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Abstract – In France, pastures represent a significant land-cover type, which mainly sustains husbandry production. For this reason, it is of
great benefit to develop real-time monitoring of pasture biomass production, taking into account its spatial and temporal variability. The absence
of low-cost methods applicable to large regions has oriented French stakeholders to the use of growth simulation models adequately informed
through spatialised databases (such as the ISOP system). Remote-sensing data may be considered a potential tool to improve simulations by
objective observations in a real-time framework and the aim of this work was to evaluate this potential role of remote sensing. Thirteen forage
regions (administrative partitioning of the French territory for pastures and grasslands) were selected in France, differing by their soil, climatic
and land-cover characteristics. SPOT4-VEGETATION satellite images (1 km2 resolution) were used to provide the spectral signature
corresponding to pure pasture, using subpixel estimation methods. This information was then related to growth variables calculated by the
STICS-pasture model (included in the ISOP system). We found that the best relations were obtained between a middle infrared-based vegetation
index (SWVI) calculated from the elementary reflectance bands of the satellite, and the leaf area index (LAI) calculated from STICS. The use
of these relations first showed the ability of satellite data to provide real-time estimations of growth status variables. Second, the comparison
between both types of data showed that spatial and temporal differences existed between satellite and model information, mainly during the
harvesting periods. This result could contribute to improving the model evaluations on a regional scale.

pastures / remote sensing / vegetation index / biomass production / STICS / regional scale

1. INTRODUCTION

The monitoring of pasture has a strategic impact on a
national scale. For instance, it can allow the organisation of for-
age transfers between regions submitted to various drought
conditions or the giving of objective elements for applying sub-
sidy policies after extreme climatic events such as drought (the
year 2003 is a good example). In fact, this kind of preoccupation
is typical of national or European institutions (for example, the
Central Service of Investigations and Statistical Studies in
France-SCEES or the Joint Research Centre at the European
Union level-JRC). However, the high spatial and temporal var-
iability of pasture conditions, the small amount of readily avail-
able information, and the absence of forage economical trace-
ability through specific markets, make it difficult to apply
real-time alert systems to prairie production.

Some research groups are developing different methods to
establish biomass production of pastures in a precise, economic
and fast way. Biomass cutting is a simple method for estimating
biomass production [54, 61] but this technique is limited by
being time-consuming and costly, all the more because the
amount of required measurements to produce a reliable evalu-
ation at a national level is high. For these reasons, it is of great

benefit to develop indirect techniques to estimate functional
prairie features, such as biomass, net primary productivity
(NPP) or leaf area index (LAI).

In recent years, growth simulation models have allowed
methodological and operational progress in this domain. Pas-
ture modelling has been the objective of different research
groups [1, 18, 39, 47, 56, 62]. The STICS model developed at
INRA [11] was adapted to pasture conditions by adding spe-
cific functions to simulate pasture characteristics [50]. The
ISOP system (Information et Suivi Objectif des Prairies) was
developed thanks to collaboration between INRA and Meteo-
France with the financial support of the SCEES. It consists of
the STICS-pasture model properly connected to soil, climate
and technical databases through a Geographical Information
System. The ISOP system aims at estimating pasture growth
variables, taking into account water and nitrogen budgets in
order to identify water-deficient years as early as possible in
the season as compared with a 16-year average. Current prob-
lems come less from the reliability of the model than from the
input data variability to inform the forage regions or FR [16,
49, 51]. No actual validation has been possible because of the
lack of existing ground truth data on this scale.
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Remote sensing offers interesting perspectives to enhance
the achievements of simulation models, particularly the use of
spatial and repetitive information provided by sensors with dif-
ferent spatial resolution. The use of remote sensing for prairie
monitoring has been focused mainly on species and plant com-
munity identification [6, 15, 26, 33, 36, 55] and on surveying
their geographical distribution [3, 22, 33, 42]. Also, several
investigations have demonstrated the existence of a strong rela-
tionship between satellite information (principally from the
NOAA-AVHRR satellite) and biomass or net primary produc-
tivity (NPP) for different regions and ecosystems worldwide
[10, 12, 23, 27, 40, 41, 43, 53, 63]. Other studies have tried to
identify drought periods or dry zones [57]. The major benefit
of remote-sensing data lies in the possibility of getting spatially
continuous information with a reasonable time period and cost.
It also appears to be a unique tool for obtaining actual obser-
vations of crop status while models only offer a virtual estima-
tion of it. It was decided to use VEGETATION sensor data
(launched in April 1998 on the SPOT4 platform) in combina-
tion with outputs from the ISOP system to propose a national
pasture survey in France. Therefore, the present work consists
of exploring the possibilities of improving pasture productivity
estimation at a regional resolution, by associating measure-
ments provided by remote sensing and simulation results. In a
first stage, we estimated pure pasture spectral responses from
the radiometric information of pure pasture pixel at the resolu-
tion of 1 km2. After obtaining the spectral response of pure prai-
rie for different dates and regions we submitted the satellite
indicators of some biophysical variables, such as LAI or bio-
mass, to estimation from the ISOP system using the STICS
growth model. Finally, we analysed the possibilities offered by
coupling the model and remote-sensing data.

