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Abstract – Crop yield can be decreased by many limiting factors such as water stress, nitrogen stress and disease. The agronomic diagnosis
method was developed by agronomists to understand the origin of crop yield variability, identify important limiting factors, and define new
cropping systems. The rigorous implementation of this method requires the determination of boundary lines giving the maximum value of
a yield component in relation to the value of another yield component; for example, grain weight versus grain number per square metre.
Such boundary lines are used by agronomists to adjust cropping practices to environmental characteristics and, thus, to reduce the risk of
pollution due to agricultural activities. We describe here a new method based on quantile regression to estimate boundary line parameters
from experimental data. First, quantile values were computed from models describing the effect of limiting factors on yield components
and accounting for measurement errors. Then, boundary line parameters were estimated by quantile regression, with observations weighted
according to the quantile values. This approach was applied to two case studies. The quality of the parameter estimator derived by quantile
regression was analysed in relation to the size of the dataset and the practical consequences of a misspecification of the quantile value was
studied. Our findings show that quantile regression gives more accurate parameter estimators than the methods currently used by agronomists.
Nonetheless, the bias and variances of these estimators highly depend on the chosen quantile value. The use of quantile regression should thus
help agronomists to analyse crop yield variability from yield component measurements.

boundary line /model / parameter estimation / quantile regression / yield components / yield gap analysis

1. INTRODUCTION

Several methods have been defined by agronomists for de-
veloping sustainable cropping systems. One of these methods
is called ‘agronomic diagnosis’ (Doré et al., 1997). Its objec-
tive is to discover which cropping techniques and environmen-
tal conditions are responsible for yield variations in a given
area. The results can then be used to adjust cropping tech-
niques to economic and environmental targets. An original
feature of this method is that it does not directly relate yield to
limiting factors. The principle is to measure several yield com-
ponents (e.g. grain weight, grain number per m2, stem number
per m2) in a large number of farmers’ fields located in the area
of interest and to conduct a yield gap analysis taking into ac-
count these measurements. For the most relevant pairs of con-
secutive yield components X and Y, measurements are used to
define the functions YMAX = f (X; θ) giving the optimal value
Y can take for the observed value of X, with θ a set of param-
eters (Doré et al., 1997; Wey et al., 1998; Brancourt-Hulmel
et al., 1999). For example, f (X; θ) may represent a function
relating maximum crop grain number m−2 to stem number m−2

or a function relating maximum grain weight to grain number

* Corresponding author: david.makowski@jouy.inra.fr
and makowski@grignon.inra.fr

m−2 (Doré et al., 1998; Brancourt-Hulmel et al., 1999). These
functions are then used to identify fields where yield compo-
nents did not reach their optimal values and, consequently, to
determine the most important limiting factors in the area of
interest as well as the periods when their effects took place.

The functions YMAX = f (X; θ) are called boundary lines
(Webb, 1972; Fleury, 1991). They play a key role when per-
forming agronomic diagnosis as explained above, but also
when studying the effect of environmental variables on crop
characteristics (Casanova et al., 1999) or when developing
crop models to predict yield or grain quality (e.g. Gonzalez
Montaner et al., 1997; David et al., 2005). A boundary line
f (X; θ) can be defined as follows. When Y is measured with-
out error, all the measurements of Y obtained for a given value
of X are lower than or equal to f (X; θ) and the difference be-
tween Y and f (X; θ) is due to one or several limiting factors
such as low water and nutrient soil content, pest attack, frost
incidence or weed competition. When Y is measured with er-
ror, some measurements may be higher than f (X; θ) but only
due to measurement errors. Thus, when the measurement er-
rors are small, a value of Y lower than f (X; θ) indicates that
the crop was probably affected by one or several limiting fac-
tors (Brancourt-Hulmel et al., 1999).

The development of a boundary line f (X; θ) involves two
steps. The first step is the definition of a mathematical function
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f (X; θ) that expresses Y as a function of X and of a set of
unknown parameters θ. The second step is the estimation of
the value of θ from a set of N measurements of Y and X ob-
tained in N different fields. The first step is based either on
an experimental dataset or on some physiological traits of the
crop. For example, Fleury (1991) defined several mathemat-
ical functions relating several maize yield components from
knowledge about organogenesis, radiation use and partition-
ing of assimilates.

In this paper, we consider the second step. Parameter es-
timation of boundary lines is not straightforward because the
data used for parameter estimation are usually collected in ex-
perimental or farmers’ fields where one or several limiting fac-
tors may affect yield components and where, typically, at least
some of these limiting factors are unknown. Given a dataset, it
is thus difficult to know which fields were affected by limiting
factors and which fields were not.

