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Abstract – Wheat, Triticum durum L, is a major cereal crop in Spain with over five million ha grown annually. Wild oat, Avena sterilis L., and
canary grass, Phalaris spp., are distributed only in patches in wheat fields but herbicides are applied over entire fields, thus leading to over-
application and unnecessary pollution. To reduce herbicide application, site-specific management techniques based on weed maps are being
developed to treat only weed patches. Intensive weed scouting from the ground is time-consuming and expensive, and it relies on estimates of
weeds at unsampled points. Remote sensing of weed canopies has been shown to be a more efficient alternative. The principle of weed remote
sensing is that there are differences in the spectral reflectance between weeds and crops. To test this principle, we studied spectral signatures
taken on the ground in the visible and near-infrared windows for discriminating wheat, wild oat and canary grass at their last phenological
stages. Late-season phenological stages included initial seed maturation through advanced maturation for weeds, and initial senescence to
senescent for wheat. Spectral signatures were collected on eight sampling dates from April 28 through May 26 using a handheld field spec-
troradiometer. A stepwise discriminant analysis was used to detect differences in reflectance and to determine the accuracy performance for a
species classification as affected by their phenological stage. Four scenarios or classification sets were considered: wheat-wild oat-canary grass,
with each species represented by a different group of spectra; wheat and grass weeds, combining the two weed species into one spectral group;
wheat and wild oat with each represented as a single group, and finally, wheat and canary grass. Our analysis achieved 100% classification
accuracy at the phenological stages of initial seed maturation, and green and advanced seed maturation and partly green for weeds and wheat,
respectively, between the dates of April 28 and May 6. Furthermore, we reduced the number of hyperspectral wavelengths to thirteen out of
50. Multispectral analysis also showed that broad wavebands corresponding to those of QuickBird satellite imagery discriminated wild oat,
canary grass and wheat at the same phenological stages and dates. Our findings are very useful for determining the timeframe during which
future multispectral QuickBird satellite images will be obtained and the concrete wavelengths that should be used in case of using airborne
hyperspectral imaging. Accurate and timely mapping of the spatial distribution of weeds is a key element in achieving site-specific herbicide
applications for reducing spraying volume of herbicides and costs.

hyperspectral / multispectral / remote late-season weed detection / precision agriculture / vegetation indices

1. INTRODUCTION

Wheat is the most important cereal crop in Spain, with over
five million ha grown annually. Wild oat (Avena sterilis L.),
canary grass (Phalaris spp.) and ryegrass (Lolium rigidum
L.) are the most common grass weeds in cereal crops and
have been found, respectively, in 65%, 34% and 32% of the
arable fields in Southern Spain (Saavedra et al., 1989). Al-
though patchy distribution of wild oat and ryegrass in winter
cereals has been previously observed (Barroso et al., 2004b;
Blanco-Moreno et al., 2006), grass herbicides are usually ap-
plied to entire fields, leading to the risk of over-application.

* Corresponding author: flgranados@ias.csic.es

Patch spraying of grass weeds in winter cereals (Timmermann
et al., 2003; Barroso et al., 2004a; Ruiz et al., 2006) has
demonstrated the feasibility of using Site-Specific Weed Man-
agement (SSWM) to control these worldwide weeds. A key
aspect of SSWM is that accurate, appropriate and timely weed
maps are required in order to take full advantage of site-
specific herbicide applications.

Discrete sampling and intensive scouting in different grid
sizes, together with spatial interpolation techniques, have been
used to study the spatial distribution of weeds and to es-
timate weed density at unsampled points (Jurado-Expósito
et al., 2003, 2005). Rew and Cousens (2000) concluded that
mapping weed patches based on ground survey techniques
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(discrete sampling) on a large scale is time-consuming and ex-
pensive. They also argued that continuous sampling methods
such as remote sensing are more appropriate and cost-effective
for SSWM. Remote sensing of weed canopies may be more
efficient than time-consuming field measurements, and inter-
est in using this technology for developing weed distribution
maps has increased in recent years. The importance of remote
sensing in site-specific weed control has been widely reviewed
by Felton et al. (2002), Radhakrishnan et al. (2002), Thorp and
Tian (2004), and Brown and Noble (2005).

The spectral response of a plant species at the canopy or
the single leaf level is unique, and this response is referred to
as the spectral signature. A defining characteristic of the spec-
tral signature is that it varies according to phenological stage.
The basic principle of using ground-acquired spectral signa-
tures for remote sensing is that if differences in reflectivity
based on the distinctive phenological stage can be measured
or recognized, then weed detection may be possible. Sev-
eral weed species have been identified in crops by exploit-
ing their distinctive phenological stages (Brown and Noble,
2005; Peña-Barragán et al., 2006; Kavdir, 2004; Girma et al.,
2005; Lass and Callihan, 1997). Differences in the weed-crop
life cycle at advanced phenological stages, before crops and
weeds are both yellow, may allow for the detection of spec-
tral differences. Therefore, the detection of a late-season grass
weed infestation may be particularly useful when spectral dif-
ferences between cereal crops and grass weeds are at their
highest because weeds senesce at a different time than crops
(Rew et al., 1996; Koger et al., 2003; Thompson et al., 1991).
In addition, considering the fact that weed infestations can
be relatively stable in location from year to year (Barroso
et al., 2004b; Jurado-Expósito et al., 2004, 2005), late-season
weed detection maps could be used to design site-specific con-
trol methods in subsequent years, or to apply in-season post-
emergence herbicides if adequate pre-emergence control was
not achieved. For example, post-emergence site-specific appli-
cation can be useful in the control of grass weed (e.g., Avena
spp.) patches in cereals with very specific and expensive herbi-
cides. It has been demonstrated that by locating weed patches
in the most spectrally suitable season, a site-specific herbicide
treatment program could be designed for the next season in
corn and sunflower crops (Goel et al., 2003; Peña-Barragán
et al., 2007).

