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Abstract – The STICS crop model was recently coupled with radiative transfer (RT) models in the solar and microwave domains. This permits
the simulation of the temporal variation of remotely-sensed data over wheat canopies. This paper presents the first results in assimilating
remotely sensed data into STICS: comparing simulated and actual remotely-sensed data allows the recalibration of some STICS parameters so
as to constrain the evolution of the simulated canopy variables. A sensitivity analysis of the coupled STICS+RT model was carried out to select
the parameters of STICS with the largest influence on remotely-sensed observables and on some canopy variables (dry biomass and LAI),
leading us to assess the parameters that should be recalibrated in the assimilation process, in order to adequately simulate the time course of the
remotely-sensed data. In a second step, the benefits of assimilating optical data alone, radar data alone and both optical and radar data into
STICS+RT were compared.

crop model / wheat / remote sensing / assimilation

Résumé – Assimilation de données de télédétection optique et radar dans le modèle STICS de culture de blé. Le modèle de culture STICS
a été récemment couplé avec des modèles de transfert radiatif (RT) dans les domaines optique (du visible au moyen infrarouge) et radar. Ceci
permet de simuler l’évolution temporelle de variables obtenues par télédétection au dessus d’un couvert de blé. Cet article présente les premiers
résultats d’assimilation de données de télédétection dans le modèle STICS : la comparaison de données de télédétection modélisées aux données
réelles permet de re-étalonner certains des paramètres de STICS, de manière à contraindre la simulation de l’évolution temporelle des variables
du couvert. Une analyse de sensibilité du modèle couplé STICS+RT permet de sélectionner les paramètres de STICS ayant le plus d’effet sur
les données de télédétection simulées, ainsi que sur certaines variables caractéristiques du couvert (indice foliaire et biomasse aérienne). On
peut ainsi choisir les paramètres devant être ajustés dans la procédure d’assimilation, afin d’améliorer la simulation des données de
télédétection. On compare ensuite les résultats obtenus en assimilant des données de télédétection optique, des données radar, et simultanément
des données optiques et radar. 

modèle de culture / blé / télédétection / assimilation

1. INTRODUCTION

Crop functioning models are useful in many agricultural
and environmental applications, as they allow the prediction
of the yield, but also the evolution of canopy variables such as
the leaf area index or the biomass, through the crop cycle. The
use of these models is, however, limited by uncertainties on
the actual value of their input parameters, such as the sowing
density [9] or the sowing date [13]. Recent studies have dem-
onstrated that remotely-sensed data could improve the accu-
racy of crop models' predictions [2, 4, 7, 8, 11]. Up to now, two
main approaches have been used to couple or integrate satel-
lite data with a crop model (see [12] for a review).

(1) The inversion of radiative transfer models allows the
estimation of some important canopy variables involved in
the canopy functioning processes, such as the leaf area
index (LAI) or the fraction of absorbed photosynthetically
active radiation (fAPAR) in the solar domain, the surface
soil moisture in the microwave domain or the
evapotranspiration in the thermal infrared domain. These
remotely-sensed estimates permit us to force or to
recalibrate some well-identified parameters of the crop
functioning model, using optimisation techniques.

(2) The crop model is coupled with an appropriate radiative
transfer model, allowing the simulation of the whole
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process from canopy functioning to radiometric data.
Some parameters of the coupled models are then directly
recalibrated by finding the best agreement between
simulated and observed remotely-sensed data. The two
models are linked by one or a few common variables, such
as green LAI, assuming that the other inputs of the
radiative transfer model are known.

This last approach, often called assimilation, has several
benefits:
- it avoids the possible inaccuracies due to the inversion

scheme, since the radiative transfer model is run in direct
mode;

- it allows a better use of the temporal dimension, since the
crop model predictions are continuous over the cultural
cycle;

- it should permit a better integration of the various spectral
domains, provided that the crop functioning model includes
the main processes to which the radiometric data can be
related (e.g. absorption of the photosynthetically active
radiation in the optical domain, soil water transfers in the
microwave domain and energy balance in the thermal
infrared).