2. MATERIALS AND METHODS

2.1. Study areas

The spatial resolution used in the ISOP system, also used in
this work as the elementary model resolution, comes from an
administrative partitioning of the French territory: the Forage
Region (FR). In order to limit the work volume (the whole ter-
ritory is covered by 200 FRs), we chose FRs representing most
of the pasture production, climate and topography conditions
(Fig. 1): 2503, 2505 and 2516 (Normandy Region); 4313 (High
Jura Region); 7312 and 7315 (Southern France Pyrenees
Region) and 8301, 8302, 8303, 8305, 8309, 8310 and 8311
(Central Plains Region). As far as remote-sensing resolution is
concerned, each FR is characterised by a window of 25 km2

(5 × 5 pixels of 1 km2), and each window (pasture proportion
and accompanying crop) is described in Table I.

2.2. Satellite data and the subpixel estimation

We used SPOT4-VEGETATION sensor data acquired dur-
ing 1999 and 2000. All these images were geo-referenced and
co-registered in latitude/longitude projection. The data were
received as S products (integrating available atmospheric cor-
rections as 10-day synthetic data) [7, 45]. All images were
received in HDF format (16 bits) and transformed into radio-

metric values, coded on 8 bits (0–255) (© ENVI 3.1). This treat-
ment allowed us to reduce the file size and computing time as
well. However, this transformation altered the original reflect-
ance values while keeping the whole spatial and temporal
dynamics.

In a SPOT4-VEGETATION image, every pixel integrates
the spectral signatures of each land-cover type included in a
pixel (1 km2). For the particular case of the VEGETATION
sensor, this integration corresponds to a mean reflectance value
in the blue (B0), red (B2), near-infrared (B3 or NIR) and middle
infrared (B4 or MIR) bands from the electromagnetic spectrum.
This integration results in a mixed value representing many
land-cover types. To recover the spectral response of a specific

Figure 1. Thirteen forage regions (FR) selected as study areas in
France.

Table I. Window characteristics inside each one of the selected FRs.
PP = pasture proportion.

FR PP (%) AccompaNYING Crop / (%)

2503 80 Cultures complexes / 7

2505 96 Turbe / 2

2516 85 Complex Crops / 11

4313 57 Conifer Forests / 20

7312 50 Forests / 26

7315 41 Complex Crops / 35

8301 69 Complex Crops / 13

8302 60 Complex Crops / 16

8303 54 Complex Crops / 15

8305 55 Complex Crops 17

8309 85 Agriculture / 7

8310 59 Conifer Forests / 15

8311 60 Agriculture / 15
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land-cover type, it is recommended to apply subpixel tech-
niques, as described by several authors [8, 29, 44]. In France,
Fischer [20] studied the temporal evolution of NDVI for pure
cultures from mixed pixels while using an empiric model for
all land use, assuming a double logistical function for the NDVI
evolution. From the mixed spectral values and land use, it is
possible to recover every double logistic parameter. Later, Ker-
diles and Grondona [31] and Faivre and Fischer [19] assumed
that the spectral variability within the mixed pixels was only
due to land use. Using a linear model, every pure response was
derived from the mixed reflectance, considering that the
reflectance of a mixed pixel is the linear combination of the
reflectance of each elementary pixel multiplied by its respec-
tive proportions within the pixel.

In order to achieve the pixel decomposition data from the
SPOT4-VEGETATION sensor data (1 km × 1 km), corre-
sponding to the window area, we adapted the model developed
by Faivre and Fischer [19] with a specific programming format
(© Matlab). This model requires two types of input data to get
pure spectral responses of every land-cover type inside a pixel
of 1 km2: (a) the proportion of each land-cover type per pixel,
and (b) the reflectance values of mixed pixels in the different
bands. Thus, for the 25 pixels selected from each FR (window),
we firstly calculated the proportion of every land-cover type in
the pixel, using the Corine Land Cover database (1989–1994).
Secondly, for each pixel and date, we extracted the spectral
data: B0, B1, B2, B3 and B4. We generated the mean reflectance
value for the different land uses in the pixel and the correspond-
ing estimated variance as from these data, applying the subpixel
estimation methodology, for every date and spectral band.

