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Abstract – Crop protection forecasting models currently use meteorological data observed at stations to produce pest infection and development
indices. The indices are then extrapolated to the regional level by assuming that the weather conditions at the stations are similar to those in
neighbouring fields in the region, which is not necessarily the case. Hence, this has a significant impact on the quality of the recommendations
and diagnoses based on computerized plant protection models. The regionalization of model outputs between the stations comprising the
weather network, using geostatistical techniques such as cokriging in conjunction with satellite data, is a worthwhile approach for addressing
this need. The objective of this study is to develop and apply a methodology for regionalization of infection indices produced by two crop
protection models contained in the CIPRA (Computer Centre for Agricultural Pest Forecasting) system, using geostatistical tools and NOAA-
AVHRR images. This approach will help enhance our crop pest management and forecasting capabilities while optimizing the use of pest
control products in vegetable crops in Quebec. To achieve our objective, a cokriging method was applied to regionalize the model outputs using
air temperature and relative humidity estimated from NOAA-AVHRR images. The results were then validated against a regionalization
approach using ordinary kriging and two conventional interpolation techniques.

crop protection / remote sensing / NOAA-AVHRR / geostatistics / cokriging

1. INTRODUCTION

The CIPRA (Computer Centre for Agricultural Pest Fore-
casting) system developed by Bourgeois et al. [2] is a collection
of forecasting models in a common computer infrastructure
(20 insect pest models and 10 disease models for 10 different
crops). These models exploit the stochastic relationships
between the pest and the local weather conditions to produce
pest development indices. They are easy to use because they
require only standard meteorological data. With the establish-
ment of a computerized central network by Environment Can-
ada’s Atmospheric Environment Service, providing access to
meteorological data from a number of automatic stations,
CIPRA has become one of the first operational decision-mak-
ing support systems for crop protection in Canada [1, 9].

Integrated pest management programs have often stressed
the importance of taking the spatial dimension of pests attacks
into account in order to optimize action plans and understand
their ecology and epidemiology [12, 27, 31]. Given the heter-
ogeneous nature of the habitat and of disease development con-
ditions, a realistic modelling approach must take the spatial
variability of the information into account. Despite this concept
of spatial variability, pest control programs continue to rely on

estimation of a mean value of the risk, occurrence or incidence
of the pest in the field for the purpose of initiating treatments,
for the entire field or entire region concerned.

At the present time, CIPRA crop protection forecasting
models are applied locally. These models use meteorological
data observed at stations to produce pest infection and devel-
opment indices. The indices are then extrapolated to the areas
outside the stations by assuming that the weather conditions at
the stations are similar to those in neighbouring fields, which
is not necessarily the case. In fact, the information measured
at the station is valid only for a certain radius around the station.
Furthermore, the density and spatial distribution of the weather
stations are not optimal [23, 28, 29]. Similarly, pest monitoring
activities are limited to observing the presence and/or incidence
of pests at a finite number of locations in a field or for the region
concerned. The results of this sampling, which are intended to
be representative of pest development, are then extrapolated to
the entire field or entire region concerned. 

Hence, the spatial dimension is taken into consideration only
implicitly in the development of warnings and recommenda-
tions, even though they are regional in scope. The quality of
the recommendations and diagnoses based on forecasting models
and pest monitoring results is therefore significantly affected
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because of this fragmentary view of pest infestations despite
their regional scope. Intervention decisions are made on the
basis of subjective knowledge about the distribution of the dis-
ease. The development of more objective procedures based on
the spatial distribution of pest infestations could support the
decision-making process and consequently lead to more accu-
rate and more justifiable decisions [30]. 

Various statistical techniques can be used to study the spatial
distribution of pests and to produce risk/occurrence/incidence
maps. Legendre and Fortin [20], Campbell and Madden [4],
Legendre [19] and Real and McElhany [25] have provided an
exhaustive review of the methods used for these purposes.
However, in order for a technique to be appropriate, it must take
into account the actual location of the samples and their rela-
tionship with the neighbourhood [19]. Otherwise, very useful
information on the spatial structure of the variable in question
is lost. Geostatistics are better adapted for this purpose, since
they incorporate spatial interdependence in their analysis and use
it to estimate the variable where it is not observed [11, 19, 26].

The rules of occurrence and spatial distribution of pests are
governed by the biophysical structure of their habitat as well
as by the presence or absence of target crops and their stage of
development. The use of remote sensing data in plant protection
to characterize the environmental context in which pests and
their vectors develop for the purpose of assessing their risk/
incidence/occurrence has been extensively documented [3, 15,
17, 22]. The interpretation of these data can provide indications
about ground cover, condition of the vegetation, as well as sur-
face and atmospheric conditions, providing a low-cost tool for
monitoring the development of pests and their vectors. In fact,
because of the time, effort and money involved in monitoring
pests and their hosts, identifying environmental variables that
are easily measurable by remote sensing could enhance our
ability to assess the risk of pest infestations over large areas as
well as on small plots.

The combined use of remote sensing data and geostatistical
techniques is a promising tool for studying the spatial charac-
teristics of crop diseases as well as insect pest population
dynamics on a regional scale. In addition, this approach can
help enhance our crop pest management and forecasting capa-
bilities while at the same time optimizing the use of pest control
products. However, the use of such an approach remains limited. 

The main objective of this study is to develop and apply a
methodology for regionalization of risk indices produced by
two models contained in the CIPRA system by using geosta-
tistical tools and NOAA-AVHRR images. Data from the
NOAA-AVHRR sensor were used as auxiliary variables to
regionalize the outputs of the two models with a cokriging
approach. The results obtained were then validated against an

approach using ordinary kriging and two conventional interpo-
lation techniques, namely the nearest neighbour method and the
inverse distance weighted average method. 