This present study aims to test the improvement in the predic-
tions of a crop model when coupled with remotely-sensed data
obtained in the solar (visible and near-infrared) and radar
domains. The assimilation approach was thus preferred since
it allows the integration of both spectral domains in a straight-
forward way. 

The STICS crop model [5] was recently coupled with radi-
ative transfer models (noted as RT in what follows) in the solar
and radar spectral domains [19], which permits the simulation
of the temporal variation of the remotely-sensed data of wheat
canopies over the crop cycle. Firstly, the models used are
briefly presented and an extensive sensitivity analysis of the
coupled STICS+RT model is carried out, so as to select the
STICS parameters to be recalibrated in the assimilation proc-
ess. We then present the first assimilation results, obtained
over several wheat fields during the RESEDA experiment
[15]. The benefits of assimilating optical data alone, radar data
alone and both optical and radar data into STICS+RT are
finally compared.

2. MODELS USED AND SENSITIVITY ANALYSIS

2.1. Models used

The crop model used in this study is the STICS model [5],
developed for simulating a wide range of crops under agricul-
tural conditions. Its main outputs comprise the above-ground
production and the yield components, as well as the nitrogen
and water balances of the soil-crop system, in a daily time step.
In the case of wheat crops, STICS has recently been coupled
with radiative transfer models in the solar (from visible to
short-wave middle infrared) and in the microwave (radar)
domains [19]. In the radar domain, a first-order radiative trans-
fer code [Cloud model, 1] is used. In the optical domain, we
use a multi-layer and multi-element version of the turbid
model SAIL [17], coupled with the PROSPECT [10] model

for the spectral properties of the leaves. These couplings allow
STICS to simulate the time course of  remote-sensing signa-
tures of wheat canopies, over their crop cycle.

2.2. Sensitivity analysis of the coupled STICS+RT model

2.2.1. Experimental design

As the assimilation of remotely-sensed data into a function-
ing model consists of adjusting some of the parameters of the
functioning model so as to minimise the difference between
observed and simulated remotely-sensed data, an important
preliminary step is to determine which parameters of the func-
tioning model must be adjusted in the assimilation process.
This selection of parameters is carried out through a sensitivity
analysis of the coupled STICS+RT model. The selected param-
eters should have a large influence on the remote sensing
responses, but should also affect canopy variables of interest,
such as the biomass or the leaf area index. The experimental
design consists of a collection of runs of the model, for various
values of the input parameters. In this study, the full factorial
design at three levels was chosen: for each input parameter, the
standard STICS value, plus and minus 10% of its range are
used to evaluate the sensitivity. For each parameter, the range
is taken as the full range of variation allowed in STICS. We
thus assume that taking plus and minus 10% of the range nor-
malises the variations between parameters.

The sensitivity analysis was carried out separately, but in the
same manner, for the radar and optical domains. Due to the very
high number of parameters of the coupled STICS+RT model,
a unique sensitivity analysis including all the STICS+RT
parameters was unmanageable, since with n parameters, the
number of runs to perform is 3n. Consequently, the sensitivity
analysis was two-fold:

 A first analysis was conducted separately for each of the
main processes included in STICS. This per-process analysis
allowed the reduction of the number of parameters to be
included in the global sensitivity analysis.

 In a second step, the parameters that appeared to be the
most important contributors in the per-process analysis were
selected for a global sensitivity analysis of the STICS+RT
model.

2.2.2. Sensitivity analysis in the radar domain

We focused on the three radar configurations available dur-
ing the ReSeDA experiment [15]: ERS (C-band, VV polarisa-
tion, 23° incidence angle) and RADARSAT (C-band, HH
polarisation, 23° and 39° incidence angles), as well as on two
important canopy variables: the total above-ground dry bio-
mass (DM) and the leaf area index (LAI). All variables were
analysed at six key phenological stages, as defined in
STICS [5]:
- LEV: emergence;
- AMF: beginning of the stem elongation;
- LAX: maximum of LAI;
- SEN: beginning of net senescence;
- DRP: beginning of grain filling;
- MAT: physiological maturity.
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The coupled STICS+RT model was run over two contrasting
situations: the RESEDA wheat field 101 in 1996-97 (very dry
spring, maximum LAI = 1.5) and an INRA-Avignon field in
1997-98 (same cultivar, 130 mm more precipitation, maxi-
mum LAI = 4.8).

