mation about parameters and their sources of information are
shown in Table II. Calibration was carried out using the auto-
matic tool integrated into the WARM environment based on
the evolutionary shuffled simplex (Duan et al., 1992). This
evolution of the standard simplex method is based on (i) run-
ning several simplexes, randomizing their starting points; (ii)
eliminating a certain percentage of simplexes, with a proba-
bility inversely proportional to the value of the objective func-
tion; (iii) introducing a “mutation”, substituting a new random
vertex for a simplex vertex that tried to move outside a defined
physical domain; (iv) combining the remaining simplexes us-
ing vertices from different simplexes, imposing that vertices
with good objective function have a higher probability of be-
ing selected. The result is something similar to a genetic algo-
rithm. The evolutionary shuffled simplex was used since it was
shown, also with the WARM model, to be effective in reach-
ing the global minimum, avoiding the risk of finding local ones
(Acutis and Confalonieri, 2006).

The agreement between measured and simulated values
was quantified by using the following indices: relative root
mean squared error (RRMSE, Eq. (16), minimum and opti-
mum = 0%; maximum + ∞), the modeling efficiency (EF,
Eq. (17), -∞ ÷ 1, optimum = 1, if positive, indicates that the
model is a better predictor than the average of measured val-
ues), the coefficient of residual mass (CRM, Eq. (18), 0-1, op-
timum = 0, if positive indicates model underestimation) and

http://www.robertoconfalonieri.it/software{_}download.htm
http://www.robertoconfalonieri.it/software{_}download.htm
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Figure 2. Results of the sensitivity analyses carried out using the Sobol’ method: total order effects for the WARM parameters involved in crop
growth. Grey, white, striped, dotted and black series refer, respectively, to Tuanlin, Changping, Gaozhai, Jiangpu and Italy. The most relevant
parameters are those involved in radiation-use efficiency and its thermal limitation (RUEmax and Topt), leaf area expansion at early stages (LAIini

and RipL0) and light penetration into the canopy (k). Topt decreases its relevance with decreasing latitude, because lower latitudes correspond
to more suitable thermal conditions for the crop.

the parameters of the linear regression equation between ob-
served and predicted values.

RRMS E = 100 ·

√
n∑

i=1
(Di)2

n

M
(16)

EF = 1 −
n∑

i=1
(Di)2

n∑
i=1

(
Mi − M

)2
(17)

CRM =

n∑
i=1

Mi −
n∑

i=1
S i

n∑
i=1

Mi

(18)

Di is the difference between S i and Mi, with S i and Mi being,
respectively, the ith simulated and the ith measured values, n
is the number of pairs S i − Mi, S and M are the averages of
simulated and measured values.

Within each group of varieties, the same values for the
parameters involved in growing degree-day accumulation
and thermal limitation to photosynthesis were used both for
flooded and unflooded experiments. In order to verify the
presence of possible differences in model performances un-
der flooded and unflooded conditions due to the simulation
of the floodwater effect on temperatures, we compared the
means of each index of agreement. For both the variables
(aboveground biomass and leaf area index) and for each in-
dex, the two groups to compare were defined by including
all the metrics calculated for calibration and validation: the
factor was the type of irrigation. F-ratio and Student-t tests

were performed to investigate if variances and means between
groups were similar. When the F-test revealed significant dif-
ferences (P < 0.05), a Student-t test assuming unequal vari-
ances was performed, using the Welch-Satterthwaite equation
(Satterthwaite, 1946; Welch, 1947) to calculate an approxima-
tion to the effective degrees of freedom. Otherwise, two-sided
Student-t tests assuming equal variances were used to investi-
gate if the differences between groups were significant.

3. RESULTS AND DISCUSSION

The aim of the study was to evaluate the adequacy of the
WARM model for simulating rice in China and Italy. We used
data from four field experiments carried out in China between
1999 and 2002 and seven experiments conducted in Italy be-
tween 1989 and 2004. The data used, collected under optimal
conditions for water and nitrogen availability, were split into
two independent datasets for the calibration and validation ac-
tivities.

