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Abstract – Transportation biofuel production in the United States is currently dominated by ethanol from the grain of maize and, to a much
lesser extent, biodiesel from soybeans. Although using these biofuels avoids many of the environmentally detrimental aspects of petroleum-
based fossil fuels, biofuel production has its own environmental costs, largely related to fossil fuel use in converting crops to biofuels and crop
cultivation itself, including ecological damages caused by nitrogen and phosphorus fertilizers, pesticides, and erosion. A new generation of
biofuels derived from lignocellulosic sources offers greatly reduced environmental impacts while potentially avoiding conflicts between food
and energy production. In particular, diverse mixtures of native prairie species offer biomass feedstocks that may yield greater net energy gains
than monoculture energy crops when converted into biofuels, while also providing wildlife habitat and enriching degraded soils through carbon
sequestration and nitrogen fixation. Ultimately, as demand for both food and energy rise in the coming decades, greater consideration will need
to be given to how land can best be used for the greater benefit of society.
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1. INTRODUCTION

Oil, coal, and natural gas currently supply around 90%
of global energy use (Energy Information Administration,
2006). Rising energy prices, energy security concerns, long-
run supply, climate change, environmental degradation, and
impacts on human health are among the many concerns raised
by this overwhelming reliance on fossil fuels (Ezzati et al.,
2004; Schröter et al., 2005; Hansen et al., 2006; McMichael
et al., 2006; Stern, 2006a,b). These problems have spawned
efforts to develop renewable energy sources such as solar
(Hoffert et al., 2002; Shinnar and Citro, 2006), wind (Lenzen
and Munksgaard, 2002; Hoogwijk et al., 2004; Archer and
Jacobson, 2005), hydrogen (Deluga et al., 2004; Jacobson
et al., 2005), and biomass (Larson, 2000; Hamelinck and Faaij,
2006; Herrera, 2006). Although renewable energy sources
have promise, three important questions need to be resolved
before society can count on them as a sustainable energy sup-
ply. First, how much energy can renewable sources provide,
and will this amount significantly reduce fossil fuel use while
meeting rising energy demands to support a growing and in-
creasingly affluent world population (Berndes et al., 2003;
Hoogwijk et al., 2003; Meyers and Kent, 2003; Dorian et al.,
2006; Sims et al., 2006; de Vries et al., 2007)? Second, can
renewable energy be supplied at a reasonable cost? Third, to
what degree will alternative energy sources reduce environ-
mental damage relative to fossil fuel use (Chow et al., 2003;
Keith et al., 2004)?

* Corresponding author: hill0408@umn.edu

Here I explore one aspect of renewable energy, namely the
environmental consequences of producing the biological ma-
terials used as feedstocks for the transportation biofuel indus-
try in the United States. I focus this review on the possible
benefits of transitioning biofuel production from crops tradi-
tionally cultivated for food to those developed as environmen-
tally beneficial bioenergy sources. I first evaluate the current
state of biofuel production by assessing various environmen-
tal aspects of the two predominant US biofuels, maize grain
ethanol and soybean biodiesel. I then investigate the advan-
tages that a second generation of transportation biofuels, de-
rived primarily from lignocellulosic biomass, can provide over
these first-generation food-based biofuels.

2. US BIOFUEL PRODUCTION FROM FOOD
CROPS

In the following section, I explore the potential for the two
dominant biofuels in the United States, maize grain ethanol
and soybean biodiesel, to offset fossil fuel use, and then dis-
cuss various environmental impacts of their production and
use.

2.1. The current state of us biofuel production

The United States transportation biofuel market is dom-
inated by domestically-produced ethanol derived from the
grain of maize (Zea mays ssp. mays) (Fig. 1). To produce

Article published by EDP Sciences and available at http://www.edpsciences.org/agro or http://dx.doi.org/10.1051/agro:2007006

http://www.edpsciences.org/agro
http://dx.doi.org/10.1051/agro:2007006


2 J. Hill

Figure 1. Volunteer maize in a field of soybeans, indicative of the
dominant crop rotation in the Midwest US. (Jason Hill).

ethanol, starch from maize kernels is broken down into sug-
ars, which are then fermented and distilled. The remainder
of the kernel is commonly processed into distiller’s dry grain
with solubles (DDGS), which serves as a high-quality animal
feed (Spiehs et al., 2002; Lumpkins et al., 2004). The other
major US transportation biofuel is soybean (Glycine max)
biodiesel, which displaces petroleum diesel. In biodiesel pro-
duction, soybeans are crushed to separate the oils from the
meal, which is used primarily as a protein source in animal
feed. The oils are then converted to biodiesel and glycerol via
a transesterification reaction with the addition of catalysts and
alcohol reagents (Van Gerpen, 2005; Haas et al., 2006; Meher
et al., 2006).

