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Abstract – The agrarian policy of the European Union tends to support sustainable agriculture, subsidising only cropping systems that are
implemented with specific agro-environmental measures. These actions require a precise follow-up of the crops and of the agricultural practices
over a large surface. To that end, remote-sensing techniques are unique and cost-effective. We developed here a digital land cover classification
in the Mediterranean dryland, mapping and assessing the main cropping systems and some agro-environmental measures such as cover crops
in olive orchards and crop stubble for reducing soil erosion. We analysed a high spatial resolution satellite image (QuickBird) taken in early
summer around Montilla, southern Spain. Images of the four broad wavebands, six band ratios and three vegetation indices were extracted
from the satellite image and studied for the discrimination of nine land covers. The classified regions were determined by applying adequate
boundary digital values to the selected images. Our results show that the land covers were discriminated with an overall accuracy of about
90%. Images of the normalised difference vegetation index and the ratio vegetation index discriminated between vegetation and non-vegetation
zones. The visible wavebands discriminated roadside trees and herbaceous crops, and the near-infrared waveband highways and urban soil
plus bare soil. The ratios blue/green and red/green were useful for distinguishing non-burnt stubble. The burnt stubble area was discriminated
through the adapted burnt area index. Olive orchards were classified once the regions of vegetation, non-vegetation and non-burnt stubble were
extracted. This technology will be a useful tool of agroecology control for the administration and will be a substitute for the current follow-up
of cropping systems by ground visits. It can also be used on a farm level in order to help farmers and technicians to make decisions about the
management of sustainable agricultural practices.

burnt stubble / bare soil / cover crops / crop stubble / land cover classification / no-tillage / olive orchards / QuickBird

1. INTRODUCTION

Nowadays, the European Union subsidises most cropping
systems and simultaneously requires the implementation of
certain agro-environmental measures, such as the non-burning
of stubble, cover crops in tree orchards and no-tillage tech-
niques (Anonymous, 2003, 2004). These agrarian policy ac-
tions require a precise follow-up of the crops and of certain
sustainable agricultural practices in each cultivated plot. Cur-
rent methods to map agricultural practices consist of drive-
by, or what is commonly referred to as windshield surveys,
to sample fields on a county-by-county basis. The drive-by
method consists of designing transects, from which the results
are used to estimate or extrapolate the agricultural system used
in the entire county (South et al., 2004). In southern Europe,
the follow-up of cropping systems by the European Union ad-
ministrations has been achieved by sampling and ground vis-
its to the selected farms. However, this procedure of vehicle-
mounted and real-time systems covers relatively small areas
and is time-consuming and very expensive compared with
remote-sensing systems. Furthermore, on a large scale ground
visits are a less reliable methodology than the interpretation

* Corresponding author: pa2pebaj@uco.es

of remotely-sensed images, since the former does not provide
consistent records of land-cover estimation. Digital land cover
classification of a remotely-sensed image is an alternative to
the ground visits and the visual interpretation and consists of
the association of areas fitting some similarity criteria; for ex-
ample, the similar spectral response pattern across the spectral
bands or vegetation indices. The resulting classified image is
like a thematic map, in which every class is statistically char-
acterised by very close spectral values. Remotely-sensed data
can offer the ability to efficiently identify agricultural crop-
ping practices over large areas. Synoptic remotely-sensed im-
agery allows the classification of agricultural systems without
any need for spatial averaging or the extrapolation of results to
completely assess an area (South et al., 2004).

Several classification methods have been used for agri-
cultural land cover classification studies (Oetter et al., 2000;
South et al., 2004). Generally, the digital classification process
can be unsupervised or supervised. The unsupervised classifi-
cation process is interpreted by algorithms, which identify the
tentative land covers in accordance with the digital values of
a wavelength, band or vegetation index. Supervised classifi-
cation is based on the operator’s knowledge of the area to be
classified by previously defining a sample of each specific land
cover to be detected over the whole image. Other techniques
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are based on the use of object segmentation algorithms and on
the construction of a hierarchical network of image objects,
and works on the treatment of several data types simultane-
ously such as pixel values, object features and hierarchical re-
lationships (Baatz and Schäpe, 1999).