Technological advances have produced innovative hand-
held hyperspectral sensors that offer an improvement over
multispectral sensors. Hyperspectral sensors have hundreds of
very narrow and contiguous wavelengths that are usually less
than 10 nm wide, whereas multispectral sensors collect data
over several (3 to 7) broad bands. Therefore, because the band
widths are narrower in hyperspectral scanner systems, small
or local variations in absorption features can be detected that
might otherwise be masked within the broader bands of multi-
spectral scanner systems (Schmidt and Skidmore, 2003; Koger
et al., 2004). Hyperspectral data have been successfully used
for spectral discrimination of 27 salt-marsh vegetation types in
a coastal wetland (Schmidt and Skidmore, 2003), for the de-
tection of pitted morning glory (Ipomea lacunosa L.) in soy-
bean fields (Koger et al., 2004), and to determine the abil-

ity to separate five weeds and two crop species (Smith and
Blackshaw, 2003; Peña-Barragán et al., 2006).

As mentioned above, the use of hyperspectral scanner sys-
tems involves analyzing hundreds of wavelengths. In order
to reduce the amount of hyperspectral data used to predeter-
mine a subset of narrow wavelengths without loss of impor-
tant information, several statistical methods have been used.
For instance, artificial neural networks have been used in corn
(Yang et al., 1999; Goel et al., 2003) and wheat (Wang et al.,
1999; López-Granados et al., 2008); decision tree technology
has been applied in corn (Goel et al., 2003) and land cover
(Friedl and Brodley, 1997; Friedl et al., 1999); and multi-
variate data analysis methods such as principal components
and discriminant analysis have been performed in tomato and
corn (Slaughter et al., 2004; Karimi et al., 2005a, b). Girma
et al. (2005) studied optical spectral signatures for detecting
cheat (Bromus secalinus L.) and ryegrass in winter wheat un-
der greenhouse conditions. The authors concluded that spec-
tral measurements differed with plant growth stage, but sug-
gested that it would be necessary to assess whether spectral
identification is robust under field conditions.

Some authors have also tried to discriminate weed and crop
species using hyperspectral rather than multispectral data us-
ing stepwise discriminant analyses to test whether fine spec-
tral detail is actually required (Smith and Blackshaw, 2003;
Brown and Noble, 2005). This information is essential because
discrimination of hyperspectral signatures may allow for the
use of airborne hyperspectral sensors (e.g., Compact Airborne
Spectrographic Imager, CASI), whereas discrimination among
multispectral signatures can be used for high spatial resolution
satellite imagery (e.g., QuickBird).

Spectral reflectance differences can be enhanced by using
vegetation indices, which are mathematical (ratio and lineal)
combinations of selected wavelengths, or wavebands when hy-
perspectral or multispectral data are used, respectively. Data
from two or more wavebands are often combined to create
multispectral vegetation indices, which are useful for char-
acterizing plant growth and development because they take
advantage of the vegetation reflectance contrast between dif-
ferent wavebands (Jackson and Huete, 1991; Hatfield and
Pinter, 1993). The most widely used indices in multispectral
remote sensing are the normalized difference vegetation in-
dex (NDVI) = (NIR − R/NIR + R), where NIR stands for
near-infrared and R stands for red multispectral bands (Rose
et al., 1973), and the ratio vegetation index (RVI) = (NIR/ R)
(Jordan, 1969). The NDVI and RVI are commonly used to dif-
ferentiate between types of vegetation because the latter usu-
ally shows high reflectance in NIR and low reflectance in the
red range, and both indices enhance these differences (Hansen
and Schjoerring, 2003; Elmore et al., 2000; Koger et al.,
2003). The NDVI was also used in some reports to discrim-
inate between weeds and crops (Lamb et al., 1999; Lass and
Callihan, 1997; López-Granados et al., 2006; Peña-Barragán
et al., 2006), and between weed-free and weed-infested areas
in soybean (Chang et al., 2004) and sunflower fields (Kavdir,
2004).