2. MATERIALS AND METHODS

2.1. Crop protection models

Because of the large number of models within the CIPRA
system, we limited our analysis to one fungal disease model,
namely leaf blight of onion (Botrytis squamosa (J.C. Walker)),
and one insect model, namely carrot weevil (Listronotus ore-
gonensis (Le Conte)). These models were chosen because of the
economic importance of the crops concerned, the magnitude of
potential damage caused by these pests and, particularly,
because they are fairly representative of all the CIPRA models.
Table I provides a summary of the main characteristics of these
two models.

A preliminary sensitivity analysis of the two models with
respect to fluctuations in their input meteorological variables
permitted to identify the variables with the most significant
impact on their performance [8]. The leaf blight of onion model
is essentially sensitive to fluctuations in relative humidity. The
weevil model is more sensitive to maximum temperature than
to minimum temperature. Efforts to extract variables from
NOAA-AVHRR images were therefore concentrated on air
temperature and air humidity [6, 7].

2.2. Territory under study

The region under study is located in the southwestern Que-
bec, between longitude 72°–75° West and latitude 45°–46° 30’
North (Fig. 1). The region is part of the larger St. Lawrence
River system. The topography in this area is relatively flat with
slight differences in level near the St. Lawrence River and its
tributaries. In general, the elevation ranges from 15 to 75 m and
rarely exceeds 150 m. The territory is bounded to the north by
the mountainous region of the Laurentian Highlands and to the
south by the Eastern Quebec Uplands. The climate is charac-
terized by warm summers and cold, snowy winters. The mean
summer temperature is 16.5 °C. Mean annual precipitation is
800 to 1000 mm. The territory under study is primarily agri-
cultural.

2.3. Data

Hourly data from 26 automatic weather stations located in
the study area (Tab. II, Fig. 1) were used to calculate the outputs

Table I. Main characteristics of the two studied models.

Model Time interval Inputs Outputs Action threshold

Leaf blight of onion
Hourly

Temperature
Sporulation index

(ranges from 0 to 100)

50 (moderate risk) 
OR 

80 (high risk)
Relative humidity

Carrot weevil Daily
Max. temperature

Degree days 202 DD (10% of oviposition)
Min. temperature
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Figure 1. Location of the territory
and of the used meteorological sta-
tions.

Table II. Automatic weather stations used.

Station name Organization ° Longitude ° Latitude Elevation (m)

L’Assomption AESa –73.43 45.82 21

Frelighsburg† AES –72.83 45.05 152

Sainte-Clotilde AES –73.68 45.13 52

L’Acadie AES –73.35 45.30 45

Nicolet AES –72.65 46.22 8

Sainte-Anne-de-Bellevue AES –73.93 45.43 39

Saint-Anicet AES –74.28 45.12 49

Saint-Jovite AES –74.53 46.07 239

Varennes AES –73.43 45.68 –

McTavish AES –73.58 45.50 72

Trois-Rivières AES –72.62 46.38 55

Mirabel AES –74.03 45.67 82

Saint-Hubert AES –73.42 45.52 27

Dorval AES –73.75 45.47 31

Oka MAPAQb –74.07 45.50 –

Rougemont MAPAQ –73.10 45.43 40

Dunham MAPAQ –72.82 45.15 121

Franklin MAPAQ –73.90 45.03 145

Hemmingford MAPAQ –73.72 45.07 61

Saint-Hyacinthe MAPAQ –72.92 45.57 33

Saint-Joseph-du-Lac MAPAQ –74.00 45.53 –

Saint-Paul-d’Abbotsford MAPAQ –72.92 45.47 63

Saint-Rémi MEFc –73.60 45.28 53

Saint-Simon MEF –72.87 45.73 –

Saint-Zéphirin MEF –72.58 46.07 52

Stukely MEF –72.42 45.32 –
a Atmospheric Environment Service, Environment Canada; b Quebec Department of Agriculture, Fisheries and Food; c Quebec Department of the
Environment and Wildlife.
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of the models in question, over the 1997 agricultural season
(April to September). 

The satellite images used were acquired by the AVHRR sen-
sor on board the NOAA-12 and NOAA-14 satellites [10]. The
images cover the first 10-day period of the months of June and
July 1997. Originally, we had at least three images per day, for
every day within these two periods: one in the early morning
(local time), one in the early afternoon and one in the late after-
noon/early evening. After a visual selection, only the images
with minimal cloud cover were retained. On the days of June
1, 4, 7, 9 and 10 and July 1, 2, 3, 4, 5, 8 and 9, the cloud cover
was very heavy above the study area, rendering the correspond-
ing images unusable. The remaining images were used to cal-
culate the satellite air temperature and air humidity. The details
concerning extraction of the satellite variables are described in
Chokmani [6] and Chokmani and Viau [7].

The early afternoon air temperature images were chosen as
auxiliary variable for the purpose of regionalization of the
results of the weevil model (primary variable). In fact, the tem-
perature calculated from the images taken in the early afternoon
provides a good estimate of the maximum daily temperature
[24, 29]. On the other hand, since the periods of high humidity,
conducive to outbreaks of fungal diseases, occur in the early
morning or at dusk [14], the morning images of relative humid-
ity were chosen as auxiliary variable for the purpose of region-
alization of the results of the Botrytis model.

Moreover, the satellite images must have a sufficiently large
spatial coverage in order to provide a sufficient number of
points where the primary variable and the auxiliary variable are
available simultaneously. Given this constraint, in addition to
those relating to the availability of outputs on the image acqui-
sition dates, the air temperature images chosen for the purpose
of regionalization of the model outputs were: June 3, 1997
(154th Julian day) at 2:00 pm, June 5 (156th Julian day) at
2:00 pm and June 8 (159th Julian day) at 1:00 pm. Similarly,
the air humidity images of July 6 (187th Julian day) and July 10
(191st Julian day) at 8:00 am were used.