We tested the performance of several vegetation indices,
using the spectral response of pure grassland estimations, as
vegetation indices are not all as good for explaining structural
and functional features of vegetation, such as green biomass
and LAI [4, 9, 21, 25, 35, 58, 65] as well as net primary pro-
ductivity [34, 41]. Those indices are the NDVI, the SAVI (Soil
Adjusted Vegetation Index, [28]) or PVI (Perpendicular Veg-
etation Index, [46]) that takes into account soil effects, and the
SWVI (Middle Infrared-based NDVI, [13]) or the ARVI
(Atmospherically Resistant Vegetation Index, [30]) that
reduces the effects of atmospheric absorption (Tab. II). Linear
and exponential-type relationships between the best index and
the simulated LAI were then tested.

2.3. STICS-pasture model and the ISOP system

The ISOP system provides pasture productivity estimates on
the Forage Region (FR) scale using the STICS simulation
model [51] which simulates daily values of Leaf Area Index
(LAI) in m2 leaf m–2 soil, standing biomass (MSEC), in g dry
matter m–2 and dry matter Productivity (DMSECi) in kg ha–1

day–1 as growth variables of the system. Some stress indicators
are also available as model output, such as the available soil
water storage (RES) in mm, and water and nitrogen-stress indi-
ces (TURFAC) and INNS as defined in [11]. The STICS model
estimated those variables for the possible pasture management
variables, fertilisation levels and soil types. The simulated
value corresponding to each FR resulted from weighting all
possible combinations considering their relative importance to
the FR.

2.4. Assimilation data

The Monteith model [37] is one of the simplest and most
popular models for assimilating remote-sensing data. In our
study, this model, based on the concept of radiation-use effi-
ciency, will allow the estimation of biomass productivity using
different data sources: LAI provided by the STICS-pasture
model or LAI estimated by remote-sensing data [2]. In this way,
to estimate dry matter production for the day j (DMSj in g·m–2),
we used the following algorithm (Fig. 2):

∆MSj = εb × εij × εc × GRj

where GRj is the global radiation (MJ·m–2), εc stands for cli-
matic efficiency (no units), εb is the growth efficiency (g·MJ–1)
and (εij) is the intercepted radiation efficiency (no units). GR
was obtained directly from meteorological weather stations
reported by Meteo-France and interpolated to the FR scale for
1999 and 2000. The climatic efficiency value was fixed to 0.48
[64]. Growth efficiency, that was considered constant for long
periods of time (season) and in non-limiting soil conditions
[32], was set to 1.8 (g/MJPAR) for the whole growing season
(February–October) [5, 17]. Finally, the intercepted radiation
efficiency was indirectly estimated using LAI with a Beer-law-
type relationship [38]:

εij = εimax 

where εij is the intercepted radiation, εimax is the maximal inter-
ception of εij (no units), k is the extinction coefficient (0.55) and
LAI is the Leaf Area Index. In our case, the LAI will be provided
either by the STICS model (LAIisop) or by inversion of reflect-
ance data (LAIvgt).

3. RESULTS

We obtained the spectral response corresponding to pure
pasture conditions inside each pixel (Fig. 3) using the subpixel

Table II. Vegetation Indices generated from the different spectral
bands. B0 = blue band, B2 = red band, B3 = near-infrared band and
B4 = middle infrared band.

Index Formula Reference

NDVI
Normalised Difference 
Vegetation Index

NDVI= 
[48]

PVI
Perpendicular Vegetation Index

PVI= [46]

SAVI
Soil Adjusted Vegetation Index

SAVI=
[28]

SWVI
Middle Infrared-based NDVI

SWVI=
[13]

ARVI
Atmospherically Resistant 
Vegetation Index

ARVI=
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model [19], for every FR and date. Comparing the different
FRs, it is possible to evaluate the influence of prairie proportion
and the type of accompanying crop inside each pixel. In general
terms, all FRs showed a good correspondence in the temporal
evolution of radiometric values of B3 between mean pixel val-
ues and those corresponding to the pure prairie estimations.
However, depending on pasture proportion or the accompany-
ing crops in the pixel, the subpixel estimations resulted in dif-
ferent seasonal spectral values.