Felton et al. (2002), and Thorp and Tian (2004) reviewed
the uses of remote sensing in agriculture, and reported that, to
date, the majority of studies on discriminating plant species in
cultivation systems have involved discrete broadband remote
sensing using multispectral sensors. Spectral reflectance dif-
ferences can be enhanced by using vegetation indices, which
are mathematical (ratios or linear) combinations between
bands or selected wavelengths. They take advantage of the
vegetation reflectance contrast between different wavelengths.
Those most widely used in multispectral remote-sensing re-
search for detecting and quantifying vegetation are: the nor-
malised difference vegetation index (NDVI) (Rouse et al.,
1973) and the ratio vegetation index (RVI) (Jordan, 1969). The
NDVI and RVI are commonly used to differentiate vegetation
because it usually shows a high reflectance in the near-infrared
spectral band and a low one in the red band, and both indexes
enhance these differences (Jackson and Huete, 1991; Elmore
et al., 2000). A soil-adjusted vegetation index (SAVI) was pro-
posed by Huete (1988) to minimise the effects of soil back-
ground on the quantification of greenness by incorporating a
soil adjustment factor (L) into the basic NDVI form. This fac-
tor is determined by the relative percentage of vegetation and
whether the soil is light or dark; it is used as a multiplier (L +
1) in the first term and is usually defined as 0.5 (Huete et al.,
1994). The burnt area index (BAI) was used to discriminate
the burnt forest (Chuvieco et al., 2002), and could be useful
to determine stubble burning, a traditional practice which will
from now on be only exceptionally permitted due to new envi-
ronmental regulations (Anonymous, 2004).

Many authors have identified and mapped certain plant
species using remote images. Casady et al. (2005) mapped
Euphorbia esula infestations using multidate high-resolution
satellite imagery. Anderson et al. (1993), using multispectral
images of the SPOT satellite, characterised the Ericameria
austrotexana infestation in a ranch of 4400 has in southern
Texas (USA). Oetter et al. (2000) with LANDSAT satellite im-
ages of about 28 km2 of the Willamette river basin (Western
Oregon, USA) taken in several seasons in the year, developed
several algorithms for an unsupervised classification of 20 soil
uses. Keuchel et al. (2003) applied several supervised classi-
fication methods to determine soil uses in southern Tenerife
(Spain). Underwood et al. (2003) mapped infestations of Car-
pobrotus edulis and Cortaderia jubata on the southern coast of
California using an airborne image of the hyperspectral sensor
AVIRIS.

South et al. (2004) examined five classification methods to
determine the most suitable classification algorithm to identify
no-tillage and traditional tillage cropping methods, conclud-
ing that the spectral angle mapper and the cosine of the angle
concept were superior to other traditional classification meth-
ods. Everingham et al. (2007) have also tested two relatively
new classification methods, support vector machines and ran-
dom forests, using hyperspectral imagery with the objective

of classifying sugarcane crop characteristics, demonstrating
that hyperspectral remote sensing is a successful technology
for sustainable agricultural studies, since it offers high spec-
tral resolution images with very small narrow-bands. However,
hyperspectral imagery is not easily available in most regions
and is still a very expensive material, so multispectral satellite
imagery could be more cost-effective in most cases.

In image processing for land cover classification, to avoid
any subjective estimation, a numerical confusion matrix anal-
ysis is normally used to quantify the coincidence between
created and ground-truth regions (Stehman and Czaplewski,
1998). User accuracy is defined as being the percentage of
classified pixels of each land cover that coincide with the ver-
ified ground-truth map, and indicates its correct assessment.
Overall accuracy indicates the overall success of the classifi-
cation, and has been standardised at 85% for the minimum ac-
cepted value (Thomlison et al., 1999). Kappa statistics provide
a classification accuracy assessment that can arise for random
or chance classification. Landis and Kock (1977) suggested
that kappa statistics of over 80% strongly indicate that a given
classification was unlikely to have been obtained by chance
alone.

Several works have been developed in the Mediterranean
area to follow up diverse agricultural topics by remote sensing,
such as plant height and biomass and leaf area index (Calera
et al., 2002), and monitoring irrigation water (Martin de Santa
Olalla et al., 2003). Peña-Barragán et al. (2004) discriminated
and assessed cover crops, a key agro-environmental measure,
in olive-tree orchards, by selecting the Blue/Red ratio. How-
ever, information on automatic digital supervised classifica-
tion of main land cover / cropping systems and of key agro-
environmental measures in a typical dryland Mediterranean
area with a high spatial resolution satellite is lacking, and this
was the goal of this work. Specific objectives were: (a) to
select vegetation indices for the discrimination of each land
cover; and (b) to define image processing sequences to auto-
matically complete each land cover / agro-environmental mea-
surement separation and quantification, and their statistical ac-
curacy.