Hill et al. (2006) examine the degree to which these two
biofuels displace fossil fuels in the US transportation sector.
In 2005, approximately 4.0 × 1010 kg of maize were used to
produce 1.5 × 1010 L of ethanol in the US, and the oil from
approximately 1.3 × 109 kg of soybeans was used to gener-
ate 2.6 × 108 L of biodiesel. In terms of each fuel’s gross en-
ergy yield, these volumes of maize grain ethanol and soybean
biodiesel have offset 1.7% and 0.1% of US gasoline and diesel
use, respectively. Since fossil fuels are used both on farms
and at conversion facilities to produce these biofuels, how-
ever, these gross energy values do not reflect the total “new
energy” they contribute. The fossil energy invested in produc-
ing each of these biofuels must be subtracted from the gross
energy yield to calculate the net energy yield. This fossil en-
ergy expenditure comes mainly from the petroleum diesel used
to power farm equipment and tractor-trailers for transporta-
tion, the natural gas burned to provide process heat at the con-

Figure 2. The net energy balance of maize grain ethanol as estimated
by six recent studies, most recently by Hill et al. (2006). All eleven
input and output categories are ordered as they are shown in the leg-
end, but some are so small as to be imperceptible. Only the estimate
of Hill et al. (2006) includes all eleven categories. The estimated net
energy balance (the sum of the outputs minus the sum of the inputs)
from each study is shown by the placement of a black dot.

version facility, and the coal combusted to produce electric-
ity. Maize and soybean production also require agrichemicals,
barns, tractors, and other farm machinery that in turn require
energy for their manufacture. Biofuel production requires the
labor of farmers and factory workers who, with their families,
consume energy in a variety of forms. Given current agricul-
tural practices and biofuel industrial conversion standards, the
production of both of these biofuels yields more energy than
in the fossil fuels to produce them, with maize grain ethanol
and soybean biodiesel yielding 25% and 93% more, respec-
tively. Therefore, the US net energy offset in 2005 by produc-
ing maize grain ethanol was approximately 0.3% of gasoline
use and 0.05% of diesel use from soybean biodiesel.

Whether maize grain ethanol returns more energy than is
invested in its production has long been a source of debate,
stretching back decades (Chambers et al., 1979). A compar-
ison of recent, independent estimates of its net energy bal-
ance reveals two key areas of disagreement (Fig. 2). First,
studies have varied the energy input boundaries for the life
cycle of ethanol production, most notably in categories con-
cerning energy expenditures to produce capital requirements
such as farm equipment and conversion facilities. These in-
put categories are rightfully included in net energy balance
analyses because farm equipment is used directly in biofuel
crop production and biofuel production facilities would not
be built were it not for biofuel production itself. Second,
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there is variation in the estimates of the specific energy inputs
themselves, both for widely-accepted categories and those
less commonly included. Using current, well-supported, pub-
lic data on farm inputs and ethanol production plant efficien-
cies resolves many of these discrepancies (Farrell et al., 2006;
Hill et al., 2006).

Several environmental benefits come from replacing fossil
fuels with maize grain ethanol and soybean biodiesel. Dis-
placing petroleum-derived transportation fuels with biofuels
avoids the negative effects of oil drilling, refining, and combus-
tion. Further, the CO2 released when combusting plant-derived
biofuels was removed from the atmosphere during crop growth
whereas burning fossil fuels introduces “new” CO2 into the
atmosphere, thus contributing to global warming. Therefore, a
biofuel produced from crops grown with conventional farming
practices, which lead to essentially no soil carbon sequestra-
tion (Robertson et al., 2000), would be carbon neutral were it
not for the fossil fuels combusted in biofuel production. Even
if carbon neutral, however, biofuel production may not be
global climate change neutral. Biofuel production from maize
and soybeans may increase emissions of nitrous oxide (N2O),
a potent greenhouse gas, from maize and soybean croplands.
Under current farm and biofuel industry production standards,
maize grain ethanol releases approximately 12% fewer green-
house gases than gasoline, while soybean biodiesel releases
approximately 41% less greenhouse gases than diesel because
of lower farm and conversion facility fossil energy require-
ments (Hill et al., 2006). Farrell et al. (2006) reported a similar
18% savings for maize grain ethanol while noting that shifting
conversion facility fossil fuel use from natural gas, as is com-
monly used, to coal would lead maize grain ethanol to be a net
source that is approximately 2% greater than gasoline. These
estimates assume that the cropland used to produce these bio-
fuels is in equilibrium for carbon loss and gain. Converting
land from any use that has a net sequestration of carbon (e.g.,
intact ecosystems or certain lands in conservation reserve) to
crop production for biofuels would decrease this greenhouse
gas savings and might cause the biofuel to release more green-
house gases than the fossil fuel it replaced.