Various estimation methods have been applied to boundary
lines in the past. An early method consists of estimating the
value of some parameters by eye or by using only the most
extreme measured values of Y (Webb, 1972). Consider, for ex-
ample, a plateau-plus-linear function relating grain weight to
grain number m−2 (Gonzalez Montaner et al., 1997). One pa-
rameter of this function represents the plateau, i.e. the maximal
grain weight value obtained when the grain number is lower
than a threshold. A naïve estimator of this parameter is the
maximum measured grain weight value. This estimator was
combined with a resampling procedure by Lecomte (2005).
But this approach does not account for measurement error and
so it is likely to overestimate the true parameter value. In addi-
tion, its variance may be very high due to sampling variability.

Another method consists of selecting a subset of data and
fitting a boundary line f (X; θ) on this subset (Webb, 1972;
Casanova et al., 1999; Johnson et al., 2003). The principle is
to divide the domain of variation of X into Q intervals and, for
each X interval, to calculate the value of Y corresponding to
a high quantile value (for example, the 90th percentile). The
resulting dataset is then used for estimating the boundary line
parameters by least squares. The drawbacks of this method are,
firstly, that the parameters are not estimated from the original
dataset and, secondly, that the method is based on an arbitrary
number of X intervals and an arbitrary quantile value. Thus,
there is a need for methods supported by a more explicit mod-
elling of the whole dataset.

In this paper, we study the practical interest of estimating
boundary line parameters by quantile regression. The prin-
ciple is to define f (X; θ) as the function of X satisfying
P
[
Y < f (X; θ)

]
= τ for all values of X. With this definition,

f (X; θ) represents the τth quantile of the response variable
Y so that a proportion τ of the measurements of Y are be-
low and a proportion 1 − τ of the measurements are above
the boundary line. Parameters θ can then be estimated by us-
ing quantile regression techniques (Koenker and Basset, 1978;
Koenker and d’Orey, 1987; Koenker and Park, 1996; Koenker
and Machado, 1999). These techniques make use of the whole
dataset, with observations weighted according to the chosen
quantile value. This approach was already applied by Cade
et al. (1999, 2005) to a variety of ecological phenomena but,

as far as we know, it has never been applied to estimating the
parameters of boundary lines. An important preliminary step
is to determine the quantile value to be used for quantile re-
gression. This is a difficult problem because the exact value of
τ depends on the probability distribution of the limiting factor
effect and on the probability distribution of the measurement
errors. No method has been defined for determining this value.

In the next section, we describe a model-based approach
for estimating parameters of boundary lines by quantile re-
gression. This approach makes it possible to compute relevant
quantile values before parameter estimation. The interests and
limitations of our approach are discussed in two case studies
in Section 3. The first case study presents an application to a
real dataset including measurements collected in 71 pea fields
(Pisum sativum). The purpose of the second case study is to
evaluate the quality of the parameter estimators derived by
quantile regression using simulated values of wheat (Triticum
aestivum L.) yield components.

2. A METHOD FOR ESTIMATING BOUNDARY
LINE PARAMETERS

The method includes three steps. In the first step, one or
several quantile values are calculated by using a model with
random effects. In the second step, estimation of the boundary
line parameters is performed by quantile regression for each
quantile value specified in step 1. Finally, the last step con-
sists of a numerical assessment of the quality of the parameter
estimates.

2.1. Computation of quantile value

We present two models relating the response variable Y to
a random variable, Z, representing the overall effect of unmea-
sured limiting factors and to a measurement error term noted
ε. The limiting factor effect is additive in the first model and
multiplicative in the second model. We show how these mod-
els can be used to compute relevant quantile values.

2.1.1. Model 1

Consider the following model:

Y = f (X; θ) − Z + ε (1)

where Y is the measured value of the response variable of in-
terest, Z is a random variable representing the effect of one or
several unmeasured limiting factors (Z ≥ 0), and ε is a random
variable representing a measurement error.

For any given value of X, f (X; θ) is equal to the τth quantile
of Y if

τ = P
[
Y < f (X; θ)

]
. (2)

From equation (1), we see that equation (2) is equivalent to

eq3τ = P (ε < Z) . (3)



A new method to analyse relationships between yield components with boundary lines 121

If the probability distributions of Z and ε are independent of
X, equation (3) shows that f (X; θ) corresponds to the same τth
quantile for all values of X. Equation (3) also shows that τ is
equal to the probability that the error of measurement is lower
than the effect of the limiting factors. The quantile τ is thus
equal to 0.5 if Y is not affected by any limiting factors (Z = 0)
and if the measurement errors have a symmetric distribution
with zero mean, whereas it is equal to P (Z > 0) if Y is mea-
sured without error (ε = 0). Otherwise, the value of τ can be
calculated from pre-defined probability densities of Z and ε
using, for example, the following equation:

τ =

∫
DZ

h (z)P (ε < z) dz (4)

where h is the density of Z and P (ε < z) is the probability that
ε is lower than z. Alternatively, τ can be approximated by gen-
erating a high number of values of Z and ε and by calculating
the proportion of values of Z higher than ε.