As part of a broader research program to investigate the
possibilities and limitations of remotely-sensed imagery in
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mapping late grass weeds in wheat, it is essential to analyze
the variations in their hyper- and multispectral signatures at
distinct mature phenological stages in field conditions. This
approach will allow for identification of suitable wavelengths
or wavebands for species discrimination and classification.
In addition, assuming that the sampling date must be chosen
when the phenological differences are maximal, it is necessary
to obtain time series data late in the season in order to deter-
mine the best opportunity for the identification of crops and
weeds. Thus, the objectives of this study were (1) to evaluate
the potential of using a time series of field spectroradiometry
data in the visible and near-infrared domains to discriminate
between late-season wheat, wild oat and canary grass on the
basis of hyperspectral and multispectral characteristics, and
(2) to compare the performance accuracy of the discrimina-
tion at every sampling date. The results obtained will facilitate
determination of the optimal timeframe and the suitable wave-
lengths or wavebands for hyperspectral airborne or multispec-
tral satellite imagery for mapping these weeds in wheat.

2. MATERIALS AND METHODS

The study was conducted in Andalusia, southern Spain, dur-
ing the spring of 2006 in Santa Cruz (25.6 ha of land, Uni-
versal Transverse Mercator [UTM] coordinates 361,076 E;
4,185,313 N). The winter wheat crop was planted in mid-
November and harvested in mid-June. Consistent natural weed
infestations were made up of wild oat and canary grass. The
farm was regularly visited every week from late April onwards
to collect phenological stage data and spectral signatures of
crops and weeds, as indicated below. Four phenological stages
of weeds and wheat were considered (adapted from Lancashire
et al., 1991) corresponding to three periods within the sam-
pling dates: April 28th through May 6th, when wheat plants
were at the advanced seed maturation stage and partly green,
and wild oat and canary grass were at the initial seed matu-
ration stage and green; May 14th through May 22nd, when
wheat plants were at the initial senescence stage and yellow-
ing and weeds were at an advanced seed maturation stage and
partly green; and on May 26th, when wheat plants were senes-
cent and yellow and weeds were at the initial senescence stage
and yellowing.

2.1. Spectral readings and data analysis

The spectral signatures of weed-free wheat and grass weed
species patches were taken from April 28th to May 26th 2006
every four days. A total of eight sampling dates were recorded.
Each weed species patch had about 20–25 spikes/panicles per
m2. Twenty vertical measurements under cloudless conditions
were collected for each plant species at random using an ASD
HandHeld FieldSpec spectroradiometer (Analytical Spectral
Devices, Inc., 5335 Sterling Drive, Boulder, CO 80301, USA)
placed at a height of 60–80 cm above each plant species
canopy. The spectral data were converted into reflectance,

which is the ratio of energy reflected off the target to the en-
ergy that is incident on the target. Every spectral signature was
calibrated using a barium sulfate standard reflectance panel as
a reference (Spectralon, Labsphere, North Sutton, NH, USA)
before and immediately after each measurement. Spectrora-
diometer readings were taken under sunny conditions between
12:00 h and 14:00 h (Salisbury, 1999) using a 25◦ field-of-view
optic, measuring an area of about 0.15 to 0.20 m2. Hyperspec-
tral measurements were collected between 325 and 1075 nm
with a bandwidth of 1.5 nm, although the reflectance spectra
were very noisy at the ends of the range and only the measure-
ments between 400 and 900 nm were analyzed. Previous stud-
ies have shown that neighboring wavelengths can frequently
provide similar information. Thus, the hyperspectral measure-
ments collected were averaged to represent 50 10-nm-wide
measurements between 400 and 900 nm (Peña-Barragán et al.,
2006; Thenkabail et al., 2004), and these were then statistically
analyzed. Reflectance measurements on the canopy scale were
also averaged to represent similar multispectral broad wave-
bands, blue (B): 450–520 nm, green (G): 521–600 nm, red (R):
630–690 nm and near-infrared (NIR): 760–900 nm available
on the commercial satellite QuickBird, which currently has the
highest spatial resolution. The vegetation indices normalized
difference vegetation index (NDVI) = (NIR−R/NIR+R), ra-
tio vegetation index (RVI) = (NIR/R),R/B (R ratio B, Everitt
and Villarreal, 1987), NIR−R, and (R−G)/(R+G) were also
calculated and analyzed.

Discriminant analysis (DISCRIM) of the hyperspectral and
multispectral data and the vegetation indices was done using
SPSS software (SPSS 13.0, Inc., Chicago; Microsoft Corp.,
Redmond, WA). The DISCRIM procedure permitted the es-
tablishment of a predictive model of group membership based
on characteristics observed in each case. The DISCRIM pro-
cedure generated a discriminant function (or a set of functions
for more than two groups) because the number generated cor-
responded to the number of groups minus one based on the
linear combinations of the predictor variables that provided the
best discrimination between groups (Karimi et al., 2005b). The
number of discriminant functions providing a statistically sig-
nificant among-group variation essentially defined the dimen-
sionality of the discriminant space. This test also measured
the difference between groups. To discriminate between weeds
and wheat crops, a set of suitable hyperspectral wavelengths,
multispectral bands or multispectral vegetation indices was se-
lected using the stepwise discriminant method (STEPDISC)
of SPSS. The STEPDISC procedure is a combination of the
forward selection and backward elimination of the variables.
Forward selection was used for the inclusion of a variable and
backward elimination was used for the removal of variables
that were no longer significant in the model (Karimi et al.,
2005a). For this study, the Wilks lambda test was used to deter-
mine the significance of each discriminant function. The val-
ues of the Wilks lambda were indicative of the separability or
discriminatory power of spectral wavelengths (i.e., the lower
the Wilks lambda value, the greater the spectral differentia-
tion between groups; Thenkabail et al., 2004). At each step,
the variable that minimized the overall Wilks lambda was en-
tered. In addition, the minimum partial F established to enter a
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variable was 3.84, and 2.71 was the maximum partial F for re-
moving a variable (more details in Visauta and Martori, 2003).