Table I summarises the parameters of STICS found to have
the largest influence on the response of the coupled
STICS+RT model in the per-process analysis. In this table, the
sensitivity of the variables of interest to each STICS parameter
increases with the number of + signs, related to the signifi-
cance level of the sensitivity (probability associated with a
Student's test). The three radar configurations were found to
have similar sensitivities, that are mainly affected by the
parameters describing the soil properties or driving the surface
soil moisture, namely the dry bulk density (da) and the field
capacity of the first horizon of soil (hcc1). Among the crop
parameters, only the sowing date (iplt) and the crop density
(density) appear to have an important effect on the radar
response of the canopy.

2.2.3. Sensitivity analysis in the optical domain

The same experimental design was used in the optical
domain. We analysed the reflectances in three wavebands cor-
responding to three main distinct spectral domains: visible
(red: 670   nm), near-infrared (850   nm) and short-wave mid-
dle infrared (1650   nm). This was done for three incidence
angles: 0°, 60° and hot-spot, all in the principal plane, the sun
being at 45° zenith angle. The analysis was carried out for the
same six phenological stages as those used in the radar sensi-
tivity analysis.

The sensitivity of the reflectance was found to be only
slightly affected by the incidence angle, but large differences
were found between spectral domains and phenological
stages. The main results are summarised in Table II, where the
number of + signs have the same signification as in Table I.
The soil parameters (da and hcc1) are dominant only during

early stages and at the end of the crop cycle, when the fraction
of soil covered by the canopy is low. For intermediate growth
stages, the dominant parameter is adens, a parameter of com-
pensation between the plant density and the number of stems,
which represents the ability of a plant to endure increasing
densities and thus strongly influences the dynamics of the leaf
area index. Visible is the most sensitive at low LAI values
(AMF stage), whereas near- and middle infrared are more sen-
sitive for higher LAI values (LAX, SEN and DRP stages). This
was expected, since the absorption of light by the vegetation is
higher in the visible than in the near- and middle infrared,
leading to a quicker saturation of remotely-sensed data with
increasing LAI.

3. ASSIMILATION OF REMOTELY-SENSED DATA

The assimilation of remotely-sensed data into the coupled
STICS+RT model was tested using the data acquired over
wheat fields during the Alpilles-RESEDA experiment [15].
Assimilation was carried out using (1) optical data alone
(2) radar data alone, and (3)   optical and radar data together. 

3.1. Dataset

Four wheat fields of the Alpilles-RESEDA experiment
were used for assimilating remotely-sensed data: fields 101
(calibration field), 120 (irrigated field) and 300 were winter
wheat crops, whereas field 214 was sowed in spring. In the
optical domain, we used the airborne POLDER spectral data
acquired in nadir-viewing in the green (565 nm), red (670 nm)
and near-infrared (865 nm) channels. The POLDER instru-
ment repeatedly covered the site with acquisitions on days

Table I. Summary of the sensitivity of the selected output variables
of interest to the parameters of STICS (iplt: sowing date; density:
number of plants per m2 at emergence; extin: extinction coefficient
of PAR by the canopy; da: dry bulk density of soil; hcc1 and hcc3:
soil moisture at the field capacity for the first and third horizons; h1:
initial moisture of the first horizon; n1: initial nitrogen content of the
first horizon). The sensitivity increases with the number of +.