Biofuel production can introduce other negative envi-
ronmental consequences that do not occur with fossil fuel
production, namely those directly associated with crop pro-
duction and conversion of these crops to biofuels. Here, the
environmental effects of maize and soybean production are
rightfully ascribed to the biofuels derived from them. Typi-
cal cultivation practices employed in major maize and soybean
producing states use 7 g and 0.1 g of nitrogen (N) fertilizer
per MJ of energy gained in producing maize grain ethanol and
soybean biodiesel, respectively (Hill et al., 2006). Similarly,
2.6 g and 0.2 g of phosphorus (P) fertilizer are applied per
MJ of energy gained in producing maize grain ethanol and
soybean biodiesel, respectively. Eutrophication from N and
P of agricultural origin moving to surface and ground wa-
ter (Powers, 2005) leads to loss of diversity (Carpenter et al.,
1998; Suding et al., 2005), changes in aquatic ecosystem struc-
ture and function (Smith et al., 1999), drinking water con-
tamination (Socolow, 1999), and water quality degradation
including the anoxic zone in the Gulf of Mexico (McIsaac

et al., 2002; Dodds, 2006). In addition to these fertilizers,
0.1 g and 0.01 g of pesticides are applied per MJ of en-
ergy gained in producing maize grain ethanol and soybean
biodiesel, respectively. For maize, approximately 36% of this
amount is atrazine, 23% acetochlor, 16% metolachlor, and 8%
glyphosate, and around 82% of pesticide application to soy-
beans is glyphosate (United States Department of Agricul-
ture, 2003 and 2005). Also, both maize and soybean farming
cause erosion and sedimentation (Johnson et al., 2006). Wa-
ter availability is also of concern both for crop irrigation in
drier climates and for converting feedstock conversion to bio-
fuel (Berndes, 2002; Oki and Kanae, 2006).

2.2. Impacts of increasing us biofuel production

Both maize grain ethanol and soybean biodiesel are cur-
rently used primarily as fuel additives rather than as biofu-
els themselves. When blended at low levels with gasoline or
diesel, ethanol serves as an oxygenate, helping engines meet
the emission requirements of the US Clean Air Act of 1990
(Fernandez and Keller, 2000; Hansen et al., 2005). Maize grain
ethanol production is growing rapidly due to state mandates
for replacing methyl tert-butyl ether (MTBE), a gasoline oxy-
genate that pollutes groundwaters, federal production subsi-
dies and incentives (e.g., a $0.14/L federal volumetric ethanol
excise tax credit), and a tariff on importing ethanol from for-
eign sources ($0.14/L). Biodiesel blended into diesel substan-
tially reduces tailpipe emissions of many criteria pollutants
including carbon monoxide (CO), oxides of sulphur (SOX),
hydrocarbons (HC), and particulate matter (PM) (Wang et al.,
2000; Nabi et al., 2006).