The simulation results of the two models were calculated for
the satellite image acquisition dates and times. On the following
acquisition dates, the leaf blight of onion model (Botrytis) pro-
duced non-null sporulation indices exceeding the moderate risk
threshold for several stations and the high risk threshold for cer-
tain dates: the 153rd Julian day (June 2) at 7:00 am and the
187th (July 6) and 191st (July 10) at 8:00 am. For the other
dates corresponding to the morning images, the sporulation
index values were virtually null. 

For the insect model (weevil), all the dates were potentially
useable. The only limiting factor was the availability of air tem-
perature images acquired at mid-day with light cloud cover.
Moreover, it should be pointed out that the action threshold of
the weevil model 202 DD was reached on the 156th Julian day
(June 5), at most stations. 

2.4. Interpolation methods

Given the extensive and detailed literature on the various
interpolation procedures [13, 16, 18, 21, 26], we will provide
here only a brief description of the various approaches used.

For the various interpolation methods studied (kriging,
cokriging, inverse distance and nearest neighbour), the value
of the variable Z at the unsampled point x0, Z*(x0) (in this case,
the model output) is estimated using a linear combination of the
Z(xi) values observed in the neighbourhood of the point (out-
puts calculated at the weather stations):

(1)

where, wi are the weighting coefficients assigned to each Z(xi)
value and n is the number of nearest observed points used for
estimation.

Kriging calculates the weighting coefficients wi by estimat-
ing the structure of the spatial distribution of the variable using
the structure function (covariogram, variogram, correlogram,
etc.). This structure function expresses the covariance (vari-
ance) between the observed points as a function of the distance
between them. It describes the degree and form of spatial auto-
correlation of the variable in question. The observed structure
function cannot be used as is in calculating the wi, since it rep-
resents a spatially discrete measurement of autocorrelation. A
theoretical model, chosen from among a limited set of author-
ized models [16], is therefore fitted to this observed structure
function. The quality of the estimation depends on the choice
of model. It must be based on actual knowledge of the phenom-
enon rather than solely on the accuracy of the mathematical fit-
ting. Once the spatial autocorrelation structure is modelled, the
model is used to calculate the coefficients wi.

Cokriging is simply the extension of kriging to more than
one variable by taking advantage of the spatial correlation that
exists between the primary variable and the auxiliary variable
or variables. In our case, the primary variable is represented by
the outputs of the models in question. Each model has only one
auxiliary variable associated with it. This is the satellite varia-
ble: air temperature or relative humidity, depending on the
model. Here again, the estimation is a linear combination of the
primary variable and the auxiliary variable:

(2)

where wi are the weighting coefficients assigned to each value
of the primary variable Z(xi), n is the number of nearest
observed points used for estimation, vi are the weighting coef-
ficients assigned to each value of the auxiliary variable U(xj)
and m is the number of points where the auxiliary variable is
observed in the neighbourhood of the point being estimated. 

The cokriging system is also subject to the conditions of uni-
versality and minimum variance. Here, the condition of universal-
ity means that the sum of wi and vi must be equal to 1. The most
commonly used method for attaining this objective is to divide
the condition of universality into two and ensure that the sum
of the wi equals 1, on the one hand, and that the sum of the vi
equals 0, on the other. There are other possible approaches for
ensuring the condition of universality, for example using a single
condition where the sum of the wi and vi together is equal to 1.

Solving the equations of the cokriging system in order to
obtain weighting coefficients involves the simultaneous use of
simple and cross models of the structure function of the main
and auxiliary variables. The cross structure function describes

Z* x0( ) wiZ xi( )
i 1=

n

∑=

Z* x0( ) wiZ xi( )
i 1=

n

∑ vjU xj( )
j 1=

m

∑+=
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the spatial interdependence between the primary variable and
the auxiliary variable. The cokriging system requires the exist-
ence of at least one neighbouring point where the main and aux-
iliary variables are observed simultaneously. 

Where the variable exhibits anisotropy, cokriging makes it
possible to perform the directional analysis (in a specific direc-
tion) of the spatial autocorrelation. However, given the limited
size of the sample used in this study (26 stations), the anisot-
ropy aspects were not studied. Only the covariograms and
omnidirectional variograms were calculated.

For the inverse distance method, the weighting coefficients
are calculated using the following weighting function:

(3)

where di is the distance between the point to be estimated and
the observed neighbouring point and p is an exponent param-
eter. This parameter is chosen arbitrarily. It has been demon-
strated that the choice of exponent parameter significantly
affects the quality of the estimation. A value of 2 is commonly
used [16] and this is the value we chose for estimation by the
inverse distance method. Moreover, the distance weighting
function (Eq. (3)) guarantees an unbiased estimation (condition
of universality), since the sum of the weighting coefficients is
equal to 1. However, the inverse distance method does not
include any provision for producing an optimal estimation for
which the estimation error is minimal.

The nearest neighbour method simply involves selecting the
observed value closest to the point being estimated as the esti-
mated value. At present, this technique is commonly used by
crop protection officials (intuitively) to interpret model results.
In fact, in order to monitor the development of pests and initiate
an appropriate response, crop protection officials use the results
of forecasting models that were calculated using data from the
meteorological station closest to the field or region concerned.
In a manner of speaking, the nearest neighbour method is a var-
iant of the inverse distance method. When the parameter p tends
toward infinity, the weighting function tends to transfer all the
weight to the value of the nearest neighbour.

