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Abstract – Optical remote sensing satellite data (SPOT HRV XS, Landsat 5 TM) were used to estimate winter wheat area in a pilot area of 5 ×
5 km in the Southeast of France. The approach was scaled up to a larger area of 45 × 50 km and finally to the regional level covering several
departments. Microwave remote sensing data (ERS SAR C-band) were used to estimate regional wheat flowering dates to calibrate a wheat
growth simulation model used to calculate wheat yields, subsequently used to estimate regional wheat production. Soil maps were used to
spatially vary model input parameters for the region. Wheat area could be estimated with more than 80% users’ accuracy and model-based
estimates of regional wheat production were in agreement with agricultural statistics. These results demonstrate that results from point-based
simulation models can be applied at spatially higher levels with the aid of remote sensing data.
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1. INTRODUCTION

Timely and accurate information on crop and soil status is
critical for management decision-making in arable farming to
optimise crop production and to reduce environmental pollu-
tion. Normally, field observations are performed repeatedly, at
specific crop stages, to enable timely intervention with appro-
priate management measures. Availability of up-to-date and
accurate information on the crop-soil status at the (sub-) plot
or farm scale will benefit farmers, whereas local and regional
policy makers or food processing industries will be more inter-
ested in regional crop production estimates. Sofar, both, remote
sensing applications and dynamic simulation models have
played significant, but different (and mostly separate) roles in
generation of such information (Jones et al., 2001). Combining
remote sensing applications and dynamic simulation models
has been explored in several studies (Bouman, 1991; Van Leeuwen,
1996; Clevers et al., 2002; Prévot et al., 2003), but these
approaches aimed at quantitative biomass, leaf area index and
canopy nitrogen estimates from remote sensing data to recon-
struct crop growth curves used for calibrating dynamic simu-
lation models at field scale. Another more direct technique to
integrate remote sensing observations in crop growth simula-
tion models has been demonstrated by others (Boegh et al.,
2004; Jongschaap, 2005). Jongschaap (2005) used remote sens-
ing observations of model variables (leaf area index and canopy
nitrogen) for “run-time calibration”; i.e. resetting the simulated

value with the value estimated from remote sensing data. This
approach resulted in more accurate predictions of the dynamics
of characteristics of the crop-soil system, including variables
that were not directly adjusted. A more innovative and useful
combination of both remote sensing and simulation modelling
integrates knowledge of lower-scale processes in the crop and
soil systems, captured in simulation models, with the possibil-
ity to analyse effects at higher (spatial) scales. Therefore the
aim of this study was to find a method that allows integrating
simulation results at point or field scales and use remotely
sensed data to estimate grain production at higher (regional)
scales. To reach this objective, optical remote sensing data is
used for the classification of winter wheat fields and radar
remote sensing data are used to establish a regional estimate for
flowering date of winter wheat. 

Remote sensing applications originally dealt with classifi-
cation themes, such as identification and mapping of (originally
military) objects. Classification is still of major importance in
civil remote sensing applications (Lloyd et al., 2004; De Wit
and Clevers, 2004), but quantification of object variables from
remotely sensed information has become increasingly impor-
tant (Moreau and Le Toan, 2003). To transform remote sensing
signals into useful information, spectral “vegetation indices”
(VI) are computed, e.g. by combining visible and near infrared
bands. VI are significantly related to important crop character-
istics, such as leaf area index (LAI), biomass and chlorophyll
content (Guyot et al., 1988; Jago et al., 1999; Thenkabail et al.,
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2000; Jongschaap and Booij, 2004). One of the VI that is well
related with (green) biomass is the Normalized Difference Veg-
etation Index (NDVI; Rousse et al., 1974) that can be used to
distinguish bare soil from vegetation, and to filter grasslands
from winter crops if the timing of the image is well chosen. As
a consequence of using (broad band) satellite sensors, operating
at lower spatial resolutions than spectral field-based sensors,
relations between VI and crop-soil characteristics are less accu-
rate. Another disadvantage of airborne and satellite remote
sensing is the spatially distributed atmospheric distortion,
which is practically absent in field-based or airborne remote
sensing observations. Furthermore, sensors that operate in the
visible domain may be hampered by cloud cover, which may
be a problem for the calculation of VI at important crop devel-
opment stages. It is assumed that spectral and spatial resolution
of SPOT HRV XS (multispectral) and Landsat 5 TM provide
enough detail, and that cloudless images can be selected from
appropriate time windows. At the appropiate wavelengths,
radar data are not hampered by cloud cover. Target objects in
size exceeding the radar wavelengths result in radar backscat-
tering, whereas smaller objects attenuate the radar signal
(Hamacher, 2000; Macelloni et al., 2002). The ERS SAR C-
band radar data that are used have wavelengths of about 5.6 cm,
so the radar signal is expected to attenuate more strongly with
increasing (wet) biomass, but will show an increase with wheat
ear layer development and drying of the crop canopy towards
maturity.