Four scenarios or classification sets were considered. The
stepwise discriminant model (STEPDISC) was calculated con-
sidering set (1) wheat, wild oat and canary grass, each rep-
resenting a different discrimination group; set (2) wheat and
grass weed with the two weed species considered to be one
group; set (3) wheat and wild oat; and set (4) wheat and ca-
nary grass. The functions were generated from a sample of
cases, hyperspectral wavelengths, multispectral wavebands or
multispectral vegetation indices for which group membership
(wheat, wild oat or canary grass) was known (count data).
These functions could then be applied to new cases with mea-
surements for the predictor variables but an unknown group
membership. The suitability of the discriminant functions for
a given classification was compared using a cross-validation
method, which involves the calculation of misclassification
matrices by determining the number of wrongly classified
groups in any single class. The “leave-one-out” approach for
cross-validation was selected as the classification option for
the STEPDISC analysis in order to assess the accuracy of the
model. In the development of STEPDISC models, the data
were divided into two parts. The first was used to develop and
construct the model, while the second was used to validate its
classification accuracy (Karimi et al., 2005a). This method was
applied to both reflectance values and spectral indices to con-
struct a classification rule to discriminate between wheat and
grass weed species.

3. RESULTS AND DISCUSSION

3.1. Hyperspectral and multi-temporal analysis

Between April 28th and May 6th, the spectral signatures
of wild oat, canary grass and wheat exhibited a characteris-
tic peak in the green region of the spectrum at 550 nm wave-
length, known as the “green peak”, and the highest reflectance
values in the near-infrared domain from 760 to 900 nm, of
the green vegetation (Fig. 1). For example, on May 2nd, when
weeds were at the phenological stage of initial seed maturation
and green, and wheat was at the advanced seed maturation and
partly green stage, reflectance values were 10%, 12% and 17%
in the green peak, and 63%, 78% and 90% in the near-infrared
plateau for wheat, wild oat and canary grass, respectively. This
demonstrates that weed species and wheat were still in an ac-
tive living phase. However, on May 26th, when weeds were
at the phenological stage of initial senescence and yellowing,
and wheat was at senescent and yellow, wheat, wild oat and
canary grass, respectively, showed reflectance values of 18%,
22% and 20% in the green peak, and values of 46%, 50% and
49% in the near-infrared plateau. Reflectance values on this
date steadily increased as the wavelengths increased and did
not exhibit any reflectance peaks or increases within the green
and near-infrared regions of the spectrum. Thus, late pheno-
logical stages of the species consistently affected the magni-
tude and amplitude of spectral reflectance values. These data
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Figure 1. Mean reflectance percentage of wild oat (a), canary grass
(b) and wheat (c) according to crucial sampling dates: April 28th (–),
May 2nd (...), May 6th (- - -) and May 26th (–). Axis X shows the
hyperspectral wavelengths (every 10 nm).

are in agreement with data obtained previously by other re-
searchers (Koger et al., 2003; Rew et al., 1996) who studied
late-season weed infestation discrimination when spectral dif-
ferences between crops and weeds prevailed, e.g., when a still
green weed is present in a senescent cereal crop or before crops
and weeds are simultaneously senescent and turning yellow.

Hyperspectral differences between wheat, wild oat and ca-
nary grass may be attributed to variations in the relative
amounts of chlorophyll content, water content and the cell-to-
air space ratio, which are variables that influence the spectral
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Table I. Hyperspectral stepwise discriminant results for wavelengths selected for wild oat, canary grass and wheat according to different
classification sets.

Classification Sampling Wavelength Wilks’ Exact-F Overall Cross

sets dates (nm) Lambda classification validation

Wheat-Wild Oat- April 28 450, 420, 620, 400, 700, 580 0.003 72.7 100 100

Canary grass May 2 730, 740, 760, 770, 610, 620, 700, 420, 560, 450, 430 0.007 77.1 100 100