2.1.2. Model 2

We now consider the following model:

Y = Z × f (X; θ) + ε. (5)

Here, Z is assumed to be lower than or equal to 1, and higher
than or equal to zero.

For any given value of X, f (X; θ) is equal to the τth quantile
of Y if

τ = P
[
Z × f (X; θ) + ε < f (X; θ)

]
. (6)

The value of τ is independent of X in some cases; for exam-
ple, if ε = e × Z × f (X; θ) and if e and Z are independent of
f (X; θ), where e denotes, typically, a centred random variable
independent of Z. In this case,

τ = P
[
Z (1 + e) × f (X; θ) < f (X; θ)

]
and so

τ = P [Z (1 + e) < 1] . (7)

If Y is measured without error, e = 0 and τ = P [Z < 1]. Oth-
erwise, the quantile can be calculated from equation (7) using
samples of Z and e randomly drawn from some pre-defined
probability distributions of Z and e.

2.1.3. Probability distributions for Z and ε

The computation of τ requires the specification of prob-
ability distributions for ε and for Z. When replicates of Y
are available, it is possible to assume that ε ∼ N

(
0, σ2
)

or

e ∼ N
(
0, σ2

)
, and to estimate σ2 from the replicates. When

replicates are not available, σ2 must be specified from exter-
nal sources.

With model 2, as Z is in the range (0–1), a good option is to
assume that Z follows a beta distribution, Z ∼ Beta(α, β). The

Figure 1. Probability distributions of Z when Z ∼ Beta(1, 1) (thin
continuous line), Z ∼ Beta(2, 2) (thin dashed line), Z ∼ Beta(2, 5)
(bold continuous line) and Z ∼ Beta(5, 2) (bold dashed line).

beta is a flexible probability distribution defined on the unit
interval. This distribution is symmetric when α = β, it is flat
when α = β = 1, and it is dissymmetric when α � β. Examples
of beta distributions are shown in Figure 1.

For model 1, Z can be expressed as Z = ZMIN +
(ZMAX − ZMIN ) × B where ZMIN and ZMAX are the minimum
and maximum values of Z, respectively, and where B is a ran-
dom variable in the range (0–1). It is then possible to assume
that B follows a beta distribution, B ∼ Beta(α, β). In this case,
Z is in the range (ZMIN , ZMAX) and has a symmetric or dissym-
metric distribution depending on α and β.

In practice, the values of α, β, ZMIN , and ZMAX are un-
known, but we assume that the agronomist or the statistician
can choose or estimate reasonable values from data or expert
knowledge. Because such a choice can only be approximate,
it is recommended to study the sensitivity of the quantile to
the parameters of the probability distribution of Z. To do that,
it is necessary to define different values for α, β, ZMIN , and
ZMAX and to compute the corresponding quantiles using model
1 or 2.

2.2. Parameter estimation

The first step leads to one or several estimated quantile val-
ues denoted by τ̂. The next step is the estimation of θ from
data by quantile regression. This method is nonparametric and
consists of minimising a sum of weighted absolute differences
between observations and predictions. For a given estimated
quantile τ̂, an estimator of θ is a vector θ̂ minimising (Koenker
and Basset, 1978)

L (θ) =
N∑

i=1

ρτ̂
[
Yi − f (Xi; θ)

]
(8)

where Yi and Xi are the yield components measured in the ith
field, i = 1, . . . , N, and ρτ̂ [.] is a function defined by

ρτ̂
[
Yi − f (Xi; θ)

]
= τ̂ × [Yi − f (Xi; θ)

] × 1{Yi≥ f (Xi;θ))} − (1 − τ̂)
× [Yi − f (Xi; θ)

] × 1{Yi< f (Xi;θ))} (9)

and 1{v} = 1 if the condition v is true and zero otherwise.
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For the practical problem considered in this paper, the func-
tion f (X; θ) is usually a nonlinear function of the parame-
ters. When the function is nonlinear, equation (8) can be min-
imised by using an interior point algorithm (Koenker and Park,
1996) or the MM algorithm developed by Hunter and Lange
(2000). The former is implemented in the function nlrq of the
package quantreg that can be freely downloaded from CRAN:
http://cran.r-project.org.

2.3. Numerical assessment of the parameter estimators

2.3.1. Sensitivity analysis

The exact value of τ is not perfectly known due to uncer-
tainty in the distributions of Z and ε. It is therefore useful to
compute a series of quantiles τ̂1, . . . , τ̂m, to determine the cor-
responding parameter estimates θ̂τ1 , . . . , θ̂τm , and to analyse
the sensitivity of the parameter estimates to the quantile value.
Parameter estimates can be displayed in a table and/or can be
plotted. Simple sensitivity indices can also be computed.