In this study, spaceborne remote sensing observations
(SPOT HRV XS, Landsat 5 TM and ERS SAR radar data C-
band) are used and combined with crop growth simulation
modelling to estimate regional production volumes, in this case
for winter wheat (Triticum aestivum L.) that is grown in the
Southeast of France. The advantage in this methodology is that
regional grain production estimates can be provided at an early
stage, even before harvest.

2. MATERIALS AND METHODS

The approach for integration of remote sensing imagery and
crop growth simulation to arrive at regional estimates of wheat
production comprise the following steps:

1. Optical remote sensing data (SPOT HRV XS and Landsat
5 TM) are used to locate winter wheat crops in the region.

2. Radar remote sensing data (ERS-SAR C-band) are used
to determine wheat flowering dates for the region.

3. Field observations from pilot areas are used to calibrate
a wheat growth model to local conditions.

4. Flowering dates as found in step 2 and 3, in combination
with regional soil data, are used to extrapolate the simulation
model from a point-based to a regional application.

5. Potential and sub-optimal conditions for wheat growth are
assumed to determine the yield gap, defined as the difference
between (simulated) potential production and (simulated and
observed) actual production (Van Ittersum and Rabbinge,
1997).

6. Actual production statistics from the production region
are used to evaluate simulation results.

2.1. Test sites

The calibration and validation test sites were situated in the
Southeast of France near Avignon, in the department Bouches-
du-Rhône. Model calibration (step 3) was performed on data
from a pilot site of 5 × 5 km: Alpilles – named after the small
mountain chain that borders the area in the south. A larger area
in the same region (45 × 50 km) was used to extrapolate model
simulations (step 4). This area is further referred to as Arles –
named after the town that is situated in this region. The
approach was further validated (step 6) at the department level
(regional scale) in the regions Midi-Pyrénées (MP) and Pro-
vence-Alpes-Côte d’Azur (PAC).

The experimental fields in Alpilles were situated in a very
flat area with an altitude around 10 meters above sea level. Main
crops are wheat, maize, sunflower and grassland. Some minor
crops are tomatoes, artichoke and alfalfa. Fields at the test sites
have an average size of ca. 200 × 200 m, which is large enough
to extract pure pixels from high spatial resolution satellites such
as SPOT HRV XS, Landsat 5 TM and ERS-SAR. Alpilles is
representative for the Arles region and for MP and PAC with
regard to cropping patterns and crop management.

2.2. Classification of wheat fields using optical imagery

The growth patterns of winter crops form the basis for winter
wheat classification in the Alpilles pilot area and in the larger
Arles region by using the sequential information of three optical
satellite images acquired during the growing season. The opti-
cal images that were required are a Landsat 5 TM image and
two SPOT HRV XS images (Tab. I).

Atmospheric correction using the 6S software (Vermote
et al., 1997) was applied before the geometrical correction. The
aerosol model was based on actual atmospheric optical thick-
ness measurements during satellite overpass, using a sun pho-
tometer installed at the Alpilles test site.

In wintertime, arable fields are normally not covered by sig-
nificant amounts of crop biomass, unless pastures or winter
crops are grown. At the end of the summer growing season
(October/November in Europe) winter crops may be sown, that
can accumulate a substantial amount of green biomass before
crop growth and development cease due to decreasing temper-
atures and reduced solar radiation. In early spring (March/April
in Europe), when temperatures are rising and incoming solar
radiation increases, these winter crops benefit from their
advanced development: the green canopy is able to capture
early incoming radiation and a partially developed root system
can take up water and nutrients from the soil.