6 460, 470, 740, 420, 580, 650 0.019 54.8 100 100

10 550, 570, 690, 530, 480, 470, 730, 420 0.044 23.6 98.3 96.7

14 460, 680, 900, 490, 780, 520, 420, 720 0.027 31.8 98.3 95

18 790, 550, 530, 750, 470, 630, 420 0.123 25 98.3 88.3

22 690, 650, 680, 900 0.086 33 91.8 90.2

26 450, 500, 420, 520 0.142 22.4 86.7 83.3

Wheat-Weeds Apr 28 420, 660, 690 0.175 42.5 100 96.8

May 2 770, 760, 620, 700, 470, 420 0.100 79.7 100 100

6 680, 460, 760, 420 0.122 98.1 100 100

10 680, 460, 740, 450, 730 0.266 29.8 93.3 91.7

14 410, 680, 690, 740 0.429 18.3 88.3 85

18 460, 540, 400, 410 0.230 46 96.7 93.3

22 680, 640, 760, 600 0.208 53.2 100 98.4

26 680, 650, 610 0.399 28.1 91.7 86.7

Wheat-Wild Oat April 28 450, 420, 620, 510, 700, 400 0.007 336.5 100. 100

May 2 770, 800 0.243 57.6 90 90

6 690, 470, 890, 420, 610 0.065 97.3 100 100

10 550, 690, 730, 510, 760, 480, 490, 870, 400 0.065 47.6 100 100

14 500, 430, 490, 460, 900, 730, 410 0.064 67.2 100 100

18 700, 710 0.161 96.2 100 100

22 680, 650, 810 0.269 32.6 95 90

26 450, 500, 530, 420 0.159 46.2 100 95

Wheat-Canary grass April 28 400, 670, 680, 410, 500, 660 0.035 64.9 100 100

May 2 420, 890, 850 0.078 140.9 100 100

6 680, 460, 780, 420 0.115 67.1 100 100

10 420, 680, 400, 870, 760 0.258 19.5 97.5 92.5

14 680, 510, 440, 560 0.202 34.5 97.5 95

18 460, 540, 450 0.222 42 97.5 97.5

22 710, 580 0.333 38 97.6 95.1

26 760, 800, 610, 720 0.477 9.6 87.5 82.5

properties of vegetation (Price, 1994; Zwiggelaar, 1998; Smith
and Blackshaw, 2003). Schmidt and Skidmore (2003) demon-
strated that differences in the green peak are important for
discriminating vegetation types characterized by variations
in chlorophyll content, while differences in the near-infrared
plateau are important for distinguishing vegetation types char-
acterized by differences in canopy structure or geometry. The
pigment content in leaves of green plants contributes to the
reflectance values at the green peak of 550 nm. Therefore,
the presence or absence of a green peak and high or low re-
flectance values in a near-infrared spectral window could pro-
vide a means for remote detection, allowing for mapping these
species at different phenological stages (Peña-Barragán et al.,
2006). These reflectance percentage variations could be due to
differences in the timing and duration of every phenological
stage among the different grass species, which increases in the
order of wheat > wild oat = canary grass.

The classification results given in Table I were obtained
from the discriminant analysis model for a different set of
wavelengths that were chosen on the basis of their order of
entry into the stepwise discriminant procedure selection to dis-
criminate between crop and weeds. A number of wavelengths
ranging from 11 to 2 were selected to develop every discrimi-
nant function for separating the spectra in the different scenar-
ios considered. When wheat, wild oat and canary grass were
included in the classification set (set 1), a correct discrimina-
tion percentage of 100% was obtained during the interval from
April 28th to May 6th. On these dates, the most frequently se-
lected wavelength was 420 nm. Wavelengths within the blue
and near-infrared regions were selected nine and seven times,
respectively, and 800–900 nm was not chosen for any of the
discrimination models or dates. This first classification set was
the most difficult and challenging (Cussans, 1995) and is of
interest in cases where both weed species are present in the



694 M.T. Gómez-Casero et al.

field and the precise recognition of wild oat from canary grass
and wheat is important. This scenario occurs when a selective
and more expensive herbicide against only wild oat has to be
applied. The discrimination model corresponding to May 26th
performed the worst, misdiscriminating at around 13.3% of the
spectra, and correctly discriminating 86.7% of the spectra.

When the discrimination set was reduced to weeds and
crops (set 2), 100% discrimination was achieved during the
interval from April 28th to May 6th, and also for May 22nd,
with 420 and 760 nm being the wavelengths most often se-
lected. A total of 12 wavelengths were chosen, and again the
800–900 nm interval was not chosen in any of the discrimina-
tion models. The discrimination model corresponding to May
14th performed the worst, misdiscriminating around 11.7% of
the spectra, and correctly discriminating 88.3%. Discrimina-
tion between weeds and crops was effective, assuming that a
mixed population of wild oat and canary grass was present in
the field and could be controlled by a given herbicide treatment
(Borregaard et al., 2000).

When considering only spectra from wild oat and wheat
(set 3), the highest performance was obtained, with six out
of the eight sampling dates exhibiting 100% classification.
These dates were April 28th and May 6th, 10th, 14th, 18th
and 26th. Due to this larger number of favorable sampling
dates, the number of wavelengths chosen was also greater,
with 400, 420, 450, 490, 500, 510, 690, 700 and 730 nm be-
ing the wavelengths most often selected. A total of 23 wave-
lengths were chosen. Regardless of the input spectra, wave-
lengths in the 690–760 nm range have been reported as being
decisive for vegetation discrimination (Smith and Blackshaw,
2003; Cochrane, 2000). This interval falls within the region
of the spectrum known as the “red edge”, defined by the
boundary between the chlorophyll absorption process in the
red wavelengths and leaf scattering in the near-infrared wave-
lengths. The exact wavelength of the red edge depends on the
chlorophyll concentration (Munden et al., 1994). When wheat-
canary grass spectra were taken into account (set 4), no classi-
fication errors occurred from April 28th to May 6th. On these
sampling dates, the wavelengths most frequently selected were
located in the blue range, from 400 to 460 nm, and in the red
range, from 660 to 680 nm. A total of 11 wavelengths were
chosen.