It is also useful to display the fit of the function graphically.
To do that, it is necessary to compute f (X; θ̂) for a series of
values of X using each parameter estimate θ̂τ1 , . . . , θ̂τm in turn.
A graphical presentation of the fitted function can be used to
study the sensitivity of the boundary line to the parameter esti-
mates computed with different quantile values. See case study
1 for an illustration of all these simple methods.

2.3.2. Confidence interval

It is useful to compute the confidence intervals of the pa-
rameter estimators to see whether the parameters were accu-
rately estimated or not. As suggested by Cade et al. (1999),
confidence intervals can be used to find the most extreme
quantile that could be estimated with a reasonable precision.
Various methods were defined for estimating confidence inter-
vals of parameter estimators in linear quantile regression mod-
els (e.g. Koenker and Basset, 1978; Cade and Richards, 2006).
When the model is nonlinear, confidence intervals of param-
eter estimators can be estimated by nonparametric bootstrap
(Efron and Tibshirani, 1986). This method is applied in case
study 1.

2.3.3. Root mean squared error

A classical assessment method is to define a true model as-
sociated with true parameter values and to use this model for
generating a series of datasets and for computing the standard
errors, bias and root mean squared errors of parameter estima-
tors derived by quantile regression. The first step is to define
a model for generating data. This model could be the model 1
or the model 2 defined above associated with some probabil-
ity distributions for Z and ε, and a particular value θ that will
be considered as the true parameter value. Once the model is
defined, the quantile τ = P

[
Y < f (X; θ)

]
is computed and the

model is used to randomly generate K datasets including N
values of X and Y. The value of θ is then estimated by quantile
regression for each dataset leading to K parameter estimates
noted θ̂kτ, k = 1, . . . , K. Finally, the expected value, bias, stan-
dard deviation and root mean squared error (RMSE) of the
estimator are computed for each quantile as follows:

expectationτ =
1
K

K∑
k=1

θ̂kτ (10)

biasτ = θ − 1
K

K∑
k=1

θ̂kτ (11)

sdτ =

√√√
1

K − 1

K∑
k=1

θ̂kτ − 1
K

K∑
k=1

θ̂kτ


2

(12)

rmseτ =

√√√
1
K

K∑
k=1

(
θ̂kτ − θ

)2
. (13)

Note that these criteria are not independent; it is known that

rmseτ ≈
√

bias2
τ + sd2

τ . Bias, standard deviation and RMSE
can be computed for different numbers of measurements N
and thus provide information on the consequences of increas-
ing or decreasing the size of the dataset. For example, one can
generate K datasets with N = 50 measurements and K other
datasets with N = 100 measurements. The parameters are then
estimated for each series of datasets successively. A similar ap-
proach can also be used to study a consequence of a misspec-
ification of the quantile value used for parameter estimation.
An application is presented in case study 2.

3. APPLICATIONS

3.1. Case study 1: grain number vs. stem number

3.1.1. Data

The dataset used in this case study was described in detail
by Doré et al. (1998). Data were collected from 71 pea crop
fields located in the Paris basin (France) in 1988, 1989 and
1990. Various yield components were recorded from six repli-
cates of 0.5 m2 in each field. For illustration, average values of
grain numbers and stem numbers are presented in Figure 2.

The purpose of this case study is to analyse the relation-
ship between grain number m−2 and reproductive stem number
m−2 by using quantile regression. The question is of practical
importance because, in pea crops, branching is known to com-
pensate for low plant numbers but may not be sufficient to give
the maximum grain number. It is thus interesting to determine
the stem number threshold above which the maximum grain
number can be reached. It is also interesting to determine, for
each field, if the maximum grain number value was reached or
not.
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Table I. Case study 1. Quantile values computed with model 1.

ZMAX α β τ̂

500 1 1 0.88
500 2 2 0.90
500 2 5 0.80
500 5 2 0.98
1000 1 1 0.94
1000 2 2 0.97
1000 2 5 0.91
1000 5 2 0.99

3.1.2. Probability distributions and quantile values

Quantiles were computed using models 1 and 2 and differ-
ent probability distributions for ε and Z. Individual replicate
grain number measurements were available for 12 fields (six
replicates per field) and these measurements were used to de-
fine the probability distribution of the measurement errors (ε).
A Kolmogorov-Smirnov test was performed on the grain num-
ber residuals, εi j = yi j− yi. where yi j is the grain number mea-
surement in the jth replicate of the ith field and yi. is the av-
erage grain number in the ith field, i = 1, . . . , 12 (field index),
j = 1, . . . ,6 (replicate index). The result showed that the resid-
ual distribution can be assumed to be normally distributed.
The standard errors of the residuals εi j and of the normalised

residuals εi j

yi. were then estimated,
√

var
(
εi j

)
= 154.3 grains

m−2 and
√

var
(
εi j/yi.

)
= 0.10. Finally, the measurement er-

rors were assumed to be distributed as ε ∼ N
(
0, 154.32

)
and

ε ∼ N
{
0,
[
0.10 × Z × f (X; θ)

]2} for models 1 and 2, respec-
tively.