Parameter DM LAI ��
ERS

�� (23�)
Radarsat

��������
Radarsat

iplt ++++ +++ + + +

density ++ ++ + + +

extin +++ +

da ++ + ++++ +++++ +++++

hcc1 ++ + ++++ ++++ ++++

hcc3 ++ + +++ +++ +++

h1 ++ + +++ +++ +++

n1 ++ + ++ ++ ++

Table II. Summary of the sensitivity of the reflectance in the red
(RED), near-infrared (NIR) and short-wave middle infrared (MIR) to
the parameters of STICS: adens: compensation between stem
number and plant density (dimensionless); stlevamf: duration
(degree-days) of the period between the LEV stage (emergence) and
the AMF stage (beginning of the stem elongation); other parameters:
see Table I. The sensitivity increases with the number of +.

Parameter Wave band LEV AMF LAX SEN DRP MAT

adens RED
NIR
MIR

-
-
-

+++
++
+

+
++++
++++

+
++++
++++

+
++++
++++

-
-
-

stlevamf RED
NIR
MIR

-
-
-

+
+
+

-
+
+

-
-
+

-
+
+

-
-
-

iplt RED
NIR
MIR

-
-
-

++
+
+

-
+
-

-
-
-

-
-
-

++
++
++

da RED
NIR
MIR

+++
+++
+++

-
-
-

-
-
-

-
-
-

-
-
-

+
+
+

hcc1 RED
NIR
MIR

+++
+++
+++

-
-
-

-
-
-

-
-
-

-
-
-

+
+
+
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378, 396, 424, 437, 451, 466, 472, 488, 508, 526 and 555 (as
the RESEDA experiment started in October 1996 and ended
in October 1997, the origin of the dates was chosen as
01/01/1996, day 367 being 01/01/1997). The POLDER data
were calibrated and corrected for atmospheric effects, thus
expressed as top of the canopy reflectances. In the radar
domain, we used the images acquired by the synthetic aperture
radars (SAR) aboard the ERS (C-band, VV, 23°) and
RADARSAT (C-band, HH, 23°) satellites, calibrated and
expressed in dB units. Radar data were also acquired repeat-
edly, with acquisitions on days 344, 389, 392, 424, 462, 494
and 529 for Ers and days 449, 472, 497 and 521 for RadarSat
at 23° incidence angle (the data acquired at 39° incidence
angle were not used in the present study).

3.2. Assimilation procedure and parameters fitted

The assimilation of remotely-sensed data into the coupled
STICS+RT model is carried out by finding numerically [14]
the parameters of STICS that minimise the weighted sum of
the squared differences between simulated and observed
remotely-sensed data. The weights, respectively 0.03 for
the solar domain and 1.2   dB for the radar domain, account for
the inaccuracy of the radiative transfer models and for the
observed within-field variability of the remotely-sensed data.
This minimisation is performed with all the data available dur-
ing the crop cycle.
Five parameters of STICS were chosen as assimilation
parameters:
- iplt: sowing date;
- adens: compensation between stem number and stem

density;
- stlaxsen: duration of the period between the LAX stage

(maximum of LAI) and the SEN stage (beginning of net
senescence);

- hcc1: field capacity of the first horizon of soil;
- q0: parameter defining the end of the maximum evaporation

stage of the soil.
Two of these parameters, stlaxsen and q0, were not selected in
the sensitivity analysis, but were added after examining the
results of the first assimilation attempts: without including
these parameters, the temporal evolution of the LAI at the end
of the crop cycle (influenced by stlaxsen) and the decrease
in the surface soil moisture during dry periods (influenced
by q0) were always incorrectly reproduced, even after assimi-
lation. This is likely to be due to a drawback of our two-step
sensitivity analysis: these parameters were not kept after the
per-process analysis and thus were not included in the global
sensitivity analysis.

One can notice that the five parameters are of varying sta-
tus: iplt corresponds to agricultural practices, adens and stlax-
sen are cultivar-dependant, whereas q0 and hcc1 are related to
the properties of the soil top layer.

The other parameters of STICS were kept constant, most of
them at their standard values given in STICS and some of them
(namely, those describing the soil properties) at values result-
ing from field measurements or from a preliminary calibration
of STICS against the ground data acquired on the field 101 of
the RESEDA experiment.