Several researchers have reported similar results in discrim-
ination studies of different weed and crop species (Vrindts
et al., 2000; Borregaard et al., 2000; Girma et al., 2005; Goel
et al., 2003; Peña-Barragán et al., 2006; López-Granados et al.,
2006). Thus, the number of significant wavelengths varied
with time (Karimi et al., 2005a). Additionally, it has been
shown that the exact wavelength depends on the chlorophyll
concentration (Munden et al., 1994), which corresponds to the
phenological stage (Girma et al., 2005; Peña-Barragán et al.,
2006).

In all of the sets studied, a smaller Wilks lambda (nearest to
0) was obtained when there was a higher separability between
spectra, indicating the discriminatory power of every set of se-
lected wavelengths. Generally, the latter were within the visi-
ble and near-infrared spectral ranges, although those in the vis-
ible region (blue, green and red) were selected more frequently

than those in the near-infrared region. Taking the four classifi-
cation scenarios into account, the three most appropriate dates
in decreasing order were April 28th = May 6th > May 2nd,
when weeds were at the phenological stage of initial seed mat-
uration and wheat was at the advanced seed maturation and
partly green phenological stage. On these sampling dates, sev-
eral ranges of wavelengths were crucial and most often se-
lected for correct discrimination of wheat, wild oat and ca-
nary grass. Thus, wavelengths in the blue range from 420 to
460 nm, the green range from 560 to 580 nm, the red range
from 620 to 650 nm, and the near-infrared (NIR) range from
700 to 740 nm were the most frequently selected to discrimi-
nate wheat, wild oat and canary grass. Generally, there were no
consistent differences between the overall correct classifica-
tion results from the stepwise discriminant analysis and those
from cross-validation, indicating that the classification models
were validated.

These results reveal that there were significant spectral dif-
ferences between wild oat, canary grass and wheat in late phe-
nological stages. Hyperspectral study may lead to opportuni-
ties for the use of airborne hyperspectral sensors. At present,
airborne hyperspectral sensors such as the Compact Airborne
Spectral Imager (CASI) are capable of acquiring data covering
up to 288 wavelengths over a spectral range of 400 to 1000 nm,
and moreover, CASI is user-programable. Therefore, once dis-
criminant analysis of data collected from the ground has been
shown to be a promising approach for the classification of the
spectral signatures of wild oat, canary grass and wheat, future
investigations will be required in order to determine the poten-
tial for analysis of CASI imagery taken when weeds and wheat
are at the correct phenological stages. For this purpose, CASI
should be programed with 13 wavelengths in the spectral range
intervals of blue (420–460 nm), green (560–580 nm), red
(620–650) nm and near-infrared (700–740 nm), rather than
the 288 available wavelengths. However, this kind of imaging
remains prohibitively expensive due to operating costs. Lack
of aerial companies providing a cost-effective product could
make this type of analysis too high priced for farmers or con-
sultants for individual fields.

3.2. Multispectral vegetation indices
and multi-temporal analysis

Mean reflectance curves of wild oat, canary grass and wheat
obtained over time according to the four multispectral bands
currently available on the commercial satellite QuickBird are
shown in Figure 2. There were apparent reflectance differ-
ences in all of the four multispectral bands for wild oat, canary
grass and wheat on different sampling dates, demonstrating
that there was a potential for separating the grass plants stud-
ied. Figure 2 shows that certain visible and near-infrared bands
could be useful in discriminating wheat, wild oat and canary
grass at corresponding phenological stages or sampling dates.
This graph also shows that it might occasionally be necessary
to use vegetation indices to enhance these small spectral differ-
ences when they are not consistent. As indicated by the hyper-
spectral study, several works have shown that weeds are more
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Figure 2. Mean reflectance percentage of wild oat (a), canary grass
(b) and wheat (c), according to crucial sampling dates: April 28th (–),
May 2nd (...), May 6th (- - -) and May 26th (–). Axis X shows the re-
flectance data averaged to represent similar multispectral broad wave-
bands (Blue: 450–520 nm; Green: 521–600 nm; Red 630–609 nm
and Near Infrared: 760–900 nm) available on the commercial satel-
lite QuickBird.