The Normalised Difference Vegetation Index or NDVI
(Rouse et al., 1974) identifies green biomass and is calculated
from the visible and near infrared bands provided in SPOT

Table I. Specification of the optical remote sensing data.

Satellite / Sensor Scene coordinates Date

SPOT1 HRV XS K 49 – J 261 February 1st, 1997

Landsat 5 TM path 196 row 30 April 13th, 1997

SPOT2 HRV XS K 49 – J 261 July 7th, 1997
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HRV XS and Landsat 5 TM images. Green plots, with high
NDVI values, comprising green winter wheat fields and green
pastures, were identified from the Landsat 5 TM image and the
February SPOT1 image by unsupervised classification (iso-
data clustering with 50 classes that were identified and clus-
tered by field observations in the Alpilles pilot area). These
fields were sampled again in the July 1997 SPOT2 image, taken
after winter wheat harvest, so that winter wheat fields show up
as bare soil in the remote sensing image. By looking at the dif-
ference between summer images and winter images, winter
wheat fields were identified as the only winter crop grown in
this region. The classification result was majority-filtered (box
size 3 × 3) to assign values of neighbouring pixels to isolated
pixels if these were situated within an identified wheat field.
Field observations and ancillary data were used to calculate the
users’ accuracy of the above method in the Arles region, i.e.
dividing the number of correctly classified samples by the total
number of samples that were classified as belonging to that cat-
egory (Story and Congalton, 1986).

2.3. Radar detection of flowering in wheat

Flowering is a very important and a distinctive phenological
event in wheat production that marks the start of grain growth
in ears at the top of the canopy. Ear biomass per unit area
increases over time through the increase in the number of flow-
ering plants, through grain growth from current photosynthesis
products, and through translocation of carbohydrates from tem-
porary storage organs (mainly stems) to the developing grains.
Growing ears significantly affect radar back scatter signals, as
their presence and increasing biomass at the top of the canopy
modify crop geometry and crop moisture distribution and
hence, attenuation of the radar signal (Hamacher, 2000; Macelloni
et al., 2002).

With the Cloud-model (Eq. (1)), radar back scatter and
attenuation of a vegetation-soil system can be simulated
(Attema and Ulaby, 1978). In the model, vegetation and soil are
represented as clouds of water drops, and radar back scatter (γ )
depends on the radar beam incidence angle (θ) and on the mois-
ture content and its distribution in vegetation (C-term) and soil
(G-term). High values for W (canopy water content per unit soil
surface) mask the influence of the soil term.

(1)

with γ  = radar back scatter per unit projected area (m2 m–2), C =
back scatter of an optically dense vegetation cover (m2 m–2),  =
incidence angle (º), D = crop moisture extinction coefficient
(m–1), W = canopy water content per unit soil surface (kg m–2),
G = back scatter of dry soil (m2 m–2), m = volumetric soil mois-
ture content (cm3 water cm–3 soil), K = top soil moisture extinc-
tion coefficient (m–1).

ERS time-series (Tab. II) were selected as wheat signatures
are reported to behave consistently in C-band VV (even under
varying soil moisture conditions), contrary to those of crops
with more planophile oriented leaves such as sugar beet, potato
and maize (Van Leeuwen, 1996). 

ERS radar beams in the C-band (at a frequency 5.3 GHz
and with a wavelength 5.6 cm) acquire radar back scatter from
objects larger than 5.6 cm. Broad leaves (such as sunflower
leaves, sugar beet leaves and maize leaves) will produce C-
band back scatter, in contrast to small-sized leaves (such as
those of wheat and grasses). Instead, radar signals will attenuate
in the vegetation biomass (Macelloni et al., 2002). The use of
ERS time-series of winter wheat fields to identify crop pheno-
logical stages is legitimate, if values for crop moisture extinc-
tion coefficients (D) are relatively stable in time. Dry soil back
scatter (G) is different for different soil types and may vary
among studies. The relative contributions of crop water content
(D) and soil moisture content (G) to radar back scatter signals
(D:G) may vary between 83–96% (Tab. III). D and G parameter
values were established for the Alpilles pilot area by fitting the
Cloud-model to field observations.