3.3. Assimilation results

The effect of assimilating remotely-sensed data into STICS
was tested by comparing the evolution of some selected output
variables when running STICS without assimilation (hereafter
called direct mode) and when assimilating optical (POLDER)
and/or radar (SAR) data. Four output variables were chosen for
their interest and their influence on the radiometric signatures:
the leaf area index LAI (m2/m2), the total above-ground dry
matter DM (kg/m2), the total plant water content PWC (kg/m2)
and the surface soil moisture in the 0–5 cm layer mv (in
volumetric units, m3/m3). 

Figure 1 presents the temporal evolution of the four
selected output variables, without assimilation and when
assimilating POLDER data, for RESEDA wheat field 300.
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Figure 1. Results of STICS simulations on RESEDA wheat field
300, when assimilating POLDER data, for the four selected variables
of interest (LAI, DM, PWC and mv). Graphs in the left column give
the temporal evolution of these variables (solid line: STICS with
assimilation of remotely-sensed data; broken line: STICS in direct
mode i.e. without assimilation; solid circles: measured values; with
error bars);  the time is expressed in days (DOE=367 is 01/01/1997).
Graphs in the right column present the simulated vs. measured values
(the solid line is the 1:1 line); cor is the correlation coefficient
between measured and assimilated values; rms values are given in
Table III.
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Thanks to the rather large number of POLDER images availa-
ble during the wheat crop cycle (11 acquisition dates) a clear
improvement is observed on the vegetation variables (LAI,
DM and, to a lesser extent, PWC) when assimilating optical
data. We note that the shape of the temporal evolution of LAI
is greatly improved: the development of LAI is faster at early
stages, and the maximum of LAI is reached about one month
sooner, as well as the senescence. Adversely, the assimilation
of optical data does not improve the prediction of the surface
soil moisture mv.

Figure 2 presents the same results as Figure 1, when assim-
ilating SAR data. The simulated evolution of the leaf area
index (LAI) and of the plant water content (PWC) is clearly
worse, compared with the direct mode. This can be related to
the low sensitivity of the radar data to the vegetation, at least
in the C-band. Simulated values of the surface soil moisture
mv appear to be slightly improved when looking at the root
mean square errors (hereafter noted as rms and given in
Tab. III) but are clearly underestimated during the saturation
phase, at the beginning of the cycle (before day 400). Improv-
ing the modelling of the surface soil moisture in STICS is thus

clearly necessary for a better assimilation of radar data into
STICS. However, one must keep in mind that the root mean
square error (rms) on surface soil moisture obtained after
assimilation ( 0.08 m3/m3) is of the same order of magnitude
as the rms on the estimation of the surface soil moisture by
inversion of the CLOUD model [16]. 

Figure 3 presents the same results as Figure 1, when assim-
ilating POLDER and Sar data together. Compared with the
assimilation of POLDER data alone (see Fig. 1), adding radar
data appears to improve only slightly the LAI prediction. Plant
water content PWC simulation is also slightly improved in the
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Figure 2. Results of STICS simulations on RESEDA wheat field 300
when assimilating radar data, for the four selected variables of
interest (LAI, DM, PWC and mv). Same legend as Figure 1.

Table III. Summary of the results of assimilating optical data alone
(POLDER), radar data alone (SAR) or optical and radar data
(POLDER+SAR) in STICS, compared with the Direct mode (STICS
running without assimilation of remotely sensed data), for four of the
RESEDA wheat fields. Results are expressed as the root mean square
error (rms) of the simulated values, for the four selected variables
(LAI, DM, PWC and mv). The results are given for each field (101,
120, 300 and 214) and all together (All). 