3.1. Sensitivity analysis

Figure 2 compares the sensitivity analysis results for North-
Italian conditions to those obtained for the four Chinese loca-
tions under study. RUEmax is always ranked first. Averaging
results for the four Chinese sites, the main difference between
sensitivity indices computed for the two countries is that Topt is
ranked second in Italy, whereas it appears less important than
LAIini and RipL0 in China. Topt is considered more relevant
with increasing latitude: within Chinese datasets, it is ranked
fourth at latitudes between 30◦ 52’ N and 34◦ 02’ N, and third
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Figure 3. Measured (X-axis) and simulated (Y-axis) aboveground biomass and leaf area index values after calibration. For the Chinese datasets:
black triangle, black square, white circle, white square and black cross refer, respectively, to Changping 2001, Changping 2002, Gaozhai 2001
(flooded), Jiangpu 2002 and Tuanlin 2000. For Italian datasets: the same symbols refer to Opera 2004, 2002, Castello d’Agogna 1995, Mortara
1996 and Vercelli 1990.

at a latitude of 40◦ 02’ N; it is ranked second in Italy, where
latitudes are slightly higher than 45◦ N. The reason is related
to the S-shaped function used for modeling the photosynthesis
response to temperature (see Eq. (5)): temperatures increase
with decreasing latitude, thus getting closer to Topt and lead-
ing Tlim to assume values which are in the region of the S-
shaped function characterized by a plateau. This is translated
into small variations in the output and therefore into decreas-
ing relevance for decreasing latitude. Sensitivity analyses car-
ried out for all the sites under study using the Sobol’ method
allowed one to identify the parameters RUEmax, LAIini, Topt,
RipL0 and k as the most relevant. Therefore, these parameters
were those on which we concentrated during the calibration.

3.2. Calibration of crop model parameters

Parameter values with the source of information or after
calibration are shown in Table II. Base and optimum temper-
atures are in the range of those reported, respectively, by Sié

et al. (1998) and Casanova et al. (1998). Maximum temper-
atures are coherent with those used by Mall and Aggarwal
(2002) for the CERES-Rice and ORYZA1 models. Similar
values were also used by Confalonieri and Bocchi (2005) for
the CropSyst model. Measured values of RUEmax were derived
from Bouman et al. (2006) for the group of varieties ChE and
by Boschetti et al. (2006) for ItI and ItJ. Although the values
measured by these authors could appear quite spread, they fall
within the range of those published (e.g. Kiniry et al., 2001;
Campbell et al., 2001). The value of 0.5 for k is consistent with
that reported by other authors (e.g. Dingkuhn et al., 1999). The
values of SLAini and SLAtill are within the range of those mea-
sured by Dingkuhn et al. (1998) and by Boschetti et al. (2006).
Although not identified as relevant by the sensitivity analysis,
SLAtill and LeafLife were calibrated to allow the model to re-
produce measured leaf area index curves.

The agreement between observed and simulated above-
ground biomass values after calibration is shown in Fig-
ure 3 and Table III. In general, WARM presents a reasonable
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Table III. Indices of agreement between measured and simulated aboveground biomass (AGB; t ha−1) and leaf area index (LAI; m2 m−2)
values. * Flooded at the 3rd leaf stage.

Dataset Variable Flooded RRMSE EF CRM Slope Intercept R2

Country Activity Location Year (%) (t ha−1)
Changping 2001 28.6 0.79 0.04 0.96 0.76 0.79
Changping 2002 35.6 0.77 –0.24 0.93 –1.17 0.88

Gaozhai 2001 AGB X 20.8 0.91 –0.11 0.99 –0.77 0.93
Jiangpu 2002 X 17.1 0.95 0.03 1.26 –1.95 0.99

Calibration
Tuanlin 2000 15.4 0.96 –0.02 1.01 –0.31 0.96

Changping 2001 34.0 0.57 0.14 1.08 0.38 0.64
Changping 2002 39.7 0.59 –0.15 0.78 0.36 0.70