detectable if they senesce at different times compared with the
crop because these changes in the weed life cycle may cause
reflectivity differences (Curran, 1985; Thompson et al., 1991).
These differences in the classification percentages on different
sampling dates may be due to changes in height and canopy
coverage, as well as texture features related to different matu-
rity levels or phenological stages that produce significant dif-

ferences in the reflectance pattern of weeds (Noble et al., 2002;
Burks et al., 2002). Thus, Peña-Barragán et al. (2007) reported
that discrimination efficiency of Ridolfia segetum in sunflower
crops was consistently affected by the phenological stages in
the following order: flowering > senescence > vegetative. The
authors reported classification percentages ranging from 85 to
98%. As happened when using hyperspectral data, stepwise
discriminant analysis was able to identify the restricted multi-
spectral bands or vegetation indices that were useful for iden-
tifying the variations in spectral signatures from every grass
species. Table II shows the multispectral bands and vegetation
indices selected for each of the four classification sets consid-
ered. A number of bands or vegetation indices ranging from
7 to 1 was selected to develop every discriminant function for
separating the spectra in the different scenarios studied.

Correct classification percentages of 100% were reached
for April 28th and May 6th, when individual species were
included in the classification set (set 1). On these two dates,
weeds and wheat were at the phenological stage of initial
seed maturation and green, and advanced seed maturation
and partly green, respectively. The four multispectral bands,
blue, green, red and near-infrared, and also the near-infrared
– red vegetation index, were selected on these sampling dates.
Spectral reflectance differences can be enhanced by using veg-
etation indices because they are able to detect the vegetation
active living phase based on vegetation reflectance contrast be-
tween different wavebands. The fact that 100% correct classi-
fication was achieved from April 28th to May 6th could be
due to the detection of the differences in the phenological
stage from the two weed species and wheat. These differences
were based on the fact that weeds were still in their active
living phase at the phenological stage of initial seed matura-
tion and green, but wheat was at the advanced seed maturation
and partly green stage. The sampling dates from May 10th to
May 18th performed worse, with May 10th being the worst,
misclassifying 30.0% of the spectra and correctly classifying
70.0%. As mentioned for the hyperspectral study, this set is
the most interesting and challenging approach because indi-
vidual species were included in the classification set. In set
1, every grass species was discriminated on most of the sam-
pling dates, showing the highest percentages of classification
of 100%, or at least, over 95%, with the exception of May 10th
and May 18th. Similar results were obtained in the discrimi-
nation of wild oat, canary grass and ryegrass in wheat crops
when neural networks were applied to multispectral data from
one sampling date (López-Granados et al., 2008).

When considering the classification of set 2, which was
comprised of weeds and wheat, the discrimination percentage
was higher than 98% on all sampling dates. The data sets col-
lected between April 28th and May 6th and also between May
10th and May 18th were the best, discriminating the spectra
with 100% accuracy. The four multispectral bands, and also
four of the five spectral indices including red/blue, normalized
difference vegetation index (NDVI) = (near-infrared – red/
near-infrared + red), ratio vegetation index = (near-infrared/
red) and near-infrared – red, were selected from April 28th to
May 6th. However, from May 10th to May 18th, only blue,
green and near-infrared bands, and the normalized difference
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Table II. Multispectral stepwise discriminant results for wavebands and multispectral vegetation indices selected for wild oat, canary grass and
wheat according to different classification sets. See abbreviations in Materials and Methods (Sect. 2.1).

Classification Sampling Multispectral bands and Wilks’ Exact-F Overall Cross

sets dates vegetation indices lambda classification (%) validation (%)