Except for the nearest neighbour method, all the other inter-
polation techniques used require the definition of an optimal
neighbourhood structure. This structure defines the neighbour-
ing points to be included in the estimation, for which weighting
coefficients are calculated according to the technique used. The
performance of the interpolation technique is greatly affected
by the quality and number of neighbouring observations used
for estimation. In our case, where the anisotropy aspects were
not studied, the neighbourhood structure was in the shape of a
circle whose radius was determined using the spatial autocor-
relation structure described by the structure function. In order
to minimize the possible redundancy effect in the observations
chosen, the neighbourhood search circle was subdivided into
several sectors, each containing an optimal number of points.
It should be pointed out that in order to facilitate comparison
of interpolation methods, the same neighbourhood structure
was used for each variable by the various interpolation tech-
niques.

2.5. Validation

The various interpolation methods were compared using cross-
validation. During this process, the interpolation method was
tested at the points already sampled (the 26 weather stations).
The value observed at a given point was temporarily removed
from the set of known points. The value at this location was then
estimated using the values of the remaining sampling points.
The estimated value was then compared to the true value ini-
tially removed from the sample. This operation was repeated,
one by one, for all the sampled points.

3. RESULTS AND DISCUSSION

3.1. Leaf blight of onion (Botrytis) model

The 187th and 191st Julian days are the two dates for which
the leaf blight of onion model produced useable results. For
these two dates, the sporulation index and relative humidity val-
ues were observed simultaneously at 13 and 8 stations out of
26, respectively. These observation points were used to study
the spatial interdependence between the two variables. The
coefficient of determination demonstrates the a priori existence
of a fairly strong linear dependence between the model output
and the satellite variable. The coefficients of determination
between these two variables for the two dates were 0.84 and
0.70, respectively.

Both dates were associated with morning images character-
ized by light cloud cover, allowing the satellite relative humid-
ity images to be used as auxiliary variable. The risk of infection
was high on the days preceding these two dates, when there was
heavy cloud cover. These days were characterized by condi-
tions conducive to the development of fungal diseases (high
temperature and humidity). Since this model takes into consid-
eration the conditions of the last 72 hours [8], the high-risk peri-
ods produced by the Botrytis model extend beyond these
characteristic days. Hence, the sporulation events continue
beyond the days considered and this makes it possible to use
the satellite imagery for regionalization of the model’s outputs.

The simple and cross variograms of the two variables for the
two dates were calculated with a distance interval (lag) of 15 km
and a distance tolerance of 50%. Figure 2 shows only the var-
iograms relating to the 187th Julian day.

The Botrytis sporulation index exhibits an obvious spatial
structure. The observed simple variograms (Fig. 2A) begin
with a low variance at very short distances. Then, the variance
increases quickly with distance. Around 75 km, rate of increase
slows down. Past this distance, it becomes more or less chaotic.
This could be explained by the decrease in the number of pairs
of stations used in the calculations. In fact, past this distance,
the number of pairs drops quickly from about 40 to about 20.

Satellite relative humidity also exhibits a very obvious spa-
tial structure (Fig. 2C). However, a discontinuity at the origin
must be noted (a non-null variance at very short distances). This
may be attributable to the variable estimation error. It will be
recalled that satellite relative humidity is the result of a non-
linear combination of satellite air temperature and precipitable
water, and these data are in turn estimated with a certain degree

wi
1/di

p

1/di
p

i 1=

n

∑
---------------------=
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of uncertainty [6, 7]. A series of errors from various sources
therefore accumulates during its estimation. Once again, the
spatial structure of satellite relative humidity is characterized
by rapidly increasing variance with a significant drop-off
around 100 km.

In the cross-variograms of the two variables (Fig. 2B), the
structure of the spatial interdependence is less obvious, partic-

ularly in the case of day 191 (for which the variograms are not
presented here). This is attributable to the smaller number of
points at which the two variables are observed simultaneously,
namely eight in the case of this particular date. For day 187,
the number of simultaneous observation points was higher (13),
resulting in a more obvious spatial structure, especially at short
distances (less than 50 km).

The observed variograms were modelled particularly on the
basis of the shape of the simple variograms. The model chosen
was the exponential model [16] with a range of 100 km. A nugget
effect model was added in the case of satellite relative humidity
in order to model the observed discontinuity at the origin.

This choice seems to describe the spatial structure of relative
humidity very well (this variable is extensively sampled) and
fairly well in the case of the primary variable (the sporulation
index), particularly beyond a distance of 75 km. It also yields
an acceptable characterization of the spatial interdependence of
the two variables if the fifth distance interval for day 187 is dis-
regarded. Such outlying points could be the result of an inad-
equate number of pairs of observations.

The spatial structure models were employed for the estima-
tion of the Botrytis sporulation index using kriging and cokrig-
ing at all points of the territory on the same grid as the satellite
images. The estimation was performed using an optimal neigh-
bourhood structure, which was determined using the results of
the cross-validation applied iteratively until the neighbourhood
structure that produced the best estimation was obtained. This
was a search circle with a radius of 100 km divided into eight
sectors with the optimal number of observations per sector set
at two.

The same neighbour search strategy used for kriging and
cokriging was employed, during the cross-validation, in the esti-
mation of the sporulation index by the inverse distance method.

Table III provides descriptive statistics of the cross-validation
results of the four interpolation methods for the Botrytis
sporulation index as well as statistics on the distribution of the
true values of the model outputs observed at the meteorological
stations. These statistics demonstrate that all the interpolation
methods exhibit a global bias. On average, the various interpolation
techniques yielded estimates higher than the observed values.
However, the nearest neighbour technique was the method
which yielded estimates whose distribution was most similar
to the observed values. The other methods produced less
variable estimations (This is particularly evident from their
lower coefficients of variation). The low estimation variability
of the inverse distance, kriging or cokriging methods is known
as smoothing. This is attributable to the nature of the estimation
procedure, which consists in a linear combination of several
observed values. The inverse distance method was the method
most affected by the smoothing (lowest CV), while estimation
by cokriging was the least affected. Since it uses the original
values in the estimation, interpolation using the nearest
neighbour method produced unsmoothed values.