2. MATERIALS AND METHODS

2.1. Satellite image and land covers

The study area is located around Montilla, province of
Córdoba, southern Spain. It is relatively flat, about 380 m
above sea level; with a typical continental Mediterranean cli-
mate, characterised by long dry summers and mild winters.
The area was a rectangle of 15.3 × 5.4 km (82.62 km2) taken
from one QuickBird nominal scene on 10 July 2004 (partial
view in Fig. 1a). Its spatial resolution was 0.70 × 0.70 m
in panchromatic and 2.8 × 2.8 m in multispectral (Bands:
Blue, 450–520 nm; Green, 520–600 nm; Red, 630–690 nm;
and Near-infrared, NIR, 760–900 nm). Radiometric, geomet-
ric and georeference corrections were previously carried out.

Nine land-cover classes were considered, as follows:
(1) agricultural bare soil, (2) burnt stubble (of winter wheat
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(a) (b)

(c) (d)

Figure 1. View of 148 ha surface of the QuickBird satellite image taken on 10 July 2004, corresponding to: (a) Conventional-colour composition
of the multispectral image, showing typical land covers in the Mediterranean dryland (Montilla, southern Spain) such as olive orchards, wheat
stubble, herbaceous crops, vineyards and roadside trees; (b) classified regions corresponding to non-burnt stubble (masked in yellow); (c) clas-
sified regions corresponding to herbaceous crops, vineyards and roadside trees (masked in green); and (d) classified regions corresponding to
olive orchards (non-masked).

(Triticum durum L.) crops, generally), (3) spring-sown herba-
ceous crops, such as sunflower (Helianthus annuus L.),
(4) highways, (5) olive (Olea europea L.) orchards, (6) road-
side trees made up of mulberry-tree (Morus alba L.), eucalyp-
tus (Eucalyptus globules Labill) and poplar (Populus nigra L.),
(7) urban soil, (8) vineyards (Vitis vinifera L.), and (9) non-
burnt stubble (of winter wheat crops, generally). Ground-truth
land cover was randomly defined at mid-spring and early sum-
mer and georeferenced through ground visits to substantiate
and validate the classification procedure. This consisted of
georeferencing around 9 training zones and 9 ground-truth
zones of each land-cover class, of about 0.3 ha each for high-
ways and roadside trees, and of 1.5 ha each for the other land
covers. Training zones were used to define the boundary dig-
ital values to be used in the classification routines. Ground-
truth zones were used for classification accuracy assessments
(Mckoy, 2005).

2.2. Vegetation indexes and classification methods

Every pixel of the studied QuickBird satellite image
showed a digital value from 0 to 255 for each waveband, cor-
responding to 8 bits of radiometric resolution. These digital
values were considered as being directly proportional to the
total light reflected from the scene (Flowers et al., 2001). Spe-
cific classified regions of every individual land cover, or of a
group of land covers with similar digital value characteristics,

were created for discrimination purposes with the rest of the
land covers, similarly to that achieved by other authors (Lamb
and Weedon, 1998; Peña-Barragán et al., 2004). A total of thir-
teen images was extracted from the satellite image and studied
for the discrimination of the nine land covers previously indi-
cated, as follows: the four multispectral bands: Blue, Green,
Red and NIR; six band ratios: RVI = NIR/Red, Blue/Green,
Blue/Red, Red/Green, NIR/Blue, NIR/Green; and three veg-
etation indexes: NDVI, adapted SAVI (ASAVI), and adapted
BAI (ABAI):

NDVI =
NIR − red
NIR + red

(1)

AS AVI =
( NIR

255 ) − ( red
255 )

( NIR
255 ) + ( red

255 ) + L
· (1 + L) (2)

ABAI =
1

[0.1 − ( red
255 )]2 + [0.06 − ( NIR

255 )]2
(3)

For each waveband, band ratio and vegetation index, the mean
and standard deviation of the digital values of each land cover,
and the significant differences between land cover means were
also estimated by multiple one-way analysis of variance and
Least Significant Difference (LSD) tests at a P of 0.05.