The distribution of Z was defined as explained in Sec-
tion 2.1.3. For model 1, we assumed that Z = ZMIN +
(ZMAX − ZMIN ) × B and B ∼ Beta(α, β). ZMIN was set equal
to zero and two values were considered for ZMAX , 500 and
1000 grains m−2. Four different beta distributions were suc-
cessively considered for B, Beta(1, 1), Beta(2, 2), Beta(2, 5)
and Beta(5, 2) (see Fig. 1). The two ZMAX values and the four
beta distributions led to eight different quantiles (Tab. I). The
quantile values were computed from 100 000 values of Z and
ε randomly drawn from their probability distributions.

For model 2, Z was assumed to be beta distributed, and
four beta distributions were considered Beta(1, 1), Beta(2, 2),
Beta(2, 5) and Beta(5, 2) (Fig. 1). These distributions were
used to compute four quantile values from 100 000 values of
Z and ε randomly drawn from their probability distributions
(Tab. II).

Tables I and II show that the quantile value τ =
P
[
Y < f (X; θ)

]
is sensitive to the model type and to the as-

sumptions made on the probability distribution of the limiting
factor effect Z. The value of τ is higher with the multiplicative
model (model 2) than with the additive model (model 1). But
high quantile values are also obtained with model 1 when the
lower bound of Z is set equal to a high value and when the
distribution of Z is dissymmetric.

Table II. Case study 1. Quantile values computed with model 2.

α β τ̂

1 1 0.96
2 2 0.99
2 5 0.99
5 2 0.96

Table III. Case study 1. Parameter estimates obtained with the pea
dataset.

τ̂ θ̂1 θ̂2 θ̂3
0.5 2456.23 5.07 125.98
0.80 2631.53 4.84 140.0
0.88 2725.0 6.61 133.97
0.90 2715.43 10.20 100.11
0.91 2771.0 10.58 117.05
0.94 2750.01 11.0 96.52
0.96 2792.0 10.42 118.13
0.97 2935.2 10.04 134.07
0.98 2970.0 10.42 135.22
0.99 2970.0 10.42 135.22

3.1.3. Parameter estimation

A linear-plus-plateau function was defined as follows:

f (X; θ) = θ1 + θ2 (X − θ3) if X ≤ θ3 (14)

f (X; θ) = θ1 if X > θ3 (15)

where f (X; θ) is the grain number m−2 value obtained when
the reproductive stem number m−2 is equal to X, and θ =
(θ1, θ2, θ3)T . θ1 is the maximum grain number, θ2 is the slope
of the linear part of the function, and θ3 is the stem number
threshold.

The three parameters were estimated from the 71 measure-
ments with the function nlrq. This function was run for each
of the nine different quantiles reported in Tables I, II, and also
for τ̂ = 0.5 (as said above, P

[
Y < f (X; θ)

]
= 0.5 if Y is not

affected by any limiting factors and if the measurement errors
have a symmetric distribution with zero mean). The resulting
ten series of parameter estimates are reported in Table III.

The parameter values obtained for quantiles 0.98 and 0.99
are identical due to lack of data, but all the other estimates
are different (Tab. III). Values of θ̂1 increase in function of τ̂.
θ̂1 = 2631.53 grains m−2 when τ̂ = 0.80 but θ̂1 = 2970.0 when
τ̂ = 0.98. θ̂1 is equal to the maximum measured grain number
(2970) for τ̂ = 0.98 and τ̂ = 0.99, but is lower than this value
for all other quantiles (Tab. III).

The slope θ̂2 tends to be much higher for high quantiles than
for low quantiles. For example, θ̂2 = 4.84 when τ̂ = 0.80 but
θ̂2 = 10.42 when τ̂ = 0.96. The variation in the grain number
threshold θ̂3 is erratic and the parameter estimates are in the
range 96.52–140 stems m−2 (Tab. III).
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Figure 2. Case study 1. Fit of the linear-plus-plateau function ob-
tained with τ̂ equal to 0.5 (dotted line), 0.80 (thin continuous line)
and 0.96 (bold continuous line). Pea data from Doré et al. (1998).

Table IV. Case study 1. Parameter estimates obtained using cate-
gories of stem number when τ̂ = 0.96.

Number of categories θ̂1 θ̂2 θ̂3
5 2675.64 7.15 110.63
6 2743.61 9.47 117.71
7 2737.44 12.61 112.42
8 2729.23 33.56 93.59
9 2690.83 35.05 89.79
10 2624.88 35.25 86.39

3.1.4. Assessment of the estimators

The computation of the sensitivity index
max(θ̂)−min(θ̂)

max(θ̂) for

each parameter is one way to analyse the sensitivity of the pa-
rameter estimates to the quantile value. This index is equal to
0.17, 0.56 and 0.31 for θ̂1, θ̂2, and θ̂3, respectively. Thus, θ̂2
is more sensitive to τ̂ than the other two parameters. These
results emphasise that it is important to perform a sensitivity
analysis of the boundary line parameter estimates with respect
to the quantile value.