Table III also shows that kriging and cokriging produced the
lowest value for the standard deviation of the error as well as
the least biased estimation with the lowest mean error values.
This is in agreement with their primary objectives, namely
obtaining an unbiased estimation while minimizing the estimation
error.

Figure 2. Simple and cross variograms for July 6, 1997 (day 187):
(A) Botrytis; (B) Botrytis vs. relative humidity and (C) relative humi-
dity.
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Cokriging was the most successful method for estimating
the Botrytis sporulation index, according to several criteria. It
had the lowest mean absolute error and root mean square error
values as well as the narrowest distribution error (low standard
deviation values). In addition, the coefficient of determination
between the observed values and the estimated values was
higher for cokriging than for all the other interpolation tech-
niques studied. With respect to this parameter, cokriging
yielded better results for day 187 than day 191. This could be
explained by the fact that for the 187th Julian day, the number
of simultaneous observation points of the primary and auxiliary
variables as well as the amplitude of the relationship between
them were greater, which better explained the spatial interde-
pendence between the two variables in order to produce esti-
mates closer to the observed values. For day 187, all the
interpolation methods generally recorded better results, in
terms of the coefficient of determination. This could be attrib-
uted to the greater variability of the Botrytis sporulation index
on day 191 (the CV of day 191 was 0.76, versus 0.64 for day
187, Tab. III), making the neighbouring values less similar and
consequently less appropriate for inclusion in the estimation.

Figure 3 presents the interpolation maps for the Botrytis
sporulation index using kriging and cokriging. The estimation
error maps were superimposed as isolines expressing the standard
deviation of the estimation in terms of the sporulation index
value. The initial visual impression is that estimation by kriging
is smoother than by cokriging. The two methods were less
successful in the extrapolation area (few or no meteorological
stations), which extends from Trois-Rivières to Saint-Jovite and
to the north and southwest of Saint-Jovite.

Here again, cokriging was more effective and yielded more
accurate estimations than kriging. For both dates, in the case
of cokriging, the isolines for a given level of standard deviation
are located further from the meteorological stations than is the
case for kriging. For example, isoline 20, which the kriging
method placed north of the Montreal area, was pushed further
to the north when cokriging was used. This denotes an improve-
ment in the accuracy of the estimation. This comment is valid
for the other isolines. However, the improvement was less pro-
nounced on the map for day 191. This difference is attributed
to the fact that on day 191, there were a lower number of simul-
taneous observations of the primary and auxiliary variable, and
the observed relationship between them was also weaker. This
made it difficult to accurately model the structure of the spatial
interdependence between the two variables so that it could be
used to improve the quality of the estimation. In addition, the
satellite variable images for day 191 were characterized by
larger cloud-covered areas [7]. Consequently, this limited the
number of observation points of the auxiliary variable that
could be used in the estimation.

In the case of cokriging, for both dates, the isoline represent-
ing an estimation error with a value of 10 units is located at a
distance of 3 km from the stations (Fig. 3). This uncertainty
value compared to the mean values of the index observed on
day 187 and day 191 represents a mean relative error1 of 0.24
and 0.36, respectively. These values are lower than those of the

Table III. Results of the cross-validation of the four interpolation techniques for the leaf blight of onion model (Botrytis).

Date R2b
Variable Errora

mc σ d CVe mc MAE f RMSEg σ d

187–8:00 am

Observed values – 41.87 26.83 0.64 – – – –

Nearest neighbour 0.30 43.17 28.25 0.65 1.30 19.85 25.67 26.14

Inverse distance 0.32 43.34 16.02 0.37 1.46 18.32 21.71 22.09

Ordinary kriging 0.48 42.84 17.03 0.40 0.96 16.49 19.09 19.44

Cokriging 0.50 43.26 22.97 0.53 0.94 16.14 19.37 19.74

191–8:00 am

Observed values – 27.72 20.96 0.76 – – – –

Nearest neighbour 0.15 29.67 19.36 0.65 1.95 16.37 22.08 22.43

Inverse distance 0.19 29.55 10.88 0.37 1.84 15.50 18.65 18.92

Ordinary kriging 0.31 28.81 11.40 0.40 1.09 15.10 17.15 17.46

Cokriging 0.35 29.10 12.51 0.43 0.57 14.08 16.63 16.96

a: Difference between the estimated value (Zi*) and the observed value (Zi): ei = Zi* – Zi;b: Coefficient of determination of the cross-validation;
c: Mean value;
d: Standard deviation;
e: Coefficient of variation;
f: Mean absolute error: , n being the total number of points sampled;

g: Root mean square error: .

MAE 1
n
--- ei
i 1=

n

∑=

RMSE 1
n
--- ei

2

i 1=

n

∑=

1 The mean relative error was calculated by dividing the value of the esti-
mation error of the isoline by the mean value of the output of the corres-
ponding date shown in Table III.
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global error caused by uncertainty on the model input variables,
calculated at 0.53 and 0.94, respectively [8].

The comment above concerning the estimation of the 191st
Julian day which was less accurate than for the 187th day,
because of the greater variability of the index on the first day,
is confirmed in the interpolated map. In general and for both
dates, the accuracy of the estimation in the study area was ± 20
units of the sporulation index (Fig. 3). Given that the mean value
of the estimated sporulation index was approximately 43 on day
187 and 29 on day 191 (Tab. III), this inaccuracy thus represents
a fairly high level of estimation variation relative to the esti-
mated value.