Boundary digital values were used to define each region
in an iterative way, based on the information provided by the
ground-truth zones of each land cover, established according
to the statistical value obtained from the training pixels, adding
and reducing the standard deviation to the average; i.e., if the
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training zone set had a mean digital value of 25 and a stan-
dard deviation value of 4, the boundary digital values could be
around 21–29. The boundary digital values selected were the
ones that best discriminated the two classified regions, provid-
ing a greater statistical accuracy. Every image from the veg-
etation index, ratio or waveband was classified by grouping
the digital value threshold interval that best characterised each
land cover (Lamb and Weedon, 1998). A supervised classifica-
tion method was used to discriminate any specific land cover,
or group of land covers, by creating classified regions defined
by the boundary digital values in the entire image. In an it-
erative way, sets of boundary digital values were established
for each land cover, or group of land covers, to best discrim-
inate the land cover/s considered from the others. The overall
olive orchard cover class was also discriminated by deleting
from the entire image the region that resulted from the merging
of the three following previously classified regions: vegetation
(made up of the spring-sown herbaceous crops plus vineyards
plus roadside trees classes), non-vegetation (made up of the
agricultural bare soil plus urban soil plus highways classes)
and non-burnt stubble. The urban soil class was defined and
isolated visually in the multispectral image. The agricultural
bare soil class was defined by deleting the urban soil class in
the previously defined classified region made up of the agri-
cultural bare soil plus urban soil classes. A median filter 5 ×
5 (MF 5×5) was also applied to some selected classified im-
ages, such as the images from the NDVI, RVI and Blue/Green,
to decrease land cover heterogeneity. The burnt stubble class
was estimated with the ABAI. Cover crops inside olive or-
chards were estimated over the classified olive orchards cover
class, applying the NDVI to discriminate the olive trees and
the Blue/Red ratio to discriminate cover crops, as suggested
by Peña-Barragán et al. (2004). The areas of each classified
land cover region were determined.

To avoid any subjective estimation, the discrimination ef-
ficiency of each set of boundary digital values was checked
through a numerical confusion matrix analysis. The overall
accuracy and kappa coefficient of the whole classification pro-
cess and the user accuracy of each classified land cover (“user
accuracy”) were also calculated. Generally, regions classified
with overall accuracy, kappa coefficient and user accuracy over
90%, 85% and 90%, respectively, were selected to define each
land cover or group of land covers. ENVI 4.0 (Research Sys-
tems Inc. 2001) was the software used for image processing.

3. RESULTS AND DISCUSSION

Mean and standard deviation digital values for each land
cover and studied wavebands, ratios and vegetation indices are
shown in Table I. Low boundary digital values of the Blue,
Green and Red wavebands can be used to discriminate the
roadside trees class and/or the spring-sown herbaceous crops
class from other land covers; while high boundary digital val-
ues of these wavebands could discriminate the urban soil class
and/or the non-burnt stubble class. The NIR waveband can be
used to discriminate either the highways class or the highways
plus urban soil plus agricultural bare soil classes together. The

NDVI and the RVI clearly discriminated vegetation (road-
side trees plus spring-sown herbaceous crops and vineyards
classes) on one hand, and the absence of vegetation (highways,
urban soil and agricultural bare soil classes) on the other. Some
ratios such as the Blue/Green and the Red/Green clearly distin-
guished the non-burnt stubble class from the other land covers.

The agricultural bare soil and urban soil classes exhibited
very similar digital values for every vegetation index, but sig-
nificant differences in the Blue, Green and Red wavebands
(Tab. I). In addition, the urban soil class can be visually delim-
ited and discriminated in the multispectral image. The ASAVI
(for L = 0.5) enhances the effect of the NDVI but it was of no
use for discriminating between the agricultural bare soil and
the urban soil classes. Similarly, at the point where the Quick-
Bird image was taken, both the vineyards and the spring-sown
herbaceous crops classes exhibited very similar digital values
but field plots of these land covers can be distinguished in the
panchromatic image due to the characteristic plant-row spac-
ing of the vineyards class. Also, because of the wide spacing
between olive trees, normally 10 × 10 m, the olive orchards
class is a mixture of vegetation and bare soil. As a result, any
vegetation index selected for the olive orchards class exhibited
intermediate digital values and a greater heterogeneity than
that of vegetation and non-vegetation land covers and, there-
fore, it was hard to directly discriminate it from the remaining
land covers using the classification methods based on pixels.
To a lesser extent, this was also the case of the vineyards class,
since the vines were normally spaced at 1.5 × 1.5 m and, in
early summer, when the image was taken, the vegetation was
at a growing phase, only partially covering the soil. On the
other hand, the urban soil class is also a mixture of bare soil
with, to a much lesser extent, vegetation, due to ornamental
trees and gardens. So, the application of a median filter (kernel
5×5) to the NDVI and the RVI and Blue/Green ratio decreased
the heterogeneity of the olive orchards class and, to a lesser
extent, also of the vineyards and the urban soil classes (data
not shown). This transformation hardly affected the mean and
standard deviation digital value of the other land covers.