As D-values appeared to be stable (Tab. III), a method was
developed to detect flowering dates in wheat crops, based on
the associated change in crop moisture distribution and crop
geometry, with the flowering stage marking the point where
aboveground water contents start to decrease and minimum
radar back scatter can be expected (Hamacher, 2000). In the
pre-flowering growth phase, canopy water content per unit soil
surface area (W) increases with increasing biomass and the
radar signal will be decreased due to attenuation by the canopy.
After the onset of flowering, an optically dense vegetation
cover of ear biomass starts to develop that prevents radar beams
from penetrating deeply into the wheat canopy, thereby reduc-
ing the radar signal maximally. Fully developed ears may pro-
duce backscatter, and as soon as grains start to ripen, the
moisture content of the crop decreases resulting in increased
radar back scatter as the influence of the soil is no longer
masked. The absolute minimum in the radar signal (i.e. at max-
imum attenuation) therefore denotes the maximum water con-
tent per unit surface area and hence flowering.

Regional dynamics of these phenological events can be
detected by ERS (radar) remote sensing. Success rate increases
if more comparable (wheat) fields are included in the detection
procedure. Based on this approach, regional flowering dates
have been estimated for simulation model calibrations with
time-series of ERS (radar) data (taken in the period November
1996–May 1997). For the Alpilles area, 10 ERS radar images
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Table II. Specification of the radar (ERS1 SAR) remote sensing data.

Date Modea Orbit Frame

December 19th, 1996 D 8707 2727

January 23rd, 1997 D 9208 2727

January 26th, 1997 A 9259 873

February 27th, 1997 D 9710 2727

April 6th, 1997 A 10261 873

May 8th, 1997 D 10712 2727

June 12th, 1997 D 11213 2727

July 17th, 1997 D 11714 2727

August 21st, 1997 D 12215 2727

September 25th, 1997 D 12716 2727

A = Ascending, D = Descending.

≈
≈

≈
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were available of which 7 coincided with the wheat growth
period. The 8 descending ERS-SAR images were co-registered
(linear transformation to the file coordinates of one reference
scene) and the 2 ascending images also. Subsequently all
images were speckle-filtered (Gamma Maximum A Posteriori
filter; Lopez et al., 1993) that best retains edge and line features,
with a window of 7 × 7 pixels that is appropriate for the
medium-sized wheat fields. Remote sensing time-series were
transformed to the Lambert III projection, the standard map
projection for this part of France. All ERS-images were re-sam-
pled (nearest neighbour) to pixels representing 25 m2. Classi-
fied SPOT images were overlaid with ERS images to generate
mean back scatter (DN values) for winter wheat fields only.

2.4. Wheat growth simulation model

Winter wheat simulations were performed with the mecha-
nistic crop growth model Rotask (Jongschaap, 1996), that uses
(simple) algorithms based on knowledge of the underlying
physical, physiological and biochemical processes. The model
quantifies water fluxes (precipitation, irrigation, run-off, soil
evaporation, transpiration and drainage), nitrogen fluxes (min-
eralization/immobilisation during soil organic matter decom-
position, mineralization from dead plant material, (in-)organic
fertilisation, wet deposition, leaching and root nitrogen uptake
by mass flow and diffusion), for fallow or field crop rotation
systems. Light interception and heat accumulation govern crop
growth and development, respectively. Crop nitrogen contents
may vary as a result of variations in nitrogen availability. Man-
agement decisions accounted for in the model refer to plough-
ing (date, depth), incorporation of organic fertiliser (date, rate,
type), and application of inorganic fertiliser (date, rate, type),
sowing (rate, depth), irrigation (date, rate) and harvest (date,
method). Crops currently included in the model are wheat,
sugar beet, potato, barley, rape-seed and maize. For this study,
simulations were performed for winter wheat only. The model

has been calibrated for winter wheat and for the soil conditions
of the Alpilles pilot area, using 1996, 1997 and 1998 field data
(Jongschaap, 2000; ReSeDA, 2000).

2.5. Up-scaling from point to regional level

Two methods were applied to scale-up point-based simula-
tions to the regional scale. Firstly, sowing dates were varied
over the month of November in 1996 to introduce variation in
the model variable “sowing date”, to mimic the observed var-
iable sowing dates of winter wheat in the area. Temperature
sums calibrated for the Alpilles pilot area were applied for the
periods sowing to flowering and flowering to maturity.