Gaozhai 2001 LAI X 37.6 0.52 0.24 0.87 1.19 0.73
Jiangpu 2002 X 40.1 0.31 0.24 0.95 1.18 0.56

China Tuanlin 2000 28.2 0.87 –0.17 1.28 –2.30 0.97
Changping 2001 28.9 0.69 0.18 0.85 2.77 0.84
Changping 2002 25.7 0.87 –0.03 0.88 0.62 0.88

Gaozhai 2001 AGB 15.0 0.95 –0.10 1.02 –0.99 0.97
Jiangpu 2001 X 25.1 0.89 –0.18 0.86 –0.12 0.97

Validation Tuanlin 1999 10.4 0.99 –0.01 1.05 –0.48 0.99
Changping 2001 59.9 0.12 0.26 0.71 2.37 0.34
Changping 2002

LAI
45.7 0.46 0.00 0.76 0.83 0.51

Gaozhai 2001 33.8 0.66 0.21 0.93 0.88 0.79
Jiangpu 2001 X 24.4 0.79 –0.03 0.78 0.62 0.86
Opera 2004 X 23.7 0.93 0.07 0.88 0.83 0.96

Vignate 2002 X 17.3 0.92 0.12 1.08 0.46 0.96
Castello d’Agogna 1995 AGB X 19.6 0.95 –0.04 0.90 0.34 0.96

Calibration Mortara 1996 X 13.3 0.98 0.06 1.13 –0.53 0.99
Vercelli 1990 X 27.9 0.91 –0.14 0.80 0.57 1.00
Opera 2004

LAI
X 22.8 0.91 –0.13 0.96 –0.31 0.94

Italy
Vignate 2002 X 47.5 0.81 0.01 1.31 –0.88 0.86

Castello d’Agogna 1996 X 23.1 0.93 0.08 1.22 –0.96 0.98
Gudo Visconti 1990 X 43.1 0.73 –0.33 0.77 –0.09 0.98

Vercelli 1989
AGB

X 14.3 0.97 –0.05 0.88 0.59 0.99
Validation Opera 2002 X 14.0 0.96 –0.08 0.88 0.43 0.99

Castello d’Agogna 1994 X 31.7 0.89 –0.24 0.86 –0.30 0.98
Velezzo Lomellina 1999 X* 32.0 0.94 –0.17 0.83 0.12 1.00

Opera 2002 LAI X 56.8 0.68 –0.04 1.17 –0.63 0.70

accuracy in simulating aboveground biomass accumulation.
It is possible to notice, for some of the Chinese datasets,
the tendency to slightly overestimate biomass values, espe-
cially in the early varieties (Changping 2001 and Gaozhai
2000 datasets). This is confirmed by the fitting indices, shown
in Table III, where the coefficient of residual mass is nega-
tive for the two datasets. While the relative root mean square
error values obtained for the late varieties are below 20%,
the others, though presenting satisfying results, are slightly
higher. The same considerations are valid for the modeling
efficiency. In general, the regression parameters are satisfac-
tory: slope values are close to one for all simulations. Simu-
lated values of aboveground biomass for the Italian datasets
present a good agreement with measured ones in almost all
the situations, with the modeling efficiency constantly above
0.9. The agreement between observed and simulated leaf area
index values is usually lower. This is probably due both to
the difficulty of simulating the balance between emission and
death of green leaf area index units before flowering and to the
higher errors in leaf area index measurements compared with

aboveground biomass ones. Although the daily aboveground
biomass accumulation rate depends on absorbed radiation and
therefore on green leaf area index state, the not completely
satisfactory simulation of green leaf area index before flow-
ering does not significantly affect aboveground biomass accu-
mulation, because in this phase the canopy is practically closed
and the interception of radiation can be considered complete.
Calibrated values for the parameters are within the range of
values found in the literature and allowed the model to repro-
duce measured data in a satisfactory way, especially the above-
ground biomass curves.