However, the interpolated maps of the Botrytis sporulation
index show a structure in the configuration of the spatial dis-
tribution of the index. For both dates, Montérégie-West (region
bounded to the north by the greater Montreal area, to the west
by the St. Lawrence River and to the east by the Richelieu
River) was characterized by a low sporulation index, often less
than 40. The same index range was also observed in the area
extending from Saint-Zéphirin to Saint-Hyacinthe and includ-
ing Saint-Simon. However, high sporulation index values
(higher than 40) were recorded in the Lower Laurentians and
Lanaudière around the L’Assomption and Mirabel stations, in
the area located between the Ottawa River and the St. Lawrence

Figure 3. Maps of the sporulation index of leaf blight of onion and of the estimation error by kriging and cokriging.
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River (to the southwest of the greater Montreal area, to the north
of the Saint-Anicet station) and also in Montérégie-East, par-
ticularly the area located between the Rougement, Stukely and
Frelighsburg stations (Fig. 3). 

3.2. Carrot weevil models

By comparing the accumulated degree days as calculated by
the model to the satellite temperature values, it was found that
on June 5, 1997 (156th Julian day), the relationship between
the primary variable and the auxiliary variable was the strong-
est, with a coefficient of determination of 0.67. This day differs
from the other two (June 3 and 8, 1997, respectively, the 154th
and 159th Julian day) by weaker cloud cover, thus ensuring the
maximum number of simultaneous observation points of the
model outputs and of the satellite temperature (15 observation
points) [6]. On the 154th Julian day, the relationship between
the primary variable and the auxiliary variable was weaker
(coefficient of determination of 0.31 for day 154, versus 0.51
for day 159), even though the number of observations was com-
parable to day 159 (11 observation points for day 154 and
10 points for day 159). In fact, for this date, the satellite tem-
perature calculated above the study area was generally lower
than for the other two dates [6, 7], reflecting the cooler weather
conditions, resulting in a lower contribution of this day to the
accumulation of degree days by the model. 

In order to study the spatial structure of the outputs of the
carrot weevil model, the spatial structure of the satellite tem-
perature as well as their spatial interdependence, the simple and
cross omnidirectional covariograms were calculated using a
distance interval of 20 km and a distance tolerance of 50%
(Fig. 4). The covariogram expresses, as a function of distance,
the covariance between the pairs of observations separated by
a multiple of the distance interval. For a regionalized variable,
the covariance decreases as a function of the distance before
levelling off. Theoretically, past the distance (the range) at
which this levelling-off occurs, there is no longer any spatial
correlation between the pairs of observations. 

The use of a covariogram instead of a variogram was dictated
by the spatial structure of the variables. In this case, the cov-
ariogram proved to be more appropriate, for various reasons.
At the outset, it appears that the range of the spatial structure
is low and is close to the origin (Fig. 4), which means that the
spatial correlation occurs at short distances. With a distance
interval of 20 km, the variogram did not make it possible to ade-
quately describe the spatial structure of the accumulated degree
days according to the two models, particularly since the first
point of the variogram calculated is at a distance of about
20 km. Furthermore, the variogram does not give any value of
the variance at the origin. It models the spatial structure at short
distances and is estimated by extrapolating the variance values
of the other points around the origin, which is easy to do when
the spatial structure at short distances is fairly obvious. In the
opposite case, the covariogram is more appropriate, particu-
larly since it estimates the covariance at the origin.

The choice of the distance interval involved a delicate com-
promise between the statistical robustness of the calculated val-
ues of the structure function, assured by a large distance
interval, which therefore included a sufficient number of pairs
of observations, and the goal of determining the spatial struc-

ture at short distances by using smaller distance intervals. It
should be pointed out that the covariogram is composed of two
parts, theoretically symmetrical, based on the direction of the
distance vector: one positive and the other negative. Here, only
the positive parts of the simple and cross covariograms are pre-
sented. According to the observed simple covariograms
(Fig. 4A), the spatial variability of the accumulated degree days
according to the model has a structure characterized by a quasi
linear decrease in the covariance, levelling off around the sec-
ond distance interval and a second linear decrease phase past
70 km. The first two parts of the covariogram denote the exist-
ence of a spatial autocorrelation in the model outputs that could
be modelled and then used in their regionalization. The last part
of the covariogram, for its part, could indicate the existence of
a trend in the data past 70 km. The existence of such a trend is
contrary to the basic geostatistic hypothesis of stationarity [5,
16]. Which points out the existence of a subgroup in the weather
stations located in the periphery of the studied territory that is
statistically different from the rest of the sample. In fact, sta-
tions such as Saint-Jovite or Trois-Rivières, because of their
elevation or latitude, appear to belong to different climatolog-
ical zones than the rest of the weather stations. This trend could
be incorporated in the geostatistical analysis by estimating it by
means of a regression model. Once estimated, the trend is elim-
inated from the data and the analysis is then performed on the
presumed stationary residuals. However, since the observed
covariograms of the outputs of the model reaches its sill at a
shorter distance than that at which the trend in the data appears,
this trend was disregarded and only the first part of the covari-
ogram was considered.

The auxiliary variable, namely satellite air temperature, exhib-
ited a spatial variability structure similar to that of the accumulated
degree days, at least for the first 70 km (Fig. 4C). It should be
noted that there is no drift in the satellite temperature data. In
fact, this temperature is a regionalized variable describing the
atmospheric weather conditions. Since these conditions, at the
spatial scale of the study, are subject to the mechanisms of mix-
ing and stirring, they do not necessarily reflect the climatolog-
ical characteristics of the region. However, since degree days
are an accumulation of temperature over the course of the sea-
son, they increasingly reflect the climatological characteristics
of the region, which causes them to deviate increasingly from
the regionalized variables and leads to the emergence of trends
within these data.