Three fitted boundary lines are shown in Figure 2. These
lines were drawn using the parameter estimates reported in Ta-
ble III for the quantiles 0.5, 0.80 and 0.96. The lines show sig-
nificant differences in terms of maximum grain number, slope
and stem number threshold.

The results obtained by quantile regression were compared
with the results obtained by using the method defined by Webb
(1972) and applied by Casanova et al. (1999) and Johnson
et al. (2003). The principle is to categorise the variable X (here
the stem number) in Q categories and, for each category, to
determine the value of Y (grain number) corresponding to the
quantile τ̂. The parameters θ are then estimated from the re-
sulting Y values by least squares. Like quantile regression, this
method requires the specification of a quantile value. For illus-
tration, τ̂ was set equal to 0.96. Q was set equal to 5, 6, 7, 8, 9
and 10 successively and the three parameters were estimated
for each value. A value Y was determined for each category by
using the quantile function of R (http://cran.r-project.org).

Table IV shows that, for a given quantile, the results ob-
tained with the method of Webb (1972) depend highly on the

Figure 3. Case study 1. Parameter estimates (continuous lines) and
90% confidence intervals (dotted lines) for the parameters θ1 (a), θ2
(b) and θ3 (c). Confidence intervals were computed by nonparametric
bootstrap resampling.

number of categories. For example, when Q = 5, θ̂2 = 7.15
but, when Q = 10, θ̂2 = 35.25. The parameter estimates ob-
tained for Q = 6 are similar to those obtained by quantile re-
gression (Tab. III) but the estimates obtained for other values
of Q are quite different. No clear method has been defined to
determine the optimal number of categories and it is thus more
convenient to estimate boundary line parameters by quantile
regression.

Figure 3 shows the 90% confidence intervals for the pa-
rameter estimators. Confidence intervals indicate whether the
parameters were accurately estimated or not. A narrow confi-
dence interval indicates an accurate estimation. Figure 3 shows
that the confidence intervals are dissymmetric, like those re-
ported by Cade and Richards (2006). Compared with the esti-
mated values, the lengths of the confidence intervals are small
for θ̂1, are higher for θ̂3, and are very high for θ̂2. Clearly, the
parameter θ2 is not accurately estimated but its estimators are
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significantly different from zero. For this parameter, the nar-
rowest confidence interval (and so the best estimation) is ob-
tained with τ̂ = 0.91 (90%CI = 3.76–11.13). This is also the
case for the parameter θ1 (90%CI = 2619.6–2854.7 for θ̂1 and
τ̂ = 0.91). It is thus reasonable to select the parameter values
estimated for the quantile 0.91.

3.2. Case study 2: grain weight vs. grain number

3.2.1. Model for generating data

The purpose of this second case study is to show how sim-
ulated datasets can be used to study the performance of the
quantile regression method in relation to the number of obser-
vations and to the chosen quantile value.

As explained in Section 2.3.3, the first step is to define a
model for generating data. We consider here the boundary line
established by Gonzalez-Montaner et al. (1997) relating grain
weight to grain number m−2 for wheat crops in the Argen-
tinean Southern Pampa. This is a plateau-plus-linear function
defined by

f (X; θ) = θ1 if X ≤ θ3 (16)

f (X; θ) = θ1 + θ2 (X − θ3) if X > θ3 (17)

where f (X; θ) is the grain weight value (mg) obtained when
the grain number m−2 is equal to X, and θ = (θ1, θ2, θ3)T .
We assume that the true parameter values are those given
by Gonzales-Montaner et al. (1997), θ1 = 44 mg, θ2 =
−0.0025 mg per grain m−2, θ3 = 14400 grain number m−2.
The plateau-plus-linear function (16, 17) and the chosen pa-
rameter values are only used here to demonstrate the potential
of the method. Other parameter values or other boundary lines
could have been considered.

According to Gonzalez-Montaner et al. (1997), water bal-
ance and temperature can have a negative effect on grain
weight and this effect is additive. It is thus realistic to use the
additive model (1) defined as Y = f (X; θ) − Z + ε, where X
is the number of grains m−2, Y is the grain weight, Z is the
overall limiting factor effect and ε is a measurement error. We
assume that ε∼N

(
0, 32
)
. The value chosen for the standard de-

viation of ε (3 mg) falls within the range of values reported by
Brancourt-Hulmel et al. (1999). The variable Z was defined as
ZMIN + (ZMAX − ZMIN )× B with B ∼ Beta(1, 1), ZMIN = 0, and
ZMAX = 17 mg. The value of ZMAX was chosen according to
the results shown in Gonzales-Montaner et al. (1997). Under
these assumptions, the value of τ = P

[
Y < f (X; θ)

]
is equal

to 0.93.