Both maize and soybean prices rose in 2006 as a result
of increased biofuel demand, with prices for maize doubling
between 2005 and the beginning of 2007. As demand for al-
ternative fuels continues to rise, competition between using
these crops for food and fuel purposes will become more pro-
nounced. Currently, about 50% of the US maize crop is used
to feed livestock, while the remainder is processed for hu-
man consumption, exported, or fermented into ethanol (United
States Department of Agriculture, 2006). Likewise, 90% of
domestically-produced soybean meal is used for livestock feed
(United States Census Bureau, 2006a), and soybean oil consti-
tutes 80% of US fat and oil consumption (United States Cen-
sus Bureau, 2006b). As a consequence of increased ethanol
demand, more acreage is expected to be planted to maize at
the expense of other crops, namely soybeans (FAPRI, 2006).
However, changing the two-year maize and soybean rotation
that is predominant in the US Midwest to continuous maize
not only increases total fertilizer and pesticide use, but also
decreases soil quality and yield (Karlen et al., 2006). Still, uti-
lizing even substantial portions of US maize and soybean pro-
duction would have but a minor effect on domestic energy mar-
kets. Devoting all US maize and soybean production to ethanol
and biodiesel production would yield just 12% and 6% of US
gasoline and diesel demand in terms of gross energy, respec-
tively, with net energy gains of just 2.4% and 2.9% (Hill et al.,
2006).
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3. MAXIMIZING THE ENVIRONMENTAL
BENEFITS OF CURRENT BIOFUELS

Both government mandates for biofuel use and develop-
ment of a domestic biofuel production industry based on maize
grain ethanol and soybean biodiesel have established these
two biofuels as the dominant renewable transportation alter-
natives in the near-term. Efforts at various stages of their pro-
duction and use can be made to maximize their environmental
performance.

The environmental performance of current biofuels can be
augmented by utilizing more sustainable crop production prac-
tices that increase resource use efficiency and integrate en-
lightened management practices (Tilman et al., 2002; Cook,
2006). These include reduced or no-till cultivation (West and
Post, 2002; Kim and Dale, 2005a; Grandy et al., 2006), or-
ganic (Drinkwater et al., 1998; Kramer et al., 2006) and more
efficient (Matson et al., 1998; Crews and Peoples, 2005) fertil-
ization, and the use of cover crops (Kim and Dale, 2005b).
Although it has not been firmly established, applying con-
servation tillage to agricultural lands currently farmed un-
der conventional tillage may sequester carbon in soils (West
and Marland, 2002; Johnson et al., 2005), perhaps leading to
one of seven “stabilization wedges” needed to stabilize atmo-
spheric CO2 emissions if adopted on a global basis (Pacala
and Socolow, 2004). Reduced erosion and decreased farm fos-
sil fuel use for soybean farming in recent years (i.e., between
the major biodiesel life cycle analyses of Sheehan et al. (1998)
and Hill et al. (2006)) is largely due to fewer passes over land
with farm implements and greater adoption of reduced tillage
practices, in part attributable to widespread planting of soy-
beans genetically modified for glyphosate resistance (Cerdeira
and Duke, 2006). This transition to glyphosate-dominated soy-
bean herbicide use is also associated with lower environ-
mental damage from pesticide toxicity (Nelson and Bullock,
2003), although many long-term ecological consequences of
genetically modified organisms are as yet unrealized (Andow,
2003).

Other biofuel feedstocks include waste cooking oils and fats
(Zhang et al., 2003; Cvengroŝ and Cvengroŝová, 2004) and
residues from forest industries (Parikka, 2004). Crop waste
(i.e., that lost during handling, storage, and transport between
farms and households) and agricultural residues (i.e., the crop
biomass remaining after the consumable portion is removed)
also provide attractive raw materials for biofuel production
(Gallagher et al., 2003; Kim and Dale, 2004). While using
crop waste has the benefit of avoiding the conflict between
food and fuel uses for the crops themselves, using agricultural
residues with sensitivity to environmental concerns maximizes
the use of additional products generated via high-input, inten-
sive farming. In the Midwest US, residual maize stover can
be harvested and combusted directly or converted to ethanol
(Aden et al., 2002; Hoskinson et al., 2006) in a process akin
to fermenting the sugars in sugarcane to ethanol while burn-
ing the residual bagasse to supply process heat and electric-
ity (Borrero et al., 2003; De Olivera et al., 2005; Botha and
von Blottnitz, 2006). Stover removal may reduce soil organic

carbon storage, reduce productivity, and increase soil erosion,
however (Linden et al., 2000; Hooker et al., 2005; Dolan et al.,
2006; Johnson et al., 2006), thus requiring careful consider-
ation of stover removal rates (Wilhelm et al., 2004). Using
stover as a valuable coproduct of maize production also raises
the possibility of tapping extant maize genetic diversity for de-
sirable energy characters such as higher cellulose fractions or
a perennial habit (Cox et al., 2006). Even if breeding for such
characteristics leads to some degree of grain yield loss, such
hybrids may prove economically viable depending on stover
prices in a biofuel market.