Secondly, the spatial variability in soil characteristics was
derived from the FAO/UNESCO 1:5,000,000 Soil Map of the
World (FAO, 1995). Higher resolution soil maps of the region
are available from different sources, but in our approach we
wanted to use broad-scale soil information to be applied at
regional level. The soil map resolution of 5 arc minutes results
in a grid of 10 × 10 km at the latitude of the MP and PAC region.
On the soil map, 3 legend units were identified in the region:
3086 (17%), 3139 (80%) and 6498 (3%). The remote sensing
data showed that only unit 3139 contained wheat fields. Deri-
vation of the relevant soil characteristics for the simulation
model, available water content and slope (Tab. IV), resulted in
10% of its area having a water storage capacity of 190 mm m–1

and a slope exceeding 8%, while the remainder had a water stor-
age capacity of 200 mm m–1 and a slope below 8%.

The simulation model was executed for 3 production situa-
tions with significantly different grain yields (Van Ittersum and
Rabbinge, 1997), because of production constraints that were
included in the model:

• Potential production; wheat growth and development are
governed only by crop characteristics, intercepted radiation
and average daily temperatures.

Table III. Cloud model parameters K, D and G (See Eq. (1)) from various experiments.

K D G Study area Reference

0.035 0.4800 0.0863 Alpilles (France) Prévot et al. (1998)

0.058 0.4501 0.0384 Alpilles (France) Synoptics (1996)

0.078 0.4330 0.0186 Flevoland (Netherlands) Bouman et al. (1999)

0.130 0.4338 0.0028 Alpilles (France) Synoptics (1996)

Table IV. FAO/UNESCO legend unit 3139, its constituent soil codes and the interpretation for simulation purposes in Rotask v1.5.

Soil

(code)

Texture

(class)

Slope

(class)

Areaa

(%)

Soil depth

(cm)

Available 
water content

(mm m–1)

Calcaric Fluvisols (Jc) 1 1 25 130 200

Gleysols (G) 2 1 20 130 200

Eutric Fluvisols (Je) 2 1 20 130 200

Cambisols (B) 2 2 10 130 190

Calcaric Fluvisols (Jc) 3 1 25 130 200

a Percentage of the soil legend unit area that is covered by the soil code.
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• Water-limited production; as 1, but accounting for inade-
quate soil moisture supply during crop growth: daily assim-
ilation rates are reduced proportionally to daily relative
crop transpiration deficits.
• Nitrogen- and water-limited production; as 2, but
accounting for the effect of inadequate soil nitrogen supply
during crop growth, which may cause canopy nitrogen con-
tents to reach critical values, resulting in reduced assimila-
tion rates.
When water and nitrogen supply from natural sources do not

meet crop requirements, production situation 1 results in higher
yields than production situation 2 (yield gap for production sit-
uation 2), which in turn gives higher yields than production sit-
uation 3 (yield gap for production situation 3). The production
situations were implemented without irrigation water supply
(situations 2 and 3) and without nitrogen fertiliser application
(situation 3). Irrigation and fertiliser application data were
available for the calibration data set, but not for extrapolation
to the regional scale.

Hence, the simulation experiment was set up as follows
(Fig. 1): the region was first filtered for winter wheat fields, and
subsequently the simulations were performed for the 3 produc-
tion situations. The two soil types were used in production sit-
uations 2 and 3 only, as for production situation 1 soil
characteristics are not taken into account. Sowing dates were
varied over the month of November 1996 (Date of Experiment
(DoE): 304–334), leading to grain yields P (t ha–1). After
calibration of the temperature sums between sowing and flow-
ering to DoE 467 (estimated from ERS data), grain yields were
P’ (t ha–1). Multiplication by the estimated area resulted in
regional estimates of winter wheat grain production (t).

Simulation results per soil type are given as Final Grain
Yield (FGY, Dry Matter (air-dry) in t ha–1), with a standard
deviation resulting from the simulated variation in sowing date.
Multiplication of FGY with the wheat area identified through
optical remote sensing resulted in regional grain yield estimates
for the 1997 season.