3.2.2. Effect of the number of observations

We assume here that the quantile is set equal to its correct
value (0.93). Five hundred datasets of N observations were
generated as follows:

– X was assumed to be uniformly distributed, X ∼ Uni-
form(5000, 22000) (Gonzales-Montaner et al., 1997), and
N values were randomly generated, X1, . . . , XN .

Figure 4. Case study 2. Fit of the plateau-plus-linear function to 50
simulated observations of wheat grain number and grain weight (τ̂ =
0.93).

– N values of maximum grain weight were calculated as
f (X1; θ), . . . , f (XN ; θ) where θ = (θ1, θ2, θ3)T is the vector
including the true parameter values defined above.

– N observed grain weight values were calculated as
f (X1; θ) − Z1 + ε1, . . . , f (XN ; θ) − ZN + εN , where ε1, . . . ,
εN were randomly drawn from ε∼N

(
0, 32
)

and Z1, . . . , ZN

were N values randomly drawn from the distribution of Z.

This procedure was implemented with six different N values,
50, 75, 100, 150, 200 and 300. The value of θ = (θ1, θ2, θ3)T

was estimated by quantile regression with τ̂ = 0.93 for each
generated dataset with the function nlrq (initial value equal to
35, –0.0015, and 15000 for θ1, θ2, θ3, respectively). An exam-
ple of a generated dataset and of a fitted curve is presented in
Figure 4 for N = 50.

Bias, standard deviations and RMSE were computed for
each N value as explained in Section 2.3.3. Bias and standard
deviations are presented in Figure 5 in function of the size of
the dataset. RMSE values were very close to standard devia-
tions and are not shown. Compared with standard deviations,
the bias is very small for all parameters and for all sizes of
dataset (Fig. 5). This result shows that the quantile regression
method does not make any systematic estimation error when τ
is set equal to its correct value.

The standard deviations of the parameter estimators de-
crease in function of the number of observations (Fig. 5).
For example, for parameter θ1, the standard error is equal to
1.95 mg when N = 50 but it is equal to 0.74 when N = 300.
However, Figure 5 shows that it is not useful to estimate the
parameter values with more than 200 observations. This re-
sult is of practical interest because it indicates that the size of
the dataset (50 observations) used by Gonzalez Montaner et al.
(1997) was probably too small for estimating the boundary line
parameters with a good accuracy.

3.2.3. Consequences of quantile misspecification

The procedure described in the previous section was re-
peated to study the consequence of using a wrong quantile
value (τ̂ � 0.93). The quantile was fixed to eight different val-
ues (0.7, 0.75, 0.8, 0.85, 0.93, 0.95, 0.97 and 0.99) and, for
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Figure 5. Case study 2. Bias (black circles) and standard deviations
(white squares) of the estimator of θ1 (a), θ2 (b) and θ3 (c) in function
of the number of observations (τ̂ = 0.93).

each value, the parameters were estimated with 500 datasets
of N = 200 observations simulated from the model described
in Section 3.2.1. Bias, standard deviation and RMSE of the
estimators were calculated for each quantile in turn.

Figure 6a shows that the absolute value of the bias of the
estimator of θ1 increases when τ̂ � 0.93. For this parameter,
the bias is equal to 5.06 when τ̂ = 0.7, is equal to 0.03 when
τ̂ = 0.93, and is equal to –3.49 when τ̂ = 0.99. This result
shows that an underestimation of the quantile leads to an un-
derestimation of the parameter θ1, whereas an overestimation
of τ leads to an overestimation of the parameter value.

Compared with the bias, the standard deviation of the es-
timator of θ1 is small. Its value tends to increase in function
of the quantile value; the standard deviation is equal to 0.82
when τ̂ = 0.7 and is equal to 1.6 when τ̂ = 0.99 (Fig. 6a).
The RMSE is almost equal to the absolute value of the bias
and takes its minimum value when τ̂ = 0.93 (Fig. 6a). This is

Figure 6. Case study 2. Bias (black circles), standard deviations
(white squares) and RMSE (cross) of the estimator of θ1 (a), θ2 (b)
and θ3 (c) in function of the quantile value when the number of ob-
servations is equal to 200. The vertical bars indicate the true quantile
value.

logical. As said above, we know that rmseτ ≈
√

bias2
τ + sd2

τ.
As the standard deviation is small compared with the bias, we
have rmseτ ≈ |biasτ|.