3.3. Validation of crop model parameters

Figure 4 and Table III show the results of the crop pa-
rameter test. Despite a general slight overestimation, both for
China and Italy, WARM accurately simulates aboveground
biomass values, also during the validation. For China, as
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Figure 4. Measured (X-axis) and simulated (Y-axis) aboveground biomass and leaf area index values after validation. For the Chinese datasets:
black triangle, black square, white circle, white square and black cross refer, respectively, to Changping 2001, Changping 2002, Gaozhai 2001
(unflooded), Jiangpu 2001 and Tuanlin 1999. For Italian datasets: the same symbols refer to Opera 2002, Velezzo 1999, Castello d’Agogna
1996, Gudo Visconti 1990 and Vercelli 1989; the white rhombus refers to Castello d’Agogna 1994.

already discussed for the calibration phase, the best values of
fitting indices were calculated for the late varieties.

In general, results obtained for leaf area index simulation
reflect the problems discussed for the calibration datasets;
nonetheless, in some cases (Gaozhai 2001 and Jiangpu 2001)
fitting indices can also be considered satisfactory for this
variable. For the Italian datasets too, measured aboveground
biomass values are accurately reproduced by the model. In
all cases R2 is higher than 0.98. Although the model valida-
tion for the simulation of leaf area index for Italian varieties
cannot be considered exhaustive because of the poor dataset
available, the modeling efficiency reached a value of 0.68 and
the R2 was equal to 0.70. It is important to underline that, for
China, WARM performances in validation are better than the
calibration ones: average values of relative root mean square
error, modeling efficiency, coefficient of residual mass and R2

for the validation datasets are closer to their optimum, whereas
for Italy the agreement in validation is generally only slightly
lower, although average values of R2 and intercept are better.
In some cases, the best values for the indices of agreement
were calculated for validation datasets (e.g. Gaozhai 2001,
Tuanlin 1999, Vercelli 1989, Opera 2002). This can be con-
sidered as an indirect, preliminary proof of the model robust-
ness. No patterns in model performances related to the pres-
ence of floodwater and therefore to the micrometeorological
simulation of the effect of floodwater on temperatures were
noticed. The means of the indices of agreement calculated
for flooded and unflooded experiments were always not sta-
tistically different. For aboveground biomass p(t) ranged be-
tween 0.21 and 0.76, obtained, respectively, for R2 and relative
root mean square error. For leaf area index, the intercept of
the linear regression between measured and simulated values
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presented the lowest p(t) (0.37), whereas the highest (0.98)
was obtained for modeling efficiency. During the validation,
the model presented the same level of accuracy discussed for
the calibration dataset.

4. CONCLUSIONS

We calibrated and validated the WARM model for rice sim-
ulation in China and Italy using data from 11 published field
experiments, after having identified most relevant model pa-
rameters with a Monte Carlo-based sensitivity analysis. Av-
erage relative root mean square error and R2 are 23.0% and
0.95 for the simulation of aboveground biomass and 39.2%
and 0.72 for leaf area index. Modeling efficiency is always
positive and no systematic over- or underestimations are evi-
denced. Model performances in calibration and validation are
very similar and the simulation of floodwater effect on temper-
ature did not lead to incoherent model behaviors. These results
show that the model is robust and able to reproduce yield vari-
ability within years and locations.

This is the first time a model explicitly accounting for the
micrometeorological peculiarities of paddy rice has been eval-
uated and, given the importance of this biophysical aspect in
affecting crop growth and development through the smooth-
ing of daily thermal extremes, the proposed approach can be
considered suitable for investigating the interactions between
weather and crop productivity in a changing climate. The co-
herence between WARM’s needs in terms of input require-
ments and the information stored in the available agromete-
orological databases makes the model suitable for spatialized
simulations. This is a crucial prerequisite, together with the
model robustness, for carrying out operational rice yield fore-
casts on regional, national and international scales, aiming at
managing food security problems.
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