3. RESULTS AND DISCUSSION

3.1. Remote sensing estimates of wheat area 
and flowering date

About 145 ha of wheat fields in the Alpilles pilot area were
used to validate the remotely sensed unsupervised classifica-
tion process, which resulted in a users’ accuracy > 80% (Story
and Congalton, 1986). In the Arles region of 45 × 50 km, about
3000 ha of winter wheat fields were identified (Fig. 2), i.e. 1.4%
of the 211 800 ha of wheat reported for the MP and PAC region.

The crop moisture extinction coefficient (D) of the Cloud-
model (Attema and Ulaby, 1978) was stable over time and its
value agreed with those from other studies (Tab. III), although
reported standard errors are relatively large. 

Nonetheless, ERS (radar) time-series are useful for estima-
tion of wheat flowering dates in the region, as average back
scatter behaviour of radar time-series of winter wheat fields is
consistent (ESA, 1998; Hamacher, 2000).

A 5th order polynomial function fitted best through the
10 points representing back scatter values of winter wheat
fields (Fig. 3). Theoretically, the 5th order agrees with the

Figure 1. Simulation scheme for estimation of regional grain production P, after determination of wheat area and soil types and estimation of
regional flowering date.
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number of local maximum and minimum values that can be
expected for the studied time period. Starting with a local max-
imum for soil backscattering (only), to a local minimum when
the soil backscatter is fully masked at flowering, continuing to
a local maximum at maturity with backscatter of the ear layer,

towards a local minimum after all the fields have been harvested
and a dry soil is exposed at the end of summer. As the harvest
starts and progresses in June/July, the curve is increasingly
influenced by soil characteristics and less by the crop. Flower-
ing date of the wheat crop was set at the 1st local minimum of

Figure 2. Classification results for the Alpilles test site (45 × 50 km): Green biomass detection by a combined February SPOT1 image and
April Landsat 5 TM image (left), harvested wheat fields show up as bare fields on July SPOT2 image (middle) and resulting wheat fields after
majority box (3 × 3) filtering (right).

Figure 3. Identification of the date of flowering from the 1996–1997 ERS-SAR time-series.
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the fitted polynomial function, which was closest to April 12th,
1997 or Julian day 101, and in agreement with the calibrated
Rotask simulation model and field observations (Julian day
105–107).

3.2. Crop growth simulation results

Calibration of Rotask resulted in temperature sums between
sowing-emergence of 420 °Cd (base temperature of –10 °C),
emergence-flowering of 1050 °Cd (base temperature of 0 °C)
and flowering-maturity of 850 °Cd (base temperature of 0 °C).
On the basis of the flowering date for the region derived from
radar remote sensing (April 12th, 1997), the simulated variation
in temperature sum between emergence and flowering was
930–1180 °Cd, depending on sowing date in November 1996.
This variation was applied to run the model for the 3 production
situations. 

The simulation results and regional yield estimates (Tabs. V
and VI) illustrate the yield-limiting effects of insufficient water
and nutrient supply in the absence of irrigation and fertiliser
application. Hence, appropriate management (irrigation and
fertiliser application) leads to appreciably higher production
levels, in the absence of pests and diseases.

From Tables V and VI can be concluded that using field
observations or remote sensing estimates of a flowering date
give comparable results for yield simulations and that differ-
ences can be related to differences in crop management (sowing
date and cultivar). This supports the assumption that this
method can be used to regionally calibrate the model on phe-
nological characteristics. The decrease in standard deviation
for the remote sensing approach (Tab. VI) is caused by the fact
that the start of the reproductive (grain filling) phase was fixed
at the flowering date estimated from remote sensing (causing
a variable temperature sum between emergence and flowering).
The use of remote sensing data integrates the effects of varying
wheat crop management over the region into one representative
value for flowering date. In the original approach (Tab. V), the
temperature sum between emergence and flowering was cali-
brated on field-data in the Alpilles pilot area and then applied
with a variable sowing date, which consequently resulted in a
variable flowering date.

3.3. Validation

Actual wheat production data of the departments in the MP
and PAC region obtained from Arvalis (Tab. VII; Arvalis,
2003) included total wheat production (t), wheat area (ha) and

Table V. Calculated regional grain production P (without calibration on observed flowering date in pilot area Alpilles) for the 3 production sit-
uations. Values in brackets are standard deviations from the mean.