Once we obtained the pure pasture conditions, and consid-
ering the set of variables obtained from the STICS-pasture sim-
ulation model, we found that LAI and MSEC were the best cor-
related to most satellite indices (Tab. III). These results, in
agreement with Sellers [60], showed the potentiality of vege-
tation indices to describe vegetation status and, mainly, to join
them to fluxes such as photosynthesis or net primary produc-
tivity. The SWVI vegetation index was the best correlated to
growth estimations. The relationship of SWVI with LAI pre-
sented a correlation coefficient of 0.55, and with MSEC of 0.40,
for a total of 594 cases, that showed the benefit of the MIR spec-
tral band. This band not only corresponds to a sensible portion
of water content in leaves, but also to dry matter content and
leaf internal structure [14], showing (as a result) that SWVI is
less sensitive than the NDVI to atmospheric effects. Another
explanation could also be the one described by Guérif [24]. In
that work, based upon the PVI, the PVImir calculated from the
MIR band resulted in a better estimation of the LAI as compared
with the PVI, calculated from the visible band (PVIvis). The

Figure 2. Schedule of assimilation procedure using remote-sensing
data (SAT) or simulated growth data (ISOP).

Figure 3. Evolution of the infrared values (digital counts) (B3) during
January–October 1999 for four forage regions (a: FR 7312; b: FR
8303; c: FR 8309 and d: FR 8311). (•) Mean values of the 25 pixels
in each pilot zone; ( ) pasture values estimated from the subpixel
model; and ( ) main accompanying crop.
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authors found that the PVIvis is considerably influenced by dif-
ferences observed in chlorophyll concentration in the leaves.

After having established that the SWVI vegetation index is
the best descriptor of the biophysical variables characterising
prairie production (LAI or MSEC), a general linear regression
between SWVI and DMLAI allowed the establishment of the
following linear function (Standard Deviation = 1.85, P <
0.005, R2 = 0.32):

LAI = 3.256 + 6.141 × SWVI

which allows the derivation of LAI values from VEGETA-
TION data. The comparison with LAI values produced by the
ISOP model displayed an underestimation of lower values and
an overestimation of higher ones. In order to improve this first
attempt, an exponential relationship between vegetation indi-
ces and LAI was considered [25, 52, 59]. In a first approach,
we defined a basic relation as:

SWVI = SWVImax + (SWVImin – SWVImax)e–kLAI

considering, for the first time, a k value of 0.55, SWVImin of
–0.357 and SWVImax of 0.828 (obtained from the database).

After using an iterative procedure to reduce the mean quad-
ratic error for a total of 7005 cases during March–October 1999
and 2000, and keeping a maximal value for the LAIisop of 8
and SWVI between 0.828 and –0.357, we calculated the k value
that minimises the sum of quadratic errors between LAIvgt and
LAIisop (Initial k of 0.55). The k value determined by this opti-
misation procedure (k = 0.215) was therefore kept for the SWVI
relation = f(LAI). The application of this relation allowed the
improvement of the linear relationship by increasing the inter-
nal data dynamics and decreasing the minimal LAI value dur-
ing the winter period for the satellite values. In detail, it is also
possible to observe, in the first place, that LAIvgt is different in
both growing seasons; while this is not observed for the LAIisop
(Fig. 4). For both studied years and different FRs, the agree-
ment between LAI estimations is highly variable (Fig. 4). At
the beginning of the growing season, the LAI is underestimated
by ISOP in Normandie (FR 2503) and Piémont Pyrénéen (FR
7315), and overestimated in one small area of the Central Plains
( FR 8310). In the middle of spring (March to May), before the
first cuts, the agreement is quite good. From June to September,

the cuts do not occur exactly on the same date with both meth-
ods. Finally, by the year's end, especially in 1999, ISOP values
are higher than those derived from satellite data. At the begin-
ning of the growing season, the ISOP system assigned the same
LAI values for all the areas, whatever the local climate. In this
case, VEGETATION images can supply information to vary
initial growth conditions between FRs.

Satellite information can also be useful to establish cutting
dates, especially in areas smaller than the FR. In the ISOP sys-
tem, these dates are only estimated as from grass management
systems (e.g. hay and silage) and growing degree days between
successive cuts, without taking into account rainy events delay-
ing harvest, or local technical changes.