Although both maize grain ethanol and soybean biodiesel
are valuable biofuel additives, neither can do much to dis-
place fossil fuels, and devoting any amount of these crops
to biofuels has a disproportionately large effect on food mar-
kets. Given that current biofuel production is limited and that
which is available comes at a considerable environmental price
(De Oliveira et al., 2005), it is prudent to consider how biofu-
els can best be integrated into transportation fuel supplies. For
example, Kim and Dale (2006) conclude that, under biofuel
supply constraints and current vehicle fuel efficiencies, ethanol
used in an E10 blend (10% ethanol and 90% gasoline by vol-
ume) provides greater environmental benefits in criteria pollu-
tant release than an E85 blend (85% ethanol and 15% gasoline
by volume). Similarly, the potential for soybean biodiesel to
displace diesel use is limited, but diesel blends with as little as
1–2% biodiesel provide essential lubricity lost by the removal
of sulphur in ultra-low sulphur diesel formulations (Hu et al.,
2005; Knothe and Steidley, 2005). Blending available biofuel
stocks at low levels into conventional fuels might maximize
their environmental benefits, therefore, especially in light of
current supply constraints.

Employing less intensive cropping methods, using agricul-
tural wastes and residues, and properly integrating biofuels
into conventional supplies as fuel additives rather than fuel
substitutes serve to minimize the negative environmental con-
sequences of current biofuel production. However, making
biofuels that will be both environmentally superior to fossil fu-
els and displace significant quantities of fossil fuel use will re-
quire exploration of plant resources other than those that have
been domesticated and bred primarily for their food, feed, or
forage value. In doing so, there even is the prospect of uti-
lizing and improving degraded and marginal lands on which
food crop production is neither economically viable nor envi-
ronmentally sound.

4. ALTERNATE US BIOFUEL FEEDSTOCK
PRODUCTION METHODS

Growing recognition of the limited ability of food crop-
based biofuels to offset fossil fuel use has increased aware-
ness that a variety of new energy feedstocks will be needed if
plant-based biofuels are to make any sort of significant impact
on alleviating domestic reliance upon conventional transporta-
tion fuels. Increased attention is being given to lignocellulosic
biomass as the preferred feedstock for the second generation
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of biofuels (Schubert, 2006). In the following section, I pro-
vide a brief overview of how lignocellulosic biomass can be
used to supply transportation energy, the various energy crops
that are being developed, and the potential for these biofuels
to offset fossil fuel use. I follow this with more detailed con-
sideration of how diverse mixtures of native prairie species
in US grasslands can provide a sustainable supply of biofuel
feedstock while simultaneously improving degraded lands and
providing habitat for wildlife.

4.1. Biofuels from lignocellulosic biomass

Lignocellulosic biomass, which consists of the cellulose,
hemicellulose, and lignin compounds found in plant cell walls
that comprise the bulk of herbaceous and woody vegetative
tissues (McKendry, 2002), provides a valuable and versatile
feedstock for the production of a variety of biofuels (Huber
et al., 2006). It can be combusted directly to provide electric-
ity, itself an emerging transportation fuel, and process heat
(Mann and Spath, 2001; Demirbaž, 2003; Robinson et al.,
2003; Mani et al., 2006; Qin et al., 2006). Biomass can also
be converted to ethanol through enzymatic hydrolysis of the
cellulosic fractions into sugars (Foyle et al., 2006) followed
by fermentation of these sugars as in maize grain ethanol pro-
duction, with the lignin fractions being burned to provide heat
and electricity (Lynd et al., 1991; Wyman, 1999; Lynd et al.,
2002; Hamelinck et al., 2005). Biomass can also be gasified
to produce hydrogen (Zhang et al., 2004; Kumabe et al., 2007
Ptasinski et al., 2007), electricity, synthetic hydrocarbons such
as gasoline and diesel through subsequent Fischer-Tropsch
synthesis (Spath and Dayton, 2003; Wang et al., 2005; Zwart
and Boerrigter, 2005), or other biofuels such as dimethyl ether
(Semelsberger et al., 2006). Other valuable products may also
be generated in such “biorefinery” streams (Wyman, 2003;
Montgomery, 2004; Ragauskas et al., 2006). New technolo-
gies for producing biofuels from biomass are rapidly emerg-
ing, including the development of engineered yeast for in-
creased ethanol yields (Alper et al., 2006), utilization of new
microorganisms for ethanol production (Seo et al., 2005), pre-
treatments for cellulosic digestion (Mosier et al., 2005), fuel
cells for converting sugars directly to electricity (Chaudhuri
and Lovley, 2003), and catalysts for more efficient conversion
of biomass to syngas (Salge et al., 2006).