With the exception of those for day 154, the observed cross
covariograms between the accumulated degree days and satel-
lite temperature exhibit a spatial interdependence structure
comparable to those of the simple covariograms of the model
outputs (Fig. 4B). This means that the two variables progress
spatially in the same direction; in other words, high satellite air
temperature values are observed alongside high degree day val-
ues and vice versa. The anomaly of day 154 is attributable to
the weak correlation observed between the satellite variable
and the outputs of the two models. This made it impossible to
measure and describe the joint spatial variability structure of
the two variables on this date. The trend effect past 70 km was
less evident in the cross covariograms.

A spherical model with a range of 30 km was fitted to all of
the simple and cross corvariograms. This choice was justified
by the structure of the covariograms marked by a quasi linear
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Figure 4. Simple and cross omnidirectional covariograms: (A) weevil; (B) weevil vs. temperature and (C) temperature.
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rapid decline phase of the spatial correlation, following which
the covariance quickly stabilizes. During the fitting, the last
part of the covariograms (past 70 km) was disregarded in order
to exclude the trend structure in the calculation of the model
parameters.

The same optimal neighbourhood structure used for the Bot-
rytis sporulation index was applied for the accumulated degree
days according to the insect model in the cross-validation of the
inverse distance, kriging and cokriging methods as well as for
the estimation of the model outputs using the last two interpo-
lation methods. This structure was a search circle divided into
eight sectors with an optimal number of two observations per
sector. However, the neighbour search radius was reduced in
this case to 70 km.

Table IV provides descriptive statistics on the results of the
cross-validation of the four interpolation methods for the outputs
of the weevil model as well as statistics on the distribution of
the true values of the model outputs observed at the weather
stations. The same comments made concerning the results of
the cross-validation of the four interpolation methods applied
to the Botrytis sporulation index are valid here, as confirmed by
the outputs of the insect model. The four interpolation methods

slightly overestimate the values of the accumulated degree days
as calculated by the weevil model. The nearest neighbour
technique was the method whose distribution of the estimation
was most similar to the observed values. The results of the other
methods were affected by smoothing. With respect to the
coefficient of variation values, smoothing was most evident in
the inverse distance technique and least evident in cokriging. 

Here again, the distribution of the error of the various inter-
polation methods (Tab. IV) shows that the two geostatistical
techniques achieved their estimation objectives by minimizing
the estimation bias and error. They produced the lowest mean
and standard deviation of the error values. On the other hand,
the nearest neighbour technique produced the most biased esti-
mation, with the highest mean error value. 

Also, for all the dates, cokriging provided an estimation of
the degree days with the lowest MAE and RMSE values and,
especially, the highest values of the coefficient of determina-
tion between the observed and estimated values. This means
that cokriging was successful in producing more accurate esti-
mations of the degree days which, furthermore, compared to the
other methods, were most similar to the observed values, making
this the most accurate of the various interpolation techniques

Table IV. Results of the cross-validation of the four interpolation techniques for the carrot weevil model.

Date R2b
Variable Errora

m σ CV mc MAE f RMSEg σ d

154

Observed values – 186.30 19.35 0.10 – – – –

Nearest neighbour 0.35 191.28 13.45 0.07 4.98 14.48 16.22 15.75

Inverse distance 0.32 190.04 11.36 0.06 2.42 12.38 15.20 15.32

Ordinary kriging 0.30 189.53 11.07 0.06 1.91 12.50 15.31 15.51

Cokriging 0.35 190.17 12.15 0.06 2.21 11.89 14.32 14.44

156

Observed values – 203.18 20.27 0.10 – – – –

Nearest neighbour 0.31 208.48 14.06 0.07 5.30 15.70 17.54 17.05

Inverse distance 0.31 207.17 11.90 0.06 2.58 13.41 16.04 16.15

Ordinary kriging 0.31 206.62 11.72 0.06 2.03 13.30 15.96 16.16

Cokriging 0.50 207.19 16.43 0.08 2.28 11.02 13.53 13.62

159

Observed values – 234.62 21.73 0.09 – – – –

Nearest neighbour 0.32 240.20 15.29 0.06 5.58 16.64 18.74 18.24

Inverse distance 0.33 238.85 13.04 0.05 2.73 14.34 16.90 17.03

Ordinary kriging 0.35 238.33 12.84 0.05 2.20 13.96 16.54 16.73

Cokriging 0.40 237.59 16.16 0.07 1.21 13.98 15.81 16.09

a: Difference between the estimated value (Zi*) and the observed value (Zi): ei = Zi* – Zi;b: Coefficient of determination of the cross-validation;
c: Mean value;
d: Standard deviation;
e: Coefficient of variation;

f: Mean absolute error: , n being the total number of points sampled;

g: Root mean square error: .

MAE 1
n
--- ei
i 1=

n

∑=

RMSE 1
n
--- ei

2

i 1=

n

∑=
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studied. This superior performance was particularly evident for
the 156th Julian day, when the number of simultaneous obser-
vations of the primary variable and the auxiliary variable as
well as the degree of their relationship were the greatest.

The interpolation results using kriging and cokriging of the
accumulated degree days according to the carrot weevil model
are presented in Figure 5. The estimation error maps for the two
techniques were superimposed on their interpolation maps in
the form of isolines expressing the standard deviation of the
estimation in degree day values.

As expected, the estimation of the accumulated degree days
as calculated by the model using kriging was smoother than the
estimation produced with cokriging. In addition, both methods

yielded lower quality estimates in the northern and northeastern
part of the territory under study, where there are few or no
weather stations. Since the neighbour search radius was smaller
than the radius used for the Botrytis model, because of an insuf-
ficient number of observations in the neighbourhood, kriging
of the degree days did not produce an estimation in part of this
area. However, since a sufficient number of observations of the
satellite variable in this region was available, cokriging was
able to provide estimations for this region.