As from the established relation, it was possible to try a simple
assimilation approach. LAI calculated from satellite data and the
LAI values in the ISOP procedure were assimilated into the
Monteith model. As a result, the daily production of MSEC was
calculated for every FR and date during 2000. Figure 5 presents
the difference between MSEC calculated from satellite data
(MSECvgt) and MSEC obtained from the STICS model within
the ISOP system (MSECisop). This result confirmed that the
SWVI/LAI relation could be applied to introduce the satellite
information when it appears significant. While analysing the
evolution of the differences between MSECvgt and MSECisop
values for the different FRs, there is a period in June with large
differences in plain zones, especially in the Piémont Pyrénéen
(FR 7315) and in mid-July, in the mountain zones (FR 8310 –
Fig. 5). The ISOP underestimation can proceed from poor attri-
bution of pastures to soil types.

4. CONCLUSIONS

With the objective of elaborating an evaluation tool for
grassland production, adapted to a regional scale, it was con-
firmed that the use of low spatial resolution sensors, such as
VEGETATION, is promising. They deliver significant aggre-
gated information with a high temporal resolution. The model
developed by Faivre and Fischer [19], and adapted for the
objectives of this work, proved to be a very useful and accurate
tool for obtaining spectral responses, while taking into account
the big spatial variability of information captured in the differ-
ent wavelengths. It is important to notice that the usefulness of

Table III. Correlation coefficients between satellite and production variables during the 1999 and 2000 experiments.

SAT. / ISOP. LAI MSEC RES TURFAC INNS DMsec

B0 .1772 .0114 –.0568 –.0793 .0242 –.0548

B2 .1581 .0015 –.1093 –.1163 –.0086 –.0832

B3 .4190 .2299 –.0673 –.0667 –.1261 .0622

B4 –.0417 –.1146 –.0539 –.1041 –.0293 –.0699

NDVI .0608 .1626 .1334 .1130 –.0435 .1923

SWVI .5540 .4041 –.0544 .0060 –.1208 .1498

B3DB4 .4289 .3409 .0107 .0540 –.1569 .0977

SAVI .3649 .2633 .0272 –.0067 –.1211 .1494

PVI .4283 .2862 –.0184 –.0134 –.1523 .1276

ARVI –.0253 .1160 .1231 .1047 –.0581 .1403
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VEGETATION could be enhanced by the possibility of getting
the same spectral information at high spatial resolution (10 metres
with the HRV-SPOT sensor). This characteristic, which con-
fers upon the VEGETATION sensor a unique advantage over
other available sensors, was not tested in our study, but it could

undoubtedly greatly increase the validity of pure pasture sig-
natures.

Disaggregated information in the near-infrared and middle
infrared bands corresponding to pure pasture conditions
showed an acceptable correspondence with the temporary evo-
lution of some productive variables such as the LAI and dry
matter. This correspondence was improved appreciably by the
calculation of vegetation indices, through band combination
and normalisation of the strips that compose them (for example,
SWVI). These interrelationships were significantly improved
by applying an exponential function and selecting periods
where temporary discordances do not exist within the model.

Satellite information, through its relationship to biophysical
variables such as the LAI, gives a unique measure of the true
dynamics of plant cover. Evaluations from satellite data agree
with the model evaluations; however, some differences high-
light some of the limits of a real-time framework. The forcing
assimilation methods used in this paper allow the achievement
of a real complementarity between remote sensing and the sim-
ulation model, and in the representation of annual dynamics
(cutting and beginning of growth dates' representation). Also,
more sophisticated methods, such as re-standardisation, would

Figure 4. Temporal evolution of LAI estimated from satellite data
(LAIVGT-dashed line) and LAI simulated by the STICS-pasture
model (LAIISOP-continued line) for 1999 and 2000 for the FRs
2503, 7315 and 8303.

a

b

c

Figure 5. Temporal evolution of the difference between dry matter
(MSEC) simulated in the ISOP system (MSECISOP) and estimated
from VEGETATION data (MSECVGT), only for the year 2000, for
the FRs 7315 and 8310. 
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permit the estimation, region by region, of some STICS param-
eters using remote-sensing data, specially for the variables
involving winter or cuts' re-growth (initial LAI), or the deter-
mination of cutting dates (sum of temperatures). Some diver-
gences from the ISOP evaluations in relation to remote sensing
could probably be attributed to the evaluation of some input
variables (for example, soil water reserve).

Finally, it is important to highlight that even if remote sens-
ing could not be considered as a direct reference for validation,
the results obtained make the usefulness of this kind of infor-
mation evident on a local scale, as well as the potentialities for
the development of a combination method between the model
and remote-sensing data.
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