Various plant species are currently used or are being de-
veloped for biomass production. Unlike maize and soybeans,
which are annuals, lignocellulosic bioenergy crops are typi-
cally perennials, including both woody species such as wil-
lows (Salix spp.) (Volk et al., 2004; Keoleian and Volk,
2005; Volk et al., 2006), poplars (Populus spp.) (Husain
et al., 1998; Tuskan et al., 2006), and other hardwoods
(Geyer, 2006), and herbaceous species such as switchgrass
(Panicum virgatum) (Parrish and Fike, 2005; Samson et al.,
2005; Fike et al., 2006), big bluestem (Andropogon gerardii)
(Hallam et al., 2001), reed canarygrass (Phalaris arundinacea)
(Lewandowski et al., 2003), and Miscanthus (Miscanthus spp.)
(Clifton-Brown et al., 2004; Heaton et al., 2004). Of these,
switchgrass has received particular attention, having been cho-

sen by the US Department of Energy’s Bioenergy Feedstock
Development Program as a model energy crop due to its high
biomass yields, broad geographic range, efficient nutrient uti-
lization, low erosion potential, carbon sequestration capability,
and reduced fossil fuel input requirements relative to annual
crops. (McLaughlin and Walsh, 1998; McLaughlin and Kszos,
2005).

Lignocellulosic biomass can be produced with significant
environmental advantages over food-based crops, but it is
not without potential problems. Particular care must be taken
when selecting species for use as biofuel crops, for example,
as many of the traits leading to the success of bioenergy crops,
such as C4 photosynthesis, long canopy duration, lack of pests
and diseases, and rapid spring growth, are also associated with
invasiveness potential (Raghu et al., 2006). Many lignocellu-
losic crops can be grown with low agrichemical and fossil fuel
inputs, but intensive cropping practices may also be employed
with high or even excessive fertilizer and pesticide inputs (Fike
et al., 2006; Parrish and Fike, 2005). Converting land from an-
nual crop production into stands of perennial grasses in the
Conservation Reserve Program (CRP) has restored the ability
of these soils to sequester carbon (Gebhart et al., 1994), but
although carbon can also be sequestered in switchgrass stands
managed for maximizing biomass production with high lev-
els of nitrogen fertilization (Frank et al., 2004; Liebig et al.,
2005), release of N2O into the atmosphere may significantly
offset the greenhouse gas mitigation potential of such lands
(Conant et al., 2005). The spatial pattern of lignocellulosic
crop production can also have a large impact on wildlife habi-
tat and biodiversity preservation (Cook et al., 1991; Leemans
et al., 1996; Green et al., 2005).

Even though the current contribution of lignocellulosic bio-
fuels from both crop residues and dedicated energy crops to
the US transportation energy supply is negligible, the poten-
tial exists for them to rival or surpass crop-based biofuels.
Perlack et al. (2005) recently estimated that 6.8 × 1010 kg of
maize stover can currently be sustainably harvested in the US.
Assuming a demonstrated ethanol yield of 0.255 L per kg of
biomass (Sheehan et al., 2004), this would provide 1.7×1010 L
of ethanol, slightly greater than 2005 US ethanol production
from maize grain, plus an additional electrical energy equiva-
lent of 1.6 × 109 L of ethanol to be sold back to the grid. This
would provide enough energy to offset 2.2% of US gasoline
use, and assuming an average net energy balance ratio of 5
for lignocellulosic ethanol production (Hammerschlag, 2006),
the net contribution would be 1.8%, greater than current the
net contribution of maize grain ethanol (0.3%). According to
Milbrandt (2005), planting every acre of land currently in the
CRP into switchgrass would yield approximately 7.6× 1010 kg
of biomass. This would provide approximately 1.9 × 1010 L of
ethanol and 1.8 × 109 L of ethanol energy equivalent electric-
ity, or enough to offset 2.5% of gasoline use with a net contri-
bution of 2.0%. In addition to greater net energy gains than
maize grain ethanol, both maize stover ethanol and ethanol
from switchgrass grown on lands not currently in production
would have the benefit of avoiding competition with food mar-
kets for biofuel feedstocks.
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Figure 3. Blackeyed Susan (Rudbeckia hirta), wild bergamot
(Monarda fistulosa), and big bluestem (Andropogon gerardii) in a
diverse restored prairie in Minnesota, USA. (Clarence Lehman).