For the interpolation of the accumulated degree days accord-
ing to the insect model, cokriging using satellite air temperature
was generally more effective and produced more accurate esti-
mations than kriging. The level of accuracy achieved was

Figure 5. Maps of the accumulated degree days as calculated by the carrot weevil model interpolated using kriging and cokriging as well as
of the estimation error.
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directly related to the intensity of the relationship between the
primary variable and the auxiliary variable as well as to the
number of simultaneous observations of these variables. For the
156th Julian day, for example, where the relationship between
degree days and satellite temperature was strongest and the
number of simultaneous observation points highest, the isolines
for a given level of error were much further from the weather
stations in the case of cokriging than they were in the maps
interpolated by kriging. The superior performance of cokriging
was less evident for the 159th Julian day, when the relationship
between the primary variable and the auxiliary variable was
weaker. 

The relationship observed between the primary variable and
the auxiliary variable was weakest for day 154. For this day,
cokriging yielded virtually no improvement in the quality of the
estimation compared to kriging (Fig. 5). This is due to the fact
that the spatial interdependence model was unable to measure
the true spatial correlation between the primary and auxiliary
variables (Fig. 4B).

Figure 5 shows the structure of the spatial distribution of the
accumulated degree days as calculated by the carrot weevil model.
On the south shore of the St. Lawrence River (Montérégie-East
and West) and all the areas adjoining the greater Montreal area,
degree days were accumulated at a faster rate than on the north
shore of the St. Lawrence River and of the Ottawa River (Lower
Laurentians and south of Lanaudière). This configuration is
dictated by a combination of several factors: the north-south
temperature gradient on the one hand, the island of warming
effect generated by the greater Montreal area and the elevation
gradient between the areas at higher elevations (Laurentians to
the north and Appalachians to the south) and the St. Lawrence
Valley and its tributaries on the other hand. 

4. CONCLUSIONS

In this study, the relationship observed between the outputs
of two crop protection models and the satellite variables was
used to regionalize their outputs and produce maps by applying
the cokriging method. The results were validated using the
cross-validation technique, compared to the results obtained by
ordinary kriging and by two conventional interpolation meth-
ods, namely the nearest neighbour method and the inverse dis-
tance weighted average method.

The results were unambiguous. In fact, for the two crop pro-
tection models studied and for all the dates, cokriging using sat-
ellite variables demonstrated its superiority in the interpolation
of the model outputs, compared to the other techniques, in sev-
eral respects: the low level of bias and smoothing in the esti-
mation by cokriging, the greater similarity of the cokriging
results to the observed values (higher coefficient of determina-
tion values) and the lowest distribution of error (lower MAE and
RMSE values). In addition, by using cokriging, it was possible
to produce maps of the model outputs with greater spatial accu-
racy than with kriging. The two conventional techniques were
quite simply incapable of calculating the accuracy of the esti-
mation. In the case where the neighbour search radius was not
sufficient to cover the entire territory, cokriging made it possi-
ble to take advantage of the auxiliary variable to produce esti-
mations covering the entire territory under study.

The degree of success of cokriging was directly related to
the intensity of the relationship observed between the primary
variable and the auxiliary variable as well as to the number of
simultaneous observations of these variables. A strong relation-
ship between the two variables combined with a sufficient
number of simultaneous observation points made it possible to
clearly identify and more accurately measure the spatial inter-
dependence between the two variables. It was therefore possible
to derive the maximum information from the spatial variability
of the auxiliary variable, more extensively sampled, in order to
predict the values of the primary variable at any point in the ter-
ritory.

The greatest limitation in the application of cokriging for the
interpolation of the outputs of the plant protection models using
satellite variables was the presence of clouds above the territory
under study. The extent of the cloud-free area and/or the per-
sistence of remaining clouds affected cokriging performance.
The extent of the satellite variable affected the number of simul-
taneous observations as well as the quality of the relationship
between the primary variable and the auxiliary variable. How-
ever, it is possible to compensate for the limitations to the appli-
cation of cokriging due to the presence of clouds by using
images produced by weather forecasting models. These images
could replace the satellite variables for the regions masked by
clouds. Using the outputs of the forecasting models as support-
ing variables is a promising avenue that would make it possible
to add the temporal dimension to the regionalization method-
ology developed in this study.

The analysis of the spatial structure showed that the auto-
correlation in accumulated degree days was observed at a scale
of less than 30 km. Yet, only 25% of the 26 stations used are
located less than 45 km from each other. Consequently, a larger
number of stations would make possible more accurate meas-
urement and description of the spatial structure of the variables,
at a shorter scale. In the case of cokriging, this will improve the
chances of obtaining simultaneous observations of the primary
and auxiliary variables in order to clearly ascertain the structure
of the spatial interdependence of the two types of variables.

Hence, we were able to develop an optimal methodology for
regionalization of the outputs of the crop protection models
which incorporates the spatial dimension in the forecasting
models while taking into consideration the spatial variability
of the environmental variables that govern pest development.
Remote sensing offers an excellent source of information on the
spatial variability of these variables that the meteorological net-
work in its current configuration cannot provide.

Integrating the spatial dimension into crop protection in this
manner represents a significant added value for crop protection
managers, first of all by producing accurate infection risk maps,
where the information is more representative of conditions in
the field, which makes it possible to provide more accurate
diagnoses based on the pest development indices, and secondly,
the use of risk maps provides a regional overview of pest devel-
opment and a better understanding of the characteristics of their
spatial structure. This helps more effectively target and plan
pest monitoring activities and various pest control actions.
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