The classified regions of certain land covers and corre-
sponding boundary digital values are shown in Table II. For
example, the non-burnt stubble region could be defined with
the Blue/Red ratio and boundary digital values of 0.500 to
0.635 and with the Red/Green and boundary digital values
of 0.870 to 1.200, with overall accuracies of 95% and 96%,
respectively (Fig. 1b). The highways and roadside trees clas-
sified regions were obtained with the transformation NDVI
plus the median filter (5×5), then applying boundary digital
values of 0.001 to 0.025 and of 0.451 to 0.700, with overall
accuracies of 99% and 94%, respectively. The roadside trees
class was discriminated with a user accuracy of 100%, but the
overall accuracy was 94% and the kappa coefficient was 0.85,
indicating that this class was slightly overestimated because
some ground-truth pixels of the other classes were classified
as roadside trees class. The highways class could also be sep-
arated with a 99% overall accuracy using the Blue waveband
with boundary digital values of 0.001 to 0.019. The burnt stub-
ble classified region was discriminated using the ABAI and
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boundary digital values up to 55, with an overall accuracy of
98%.

The land covers “spring-sown herbaceous crops plus vine-
yards” and/or “spring-sown herbaceous crops plus vineyards
plus roadside trees” were jointly discriminated from the rest
of the land covers using the NDVI plus the median filter (5×5)
and/or the RVI plus the median filter (5×5), with overall accu-
racies of about 94% and 91%, respectively (Tab. II; Fig. 1c).
At the point where the QuickBird image was taken, the separa-
tion between the spring-sown herbaceous crops and the vine-
yards classes could not be accomplished through the sole use
of vegetation indices due to they have similar digital values.
However, the differentiation between the spring-sown herba-
ceous crops and the vineyards classes could be achieved visu-
ally in the panchromatic image, where, due to its higher spa-
tial resolution (0.7 × 0.7 m), it was possible to distinguish the
characteristic plant/row spacing of vineyards (normally 1.5 ×
1 m), which was obviously absent in the spring-sown herba-
ceous crops class. Alternatively, the differentiation between
the spring-sown herbaceous crops and the vineyards classes
could also be carried out using a QuickBird image taken in
mid-late summer, where dryland herbaceous crops such as
sunflower were desiccated while the vineyards class still ap-
peared in green.

The olive orchards classified region was obtained using the
RVI plus the median filter (5×5) with intermediate overall and
user accuracy of about 82% (Tab. II; Fig. 1d). The olive or-
chards class was also discriminated with a greater accuracy,
an estimated 88% (data not shown), by deleting the classified
vegetation (spring-sown herbaceous crops plus vineyards plus
roadside trees classes), non-vegetation (agricultural bare soil
plus highways plus urban soil classes) and the non-burnt stub-
ble regions in the entire image, resulting in about 3335 ha.
Cover crop area in the olive orchards region, estimated with
the Blue/Red ratio and boundary digital values of 0.500 to
0.635, resulted in 470 ha. The agricultural bare soil plus ur-
ban soil classes were jointly defined through processing the
NDVI plus the median filter (5×5) at the boundary digital val-
ues of 0.025 to 0.086, and resulted in a surface of 1339 ha and
95% overall accuracy. The urban soil class was visually de-
fined in the multispectral image, resulting in a total surface of
178 ha. The agricultural bare soil class was defined by deleting
the urban soil class in the previously defined classified region
(agricultural bare soil plus urban soil).