A naïve estimator of θ1 is the maximum measured grain
weight value among the N measurements of the dataset.
The RMSE of this estimator (computed from 500 simulated
datasets of 200 observations) is equal to 4.64. Lecomte (2005)
suggested estimating the maximum grain weight by using a
bootstrap method. The principle is to generate M samples of
observations from the original dataset by random sampling. θ1
is then estimated by the average of the M maximum values
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calculated from the M samples. We applied this method to
our model and found that the RMSE of the estimator (com-
puted with M = 500 and 200 observations) is equal to 4. The
RMSE value is even higher when θ1 is estimated from 300 ob-
servations; RMSE = 5.28 if θ1 is estimated by the maximum
observed value and RMSE = 4.14 if θ1 is estimated by using
Lecomte’s method. All these values of RMSE are higher than
the value obtained by quantile regression for θ1, τ̂ = 0.99,
and 200 observations (RMSE = 3.83). Thus, it seems better to
estimate θ1 by quantile regression even if τ̂ is set equal to a
very high (and wrong) value. This is logical because the es-
timator ‘maximum measured grain weight’ does not account
for measurement error and, so, tends to overestimate the true
parameter value. Another advantage of using quantile regres-
sion is that this method allows one to estimate the three model
parameters simultaneously and not θ1 alone.

For the other two parameters, θ2 and θ3, the results obtained
by quantile regression are quite different. For these parameters,
the bias is small compared with the standard deviation what-
ever quantile value is used (Fig. 6 b,c). The bias is close to
zero and constant for θ2. For θ3, it tends to be higher when the
quantile is overestimated.

The standard deviations of the estimators of θ2 and θ3 are
much higher than the bias (Figs. 6 a,b). For both parameters,
the standard deviation is almost constant from τ̂ = 0.7 to
τ̂ = 0.93 (the correct value) but increases when the quantile
value is overestimated (higher than 0.93). For example, the
standard deviation of the estimator of θ3 is equal to 841.54
grain number m−2 when τ̂ = 0.7, is equal to 875.56 grain
number m−2 when τ̂ = 0.93 and to 1602.25 grain number m−2

when τ̂ = 0.99. As the bias is always small, RMSE and stan-
dard deviations are very similar for θ2 and θ3 (Fig. 6 b,c). Like
standard deviations, RMSE values increase in function of the
quantile but the increase is very small from τ̂ = 0.7 to τ̂ = 0.93
and much more significant from τ̂ = 0.93 to τ̂ = 0.99.

The consequences of a misspecification of the quantile
value are thus different depending on the considered param-
eter. For some parameters, an overestimation of the quantile
leads to both an increase in the bias and an increase in the
standard deviation. For others, only the standard deviation is
increased

These results show that the consequences of a small over-
estimation of the quantile value are worse than those resulting
from a small underestimation. The use of a quantile higher
than 0.93 strongly increases the bias of the estimator of θ1,
and increases the variances of the estimators of all parameters.
As a result, the RMSE values of the parameter estimators are
much higher when the quantile is set equal to 0.99 than when
τ̂ = 0.93, although the overestimation of the quantile is small.

The use of a quantile lower than 0.93 also increases the bias
of the estimator of θ1 but not the bias of the estimators of θ2
and θ3. Moreover, the use of a low quantile value does not
increase the standard deviations of any parameter estimator.
As a result, an underestimation of τ increases the RMSE only
for θ1. For the other two parameters, the RMSE obtained with
low quantile values are close to the RMSE obtained with the
correct quantile value. The consequences of a misspecification

of τ were studied here with a particular model and it would be
interesting to perform new simulations with other models.

4. CONCLUSION

Compared with other estimation methods, quantile regres-
sion has two advantages for estimating boundary line pa-
rameters. First, quantile regression can be directly applied to
the original dataset. This is not the case with the estimation
method used by Webb (1972), Casanova et al. (1999) and
Johnson et al. (2003). With this method, the dataset is split into
Q categories and we showed that the parameter estimates are
highly sensitive to the number of categories. This is a problem
because no method has been proposed to choose this number.
Note that, like quantile regression, this method requires the
definition of a quantile value. Second, we showed that, when
the correct quantile value is used, the bias and variance of the
estimator obtained by quantile regression are small. The effect
of an overestimation of τ and the effect of an underestimation
of τ are different and, overall, the consequences of an overes-
timation are worse. However, the results obtained by quantile
regression were better than those obtained by using the naïve
estimator ‘maximum measured value’ even when the quantile
was set equal to a very high value. We thus advise agronomists
to use quantile regression to estimate the parameters of bound-
ary lines.

This study clearly demonstrates that it is not possible to ob-
tain accurate estimators of boundary line parameters without
some knowledge of the quantile value and, so, without some
information on the distributions of the model errors and of
the limiting factor effects. The model error distribution can be
defined from replicates obtained in experimental or farmers’
fields. The definition of a realistic distribution for the limiting
factor effect is more difficult and further research is needed to
develop methods which can solve this problem, and be ade-
quate from both the agronomical and statistical points of view.
Meanwhile, we advise the user to compute confidence inter-
vals for the parameter estimators in order to assess whether
high quantiles are estimated with a reasonable precision.
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