4.2. The promise of prairies

Energy crops, both food-based and lignocellulosic, are typi-
cally cultivated as monocultures, but enhanced environmental,
energetic, and economic benefits may be realized by grow-
ing biomass in polycultures (Fig. 3). Tilman et al. (2006) re-
cently demonstrated the value of biodiversity in biofuel pro-
duction from grassland biomass (Fig. 4). They reported that
annual production of native prairie plant biomass increased
with species diversity, with plots planted to sixteen species
yielding 238% more aboveground biomass than plots planted
to a single species on average. Not only did more diverse plots
become increasingly more productive over time relative to less
diverse plots, but they also provided greater stability in year-
to-year yield. Even though this experiment was conducted on
degraded land, converting the biomass from the highly di-
verse plots to ethanol would generate a net energy gain of
17.8 GJ ha−1, comparable to the average yield of 18.9 GJ ha−1

for maize grain ethanol produced on fertile farmland (Fig. 5A).
In addition, whereas maize grain ethanol yields 25% more fos-
sil energy than invested in its production, producing ethanol
from the highly diverse prairie biomass harvested in this ex-
periment would yield 440% more.

The environmental benefits of prairie biofuels are numer-
ous. Unlike maize and soybeans, a prairie requires little or no
fertilizer inputs. Nitrogen, which is cycled more efficiently in
prairies than in cultivated maize cropland (Brye et al., 2001),
can be supplied by native legumes. Phosphorus and other nu-
trients would need to be supplied only at low levels due to both
efficient use in prairie plants and translocation of many ele-
ments to root systems late in the season before aboveground
biomass is harvested (Fig. 5B). Unlike maize and soybean

Figure 4. An aerial view of the biodiversity experiment at Cedar
Creek Natural History Area in Bethel, Minnesota, USA, reported in
Tilman et al. (2006). The 9 m × 9 m plots are planted to either 1, 2,
4, 8, or 16 species randomly drawn from a set of native prairie plants.
(David Tilman).

cropland, an established prairie requires no herbicide or insec-
ticide application as it resists invasion from plants, pathogens,
and herbivorous insects (Fig. 5C). This encourages diverse
ecosystems, reduces input costs, and provides a valuable form
of insurance to farmers (Heal et al., 2004). Harvesting a prairie
also mimics natural burning, which is necessary for keeping
out invading woody species, which can reduce soil carbon stor-
age (Jackson et al., 2002). A prairie can provide habitat for
wildlife, and biomass harvest can be timed to occur only after
birds have fledged (Murray et al., 2003; Roth et al., 2005; Se-
mere and Slater, 2007). Restoring prairie for biofuel use can
produce a valuable energy feedstock while offering valuable
ecosystem services (Clergue et al., 2005; Foley et al., 2005).
These ecosystem services include pollinator habitat for ser-
vice to nearby crop fields (Greenleaf and Kremen, 2006) and
mitigation of agricultural runoff from traditional farming by
reducing flow volumes and increasing nutrient use opportu-
nity (Huggins et al., 2001), akin to similar services provided
by wetlands (Hey et al., 2005).

One of the most vital ecosystem services provided by a di-
verse prairie is its ability to serve as a substantial carbon sink,
reducing atmospheric carbon and improving degraded land.
Approximately 1/3 of the total prairie plant biomass is above
ground and available for harvesting each year, but the other 2/3
below ground continues to grow, sequestering carbon and sup-
porting a rhizosphere that also decreases atmospheric carbon
(Six et al., 2006). In total, about 4.4 Mg ha−1 yr−1 of CO2 are
sequestered each year in the Cedar Creek prairie, far exceed-
ing the 0.3 Mg ha−1 yr−1 of CO2 released when combusting
the fossil fuels used to produce biofuels from the aboveground
biomass. Therefore, as the carbon released when combusting
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Figure 5. Comparison of energetic and environmental aspects of bio-
fuels produced from food-based crops and low agricultural input,
highly diverse prairie biomass. Biofuels produced from biomass in-
clude electricity, ethanol, and synfuel hydrocarbons. Greenhouse gas
(GHG) reductions are estimated relative to the fossil fuels that each
of the biofuels displaces. Adapted from Tilman et al. (2006).