Discriminations of cropping systems and of agro-
environmental measures are interrelated. However, cropping
system classification can be considered as being a preliminary
step for agro-environmental measure assessment. For exam-
ple, if the target is to determine cover crops in olive orchards
in a large area, the previous isolation of the olive-orchard land
cover is required. Additionally, a good knowledge of the area’s
agriculture, and particularly of the cropping system phenology
and practices, is essential to interpret and establish a feasible
methodology of land cover classification by remote sensing.

The same image analysis procedure can be implemented
over the entire satellite image of dozens of square kilometres
or over any specific farm or single plot. Nevertheless, the as-
sessment of land cover classification on an individual farm or

plot basis could be easier and more accurate than on a larger
spatial scale, since the interpretation of the inherent hetero-
geneity of some land covers is easier to recognise and correct
by the image interpreter in the former than in the latter. For
example, olive-orchard land cover, due to it being made up
of a mixture of vegetation (trees) and diverse types of bare
soils and cover crops, is very often not fully discriminated
by a single image processing. In that case, image process-
ing could be improved by using structure analysis, combin-
ing the spectral and spatial features of this land cover, thus
increasing the accuracy of the overall classification and the fi-
nal decision-making. Furthermore, the overall assessment of
any land cover over a large area can be achieved by satellite
image processing in a very short time, providing complete, re-
liable and very economical area statistics, although the lack
of enough qualified personnel to manage the remotely-sensed
imagery could be a drawback. Moreover, the interpretation of
remote-sensing images at several dates in the year will ob-
viously improve/complete cropping system classification and
agro-environmental assessment. For example, an image taken
in late summer in the Mediterranean region would make it pos-
sible to distinguish between spring-sown crops such as sun-
flower and vineyards, which were not possible to assess by
automatic image processing in early summer.

A follow-up of soil management is essential for the as-
sessment of agro-environmental measures. For example, the
presence of crop stubble and of cover crops in orchards is
an indicator of no-tillage, soil erosion control, the prevention
of superfluous carbon dioxide emissions and of a high soil
living-organism biodiversity (García-Torres, 2001). Analysing
the same region/area in consecutive years could also identify
the crop rotation sequences in any specific farm, which is a
key point in the implementation of eco-compliance and envi-
ronmental measures in the European Union. Diverse crop ro-
tations increase soil fertility and decrease weed, insect- and
pathogen-pest pressure. The classification/assessment proce-
dure herein described can also be useful as a preliminary work
for the assessment of soil erosion and water quality over an
entire watershed and of soil organic matter evolution or car-
bon credits over large areas. One conflicting aspect about this
technology could be the acceptance of the results in the case
of evidence that a farmer has violated the agro-environmental
regulations. This methodology and the results can be used as
a tool to help and orient the administrative follow-up, but less
as a legal proof of the breach. In that case, inspectors of the
administration should visit the accused farm in order to take a
most evident report (i.e., with on the ground photographs and
proofs).

Reflectance of most land covers studied generally show a
consistent stability during the summer season (data not pub-
lished), due to the fact that either they are desiccated, such as
the cover crops between olive trees, crop stubble and herba-
ceous crops, or they are perennial trees, such as olive trees
and roadside trees or they are inert covers, such as bare soil,
highways and burnt covers (López-Granados, pers. comm.).
This makes the calendar for satellite image-taking flexible in
this season. Another additional positive feature for using these
remote-sensing techniques in the Mediterranean region is the
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high probability of cloud absence throughout the summer sea-
son. Therefore, this methodology could be adapted and extrap-
olated to other areas around the world with similar Mediter-
ranean climate, crops and cropping systems.

4. CONCLUSION

The most important land covers and agro-environmental
measures required in the Mediterranean dryland area can be
discriminated, classified and quantified through the processing
of a QuickBird image taken in early summer, with an over-
all accuracy of around 90%. The described methodology pro-
vides an easy tool for assessing cropping system area statistics
and checking on some administrative requirements established
by the European Union agrarian policy. This procedure could
be adopted by national and regional administrations in the
Mediterranean area, making it feasible to substitute most, if
not all, ground visits and visual assessments. Once the know-
how of image processing is defined for each agricultural area,
automatic procedures to discriminate land covers can be set
up, which will save even more time. Furthermore, permanent
quantitative records can be obtained, which support tentative
claims from farmers. Also, the same image analysis proce-
dure can be implemented only on any specific farm or single
plot, and could help farmers and technicians to make decisions
about the management of sustainable agricultural practices.
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