Wheat-Wild Oat- April 28 B, G, NIR, R 0.002 16.4 100 86.7

Canary grass May 2 NDVI, G, NIR, RVI, B 0.047 48.7 98.3 98.3

6 NIR-R, R, B, NIR, G 0.003 196 100 100

10 R, G, NIR 0.351 12.625 70 70

14 R/B, R 0.030 133.5 95 96.7

18 NDVI, NIR, RVI 0.195 23.2 83.3 81.7

22 NIR-R, R, B, NIR 0.002 274.2 98.3 98.3

26 R/B 0.003 8421.7 98.3 98.3

Wheat-Weeds April 28 R/B, G, NIR, R 0.000 14578 100 100

May 2 R/B, NDVI, NIR, RVI 0.003 5294.1 100 100

6 R/B, NIR-R, B, R, NIR, G, RVI 0.096 70.1 100 100

14 (R–G)/(R+G), NIR-R 0.071 370.5 98.3 100

10 R/B, NIR 0.036 758.026 100 100

18 (R–G)/(R+G), B, G, NIR, NDVI 0.023 22.8 100 100

22 R/B, NDVI, R 0.060 295 98.3 100

26 NIR-R, R/B 0.071 370.5 98.3 100

Wheat-Wild Oat Apr 28 B, R 0.123 60.5 100 95

May 2 NDVI 0.297 89.1 92.5 92.5

6 NIR-R, R 0.027 677.6 100 100

10 RVI 0.882 5 57.5 57.5

14 R/B 0.070 507.5 97.5 100

18 RVI, B, G, NIR, NDVI 0.143 40.9 97.5 95

22 NIR-R 0.007 5179.6 100 100

26 R/B 0.004 9956.6 100 100

Wheat- Canary grass April 28 B, R 0.124 60.2 100 100

May 2 B, RVI 0.089 188.3 100 100

6 B, R, NIR, G, RVI 0.112 54.2 100 97.5

10 NDVI 0.774 11.121 75.0 75.0

14 R/B 0.095 361 97.5 100

18 NDVI 0.478 41.4 87.5 85

22 R/B, R 0.078 219.6 97.5 100

26 (R–G)/(R+G) 0.095 361 97,5 100

vegetation index, red/ blue and (red – green)/ (red + green)
vegetation indices were chosen. Generally, the discrimina-
tion between wheat and weeds performed slightly better than
between individual species. According to Yang et al. (2002)
and López-Granados et al. (2008), the observation that the dis-
crimination percentage is generally higher when the classifica-
tion set is comprised of weeds and crops may be due to the fact
that, with two weed species grouped into one class, there are
many more weed spectra than wheat spectra included in the
discrimination process.

When only wheat and wild oat spectral signatures were in-
cluded in the classification of set 3, correct classification per-
centages of 100% were obtained on four sampling dates, i.e.,
April 28th, and May 6th, 22nd and 26th. A smaller number of
bands and vegetation indices was necessary to discriminate ac-
curately between wheat and wild oat. This could be the result

of having high contrast in the mean multispectral reflectance
values between wheat and having only one weed species be-
cause the differences in their phenological stages were more
evident than when the two weed species were grouped as a
single discriminatory class (set 2). Thus, on April 28th, blue
and red bands, but no vegetation indices, were essential for
separating wheat from wild oat. On May 6th the red band and
near-infrared – red index were selected. On May 22nd and
May 26th, only one vegetation index was required to success-
fully discriminate weeds and crops with no misclassification
error, near-infrared – red and red/ blue, respectively.

When the classification set was comprised of wheat and ca-
nary grass (set 4) the best overall classification of 100% was
recorded from April 28th to May 6th. The bands falling within
the visible part of the spectrum (blue, green and red and near-
infrared) were chosen, as well as the ratio vegetation index.
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During this period of time, wheat was at the phenological stage
of advanced seed maturation and partly green and canary grass
was at the initial seed maturation and green stage.

In all of the sets studied, a smaller Wilks lambda (nearest
to 0) was achieved when a higher separability between spec-
tral data was obtained, indicating the discriminatory power of
every set of multispectral bands or multispectral vegetation
indices chosen. In general, considering the four classification
sets, the wavebands selected were within the visible and near-
infrared spectral range, although those in the visible region,
blue, green and red, were selected more frequently than those
in the near-infrared one. Similarly to the hyperspectral analy-
sis, the three most appropriate dates in decreasing order were
again April 28th = May 6th > May 2nd, when weeds were
at the initial seed maturation and green phenological stage,
and wheat was at the advanced seed maturation and partly
green stage. Generally, at the latest phenological stages, the
power of discrimination decreased. There were no consistent
differences between the overall correct classification results
from the stepwise discriminant analysis and those from cross-
validation, indicating the high degree of accuracy of the clas-
sification models.

Multispectral analysis showed that several vegetation in-
dices and broad wavebands corresponding to those of
QuickBird satellite imagery discriminated wild oat, canary
grass and wheat according to phenological stage, as did the hy-
perspectral study. Our results suggest that these weeds might
be discriminated using high spatial resolution satellite images
such as those obtained from QuickBird. Thus, the timeframe
of nine days between April 28th and May 6th would be ideal
for future remote image acquisition under Mediterranean con-
ditions.

Because airborne hyperspectral sensors such as the Com-
pact Airborne Spectral Imager (CASI) are high priced, a less
expensive alternative could be to use QuickBird satellite im-
agers for large-scale weed infestations.

4. CONCLUSION

Our study reveals that there were significant spectral differ-
ences between wild oat, canary grass and wheat in late pheno-
logical stages. A hyperspectral study showed that wavelengths
in the blue (420 to 460 nm), green (560 to 580 nm), red (620
to 650 nm) and near-infrared (700 to 740 nm) regions of the
spectrum were the most frequently selected to discriminate
wheat, wild oat and canary grass. Thus, reducing the number
of wavelengths to thirteen out of 50 allowed for 100% spectral
classification at phenological stages of initial seed maturation
and green for wild oat and canary grass, and at advanced seed
maturation and partly green for wheat. Phenological differ-
ences were significant at these stages. Multispectral analysis
showed that several vegetation indices and broad wavebands
corresponding to those of QuickBird satellite imagery discrim-
inated wild oat, canary grass and wheat at the same phenologi-
cal stages as hyperspectral study. Therefore, we would recom-
mend a timeframe of nine days from April 28th to May 6th,
in our Mediterranean conditions, for future hyperspectral or

multispectral remote image acquisition. It is essential to have
this wide a timeframe for proper mapping of these weeds us-
ing remotely-sensed data, especially taking into account that
cloudy days in spring are very frequent and no remote images
can be taken under these circumstances. These maps may con-
tribute to more efficient and sustainable weed management,
allowing for site-specific herbicide application decisions that
will reduce spray volume and costs for agro-ecological and
economic benefit.
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