Field Mode LAI PWC DM mv

101 Direct 0.57 0.36 0.12 0.068

(calibration field) POLDER 0.55 0.46 0.16 0.055

SAR 0.88 0.64 0.17 0.059

POLDER
+SAR

0.46 0.36 0.13 0.062

120 Direct 1.16 0.52 0.12 0.105

(irrigated field) POLDER 0.57 0.30 0.13 0.110

SAR 1.07 0.53 0.13 0.107

POLDER
+SAR

0.56 0.30 0.12 0.101

300 Direct 0.63 0.39 0.19 0.079

POLDER 0.17 0.34 0.14 0.068

SAR 0.98 0.42 0.12 0.072

POLDER
+SAR

0.16 0.35 0.16 0.058

214 Direct 0.46 0.16 0.07 0.065

(spring wheat) POLDER 0.28 0.33 0.13 0.054

SAR 0.63 0.31 0.11 0.058

POLDER
+SAR

0.63 0.31 0.11 0.058

All Direct 0.74 0.38 0.17 0.087

POLDER 0.46 0.37 0.14 0.085

SAR 0.88 0.52 0.16 0.084

POLDER
+SAR

0.61 0.35 0.18 0.082

�
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middle of the crop cycle (at its maximum values) but is glo-
bally worsened, as is the dry matter DM prediction. Simulation
of the surface moisture mv is slightly improved, and is even
better than in Figure 2 (radar data alone), with the same dis-
crepancy at the beginning of the crop cycle.

The results of assimilation for the four RESEDA wheat
fields are given in Table III and can be summarised as follows.
A clear improvement in the prediction of the vegetation varia-
bles (namely, LAI and DM) is observed when assimilating
POLDER data, for fields 120 and 300. The improvement is
less pronounced for fields 101 and 214, but one must keep in
mind that on the one hand, field 101 was used for calibrating
some of the parameters of STICS, and that on the other hand,
field 214 was sown in spring and exhibited an extremely low
development of the canopy (maximum LAI = 1.1), due to an
abnormally dry spring (no rain between the end of January and
beginning of April, days 388 to 475). The residual error on
LAI estimates when assimilating POLDER data (see line All/
POLDER in Tab. III) is 0.46, which is close to the accuracy of
LAI estimates in the REDEDA dataset through a neural net-
work trained on the SAIL model:  rms = 0.49  [18]. 

The results obtained when assimilating radar data alone are
generally worse than those given by the direct mode, except
for a slight improvement for the surface soil moisture. The low
sensitivity of the radar signal to the vegetation parameters and
the difficulty in simulating correctly the surface soil moisture
when close to saturation (at the beginning of the cycle) are
likely to have a strong effect on the assimilation of radar data.
The number of radar images is also probably too low, since
because of the quick variations of the surface soil moisture, a
3- to 9-day repeat cycle would be required for a good monitor-
ing of surface soil moisture and a proper estimation of soil
water content from microwave remotely-sensed data [3, 6].

When compared with the assimilation of optical data alone,
the simultaneous assimilation of optical and radar data does
not permit a clear amelioration, which might be due to the dif-
ficulties in simulating the evolution of surface soil moisture,
but could also be related to the large improvement already
obtained with the optical data alone. Only a slight improve-
ment in the predicted plant water content and surface soil
moisture is observed. 

4. CONCLUDING REMARKS

Coupling the STICS crop model with radiative transfer
models in the optical (solar) and radar domains allowed the
testing of the assimilation of remotely-sensed data in STICS.
The introduction of optical data leads to a clear improvement
in the accuracy of leaf area index and above-ground dry matter
predicted by STICS over the crop cycle, thanks to the large
number of available optical data.

The assimilation of radar data does not permit the improve-
ment of the predictions and further improvements in the simu-
lation of the surface soil moisture are obviously needed for a
better integration of radar data into STICS. Also, the amount
of available radar data might not be large enough for that pur-
pose.

This study also demonstrates that assimilating simultane-
ously remotely-sensed data from various sensors (optical and
radar) into a crop model is feasible, even if, as in our case, the
introduction of the radar data did not improve the accuracy of
the simulated values. Such simultaneous assimilation could be
of great interest when the cloud cover limits the number of
available optical images.
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