Scenario Soil
type

Area
(ha)

Yield
(t ha–1)

Production (P)
(t)

Regional
production (t)

1 Potential – 3000 11.35 (1.02) 34050 34050

2 Water-limited 1 2700  6.08 (0.51) 16416
179972  300  5.27 (0.39)  1581

3 Water- and nitrogen-limited 1 2700  4.70 (0.28) 12690
139472  300  4.19 (0.21)  1257

Table VI. Calculated regional grain production P’ (with calibration on remote sensing estimate on regional flowering date) for the 3 production
situations. Values in brackets are standard deviations from the mean.

Scenario Soil
type

Area
(ha)

Yield
(t ha–1)

Production (P’)
(t)

Regional
production (t)

1 Potential – 3000 11.45 (0.19) 34350 34350

2 Water-limited 1 2700  5.84 (0.15) 15768 17274

2 300  5.02 (0.16)  1506

3 Water- and nitrogen-limited 1 2700  4.53 (0.08) 12231 13446

2 300  4.05 (0.08)  1215

Table VII. Wheat production (1997) in departments 82 and 83, area and average yield (Arvalis, 2003).

Department Region Total 
Production

Area Yield

(t) (ha) (t ha–1)

82 Midi-Pyrénées (MP) 540600 104400 5.18

83 Provence Alpes-Côte d’Azur (PAC) 518500 98100 5.29
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average grain yield (t ha–1). The simulated values of 5–6 t ha–1

agree well with observed values that are remarkably low ( 50%
of their potential). According to Arvalis (op. cit.), average
nitrogen application in 1997 was about 100 kg ha–1 in the MP
and PAC region, which is about 55% of total crop requirements
for realisation of the potential yield of 11.5 t ha–1.

Inadequate water supply may have been limiting yield (if
additional irrigation was not applied, especially since 1997 was
an extremely dry year), while yield reductions may have
resulted from non-controlled pests and diseases. In the simula-
tion model, inadequate water and nitrogen supply was taken
into account (production situations 2 and 3), but the regional
distribution of crop management practices could not be simu-
lated. Fertiliser application rates of 100 kg N ha–1 could be sim-
ulated, but information on irrigation rates and dates were not
available for the region.

Introducing the effects of local management can be simu-
lated in point-based simulation models, but retrieving the nec-
essary (regional) data is very difficult and requires extensive
field work. However, remote sensing data may be used to spa-
tially estimate crop status (e.g. biomass, nitrogen content and
moisture status) that may be integrated in the simulation proc-
ess for run-time calibration (Jongschaap, 2005), but that is
beyond the scope of this paper.

4. CONCLUSION

In this paper we present a method to make regional, quanti-
tative production volumes of winter wheat on the basis of spa-
ceborne remote sensing observation in combination with a
dynamic crop growth simulation model. The most important
conclusions are:

• For purposes of regional winter wheat yield estimations,
an approach combining optical and radar remote sensing
data with point-based crop growth modelling yields satis-
factory results that are in agreement with regional yield sta-
tistics. Regional yield production can be estimated at an
early stage, even before harvest.
• Flowering dates for wheat crops can be estimated from
time-series of C-band radar data, as radar signals are atten-
uated maximally at the flowering stage. This requires that
radar signals from wheat fields can be isolated from those
from other fields, which appeared feasible with an accuracy
> 80% by combining optical remote sensing data from early
winter and late summer.
• Flowering dates for wheat crops that are estimated from
time-series of C-band radar data may replace phenological
field observations for the use of model calibration and give
comparable simulation results. This enables scaling up
point models to regional applications without an increase in
(phenological) field observations on the ground.
• Use of field-specific flowering dates for simulations
within a region would result in more accurate estimates of
regional grain production, than the use of one single value
for the whole region. This does require however suffi-
ciently large wheat fields. Wheat fields in the Alpilles area
were medium-sized on average, and therefore it is not cer-

tain that an individual field approach would have increased
simulation accuracy.
• As the differences between simulated and observed pro-
duction levels are presumably associated with management
practices, such as irrigation and fertiliser application, the
use of a remote sensing run-time calibration method for
dynamic simulation models (Jongschaap, 2005) may result
in increased simulation accuracy.
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