the biofuel was initially sequestered from the atmosphere in
the aboveground biomass itself, biofuels from prairie grasses
are “carbon negative” (Fig. 5D). On the other hand, with re-
spect to atmospheric carbon, both maize grain ethanol and
soybean biodiesel are “carbon positive”, creating a net re-
lease of greenhouse gases, albeit less than fossil fuels they
displace. Intensive farming has led to massive carbon loss in
soils (Huggins et al., 1998), and the ability of diverse prairies
to sequester carbon and build soils (McLauchlan et al., 2006)
can restore fertile land and increase its value (Daily, 1995; Lal,
2004).

Implementing large-scale biofuel production from diverse
prairie biomass will require consideration of various prac-
tical and economic factors. First, supplies of both native
grass and forb seed are limited, and quantities sufficient to
plant available lands will take many growing seasons to pro-
duce. Second, various technical aspects of utilizing biomass
of diverse species for biofuel production are unknown, al-
though recent studies have considered both the digestibility
(Weimer and Springer, 2006) and combustion (Florine et al.,
2006) of diverse grasses. Third, as with all lignocellulosic

biomass sources, development of an infrastructure for trans-
porting biomass to biofuel production facilities will be criti-
cal (Atchison and Hettenhaus, 2004; Kumar and Sokhansanj,
2006; Morrow et al., 2006). Fourth, a subsidy and incen-
tive policy will be needed to foster adoption of lignocellu-
losic biomass, much as was done to encourage, and is still
required for, the current generation of food-based biofuels
(Tyson, 2005). Such a policy might allow for harvesting prairie
biomass for biofuels production on land in set-aside pro-
grams (e.g., CRP and CSP lands) while still receiving sub-
sidy payments. Any such policy could be tailored to encour-
age management practices benefiting environmental concerns
(Walsh et al., 2003) and outdoor recreation (Sullivan et al.,
2004). A US carbon trading market that rewards farmers for
conservation-friendly practices might also provide sufficient
monetary incentive for prairie biomass farming (McLaughlin
et al., 2002; Schneider and McCarl, 2003; Kurkalova et al.,
2004).

The demonstrated potential for producing biofuels from di-
verse mixtures of prairie species raises many related ques-
tions. How, for example, do interactions among species com-
positions and management practices affect both productivity
and ecosystem services in grasslands (Camill et al., 2004;
Guo, 2006), especially when restored and managed specifi-
cally for biofuel production? What are the relative benefits
of planting fertile farmland to prairie rather than food crops
for biofuel production? Can prairie biomass production strate-
gies be combined with grazing opportunities for mutual bene-
fit? How will grassland productivity respond to global warm-
ing (De Broeck et al., 2006)? With the positive relationship
between biodiversity and ecosystem productivity now firmly
established (Hooper et al., 2005; Cardinale et al., 2006), are
other native flora also suitable for biofuel production while
maintaining a healthy, functioning ecosystem?

5. CONCLUSION

The shift to automobiles and airplanes marked the end of
the era when transportation biofuel consisted mainly of the hay
fed to horses, the ordinary diets of pedestrians, and wood used
to power many steamboats and locomotives. As petroleum
began to meet our transportation energy needs, agricultural
practices focused more on those crops consumed by humans
or fed to livestock and poultry. The recent surge in interest
for using biological material to offset petroleum use has wed
together food and transportation energy concerns once again.
This presents both challenges and opportunities. Conflict over
using crops such as maize and soybeans for food and bio-
fuels will increase as demands for both end products rise in
the future. Demand for agricultural products may very well be
the major cause of future nonclimatic global change (Tilman
et al., 2001). In the near term, gains in conservation and effi-
ciency can have much greater effect on slowing climate change
than even radical shifts in agricultural practices (Jackson and
Schlesinger, 2004). In the long term, this linking together of
food and fuel markets in a time of increasing awareness of the
benefits of sustainability will allow us to reevaluate current
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land use and implement strategies that lead to truly sustain-
able food and biofuel supplies (Robertson et al., 2004; Robert-
son and Swinton, 2005; Reijinders, 2006). The actual benefits
of this shift will be realized more fully when biofuel produc-
tion no longer relies upon fitting our energy production into
our current agricultural system but rather adapting our agri-
cultural practices in an environmentally sensitive manner to
supply both our food and energy needs.
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