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Abstract – During the 1999/2000 agricultural seasons, an experiment was carried out on winter wheat fields in the semiarid Yaqui Valley
(Northwest Mexico). This data set was used to calibrate the evolution of the leaf area index (LAI) simulated by STICS, which was found to be
in excellent agreement with estimates obtained from field reflectance measurements. After calibration, STICS was able to simulate satisfactorily
the seasonal levels and trends observed in net radiation, soil moisture and evapotranspiration, but the crop temperature was overestimated by
about 2.5 °C. On a larger scale, STICS was run on 16 fields with contrasting management practices. The simulations indicate that yield
predictability is significantly lower for later sowing dates, consistent with observations. The seasonal variations of field and satellite data
(Landsat-ETM+, Terra-MODIS and  VEGETATION) NDVI were very close. However, some difficulties were noted: saturation of NDVI at
high LAI values and smoothed variability on a 1-km spatial scale, as well as the need for a sound methodology for processing satellite data.

crop model / STICS / calibration / winter wheat / LAI / reflectance / NDVI / remote sensing

1. INTRODUCTION

Remote sensing and vegetation models are very important
tools for monitoring crop growth and for providing yield
assessment. Remote-sensing data in the visible, near- and ther-
mal infrared spectral bands have been used to monitor the phe-
nology [13, 36] and infer canopy biophysical variables such as
leaf area index (LAI), vegetation coverage, fraction of photo-
synthetically active radiation, surface temperature, crop coef-
ficients, yield and biomass in different ecosystems [5, 11, 16,
28, 29]. 

Many crop models have been designed to understand the
relations between soil, plant and atmosphere and to predict bio-
mass components and grain yield. At the moment there are
models for particular crops (e.g. CERES-Wheat [30]) as well
as generic models for several crops or plants that can even run
sequences through years (e.g. STICS [8–10], DSSAT [19] and
APSIM [27]). Many of these models place special emphasis on
the plant water, nitrogen or carbon balance, since they have
been designed for particular applications under specific climate
conditions [7]. The advantage of STICS is that it was designed
with such things as remote sensing in mind. 

Remote sensing has been used in different parts of the world
to estimate crop yield. Remotely-sensed estimates can be based
on vegetation indices (VIs) using simple regression against LAI
or the fraction of photosynthetically active radiation [24, 32].
These show good agreement with harvest data, provided VIs
are obtained when the vegetation cover is high. This estimation
technique is quite economical given the relatively low price
nowadays of satellite imagery. However, it requires local cal-
ibration. Crop models using climatic and agronomic data also
give good correlation between model prediction and harvest
data on local scales [18]. They simulate key variables such as
LAI, which can be used to link model simulations to remotely-
sensed data. Several methods have been proposed for estimat-
ing LAI from reflectances observed by remote sensors. These
include the use of radiative transfer models in conjunction with
an inversion scheme [23] and the derivation from relationships
between LAI and vegetation indices [2, 3]. Consequently, it
should be possible to improve the spatial estimation of yield
(and associated variables such as water and nitrogen balance)
by combining crop models and satellite observations. 

The results obtained on a regional scale generally show good
agreement with field measurements [24, 32]. However, a persistent
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problem for this approach has been the spatial resolution and
frequency of satellite data. Currently no satellite system exists
which provides high spatial and temporal resolution simulta-
neously (i.e. better than 30 metres available every day or so).
This situation has been improved for agricultural areas with
large fields by the MODerate resolution Imaging Spectroradi-
ometer (MODIS), which provides a  two-band (red and near-
infrared) product at 250-m resolution every two days. How-
ever, a totally satisfactory solution, which is also applicable to
areas with small fields, will require new systems such as the
RHEA proposal, which would provide daily data at 20-m res-
olution with 8 spectral bands (from blue to near-infrared) and
a swath of 120 km [12].

In this context, the aim of this research is, firstly, to calibrate
and validate the STICS model on the local scale in a semiarid
environment and, secondly, to test the potential of using the
model with ground-based reflectance measurements for the
prediction of the spatial distribution of wheat yield in the valley
of Yaqui (Sonora, Northwest Mexico) using an experimental
data set collected on two wheat fields during the year 1999–
2000. Satellite images were also acquired on different spatial
scales from the Landsat-ETM+, VEGETATION and Terra-
MODIS sensors in order to make a preliminary evaluation of
their potential.

2. MATERIALS AND METHODS

2.1. Site description

The Yaqui Valley is a large, flat agricultural area (the aver-
age slope is less than 1%) in Northwest Mexico (Fig. 1). The

area is irrigated with water from dams on the Yaqui river sys-
tem, using a network of channels every 2 km that form blocks
of 400 ha each (Fig. 2). The water is supplied by 2 large chan-
nels, each of which can transport up to 100 m3 s–1. The total
irrigated surface is about 255 000 ha and the main crop (occu-
pying more than 50% of the area) is winter wheat which grows
from November to April every year. The wheat is sown in the
period from November 15 to December 31. The soils in the val-
ley are mostly deep and poor in organic matter (< 1%) and the
principal types are clays and sandy clay, with sandy loam close
to the river watercourses. The climate is semiarid with an
annual rainfall of around 350 mm. The rainy season is from July
to September (with about 70% of the annual rainfall) and there
is a very dry season with almost no rainfall from March to June.
The mean daily temperature ranges from about 17 °C in January
to 31 °C in summer (July–August).

2.2. Satellite data

VEGETATION, Terra-MODIS and Landsat-7 ETM+ satel-
lite images were collected during the experiment. The VEGE-
TATION sensor acquires data in four optical spectral bands
from 460 nm (blue) to 1670 nm (short-wave infrared), with a
daily repeat rate, ~1-km pixel resolution and a 2250-km swath.
MODIS is a wide field-of-view sensor (2330 km) with a one- or
two-day repeat rate, 36 spectral bands from 470 nm to
14240 nm and a variable spatial resolution of 250 m (two
bands; red and infrared), 500 m (5 bands; visible, near-infrared
and middle infrared) and 1000 m (29 bands; visible, near-infra-
red, middle infrared and thermal infrared). Landsat-ETM+ is
high-resolution sensor with a 16-day repeat rate, 8 spectral bands
at different spatial resolutions: 15 m (1 band; panchromatic),

Figure 1. The Yaqui Valley (Northwest Mexico) as observed by Landsat ETM+ (false colour composite, 4,3,2 channels) February 26, 2000.
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30 m (6 bands; visible (3), near-infrared (1) and middle infrared
(2)) and 60 m (1 band; thermal infrared) and a 180-km swath.
VEGETATION S10 products are calibrated and corrected for
atmospheric effects; 10-day composite data are obtained using the
maximum value composite (MVC) technique [26]. Terra (the
MODIS platform) was launched in 1999 and data were not
available until March 2000. Five scenes (Level 1B two-band
250-m product [20]), which calibrated and geolocated radi-
ances were obtained at the end of the agricultural season. Three
Landsat-ETM+ images were acquired during the agricultural
season (January 25, February 26 and April 14, 2000; Fig. 2).
These ETM+ and MODIS scenes were calibrated and con-
verted to top-of-atmosphere reflectances, but no atmospheric
corrections were performed. 

All these images were geo-referenced and processed to
obtain maps of the Normalised Difference Vegetation Index
(NDVI). Then time series of mean NDVI were extracted for
each field located in Figure 2A as follows: for ETM+ data, the
fields are clearly identified and the average value of NDVI was
computed for each field; for VEGETATION, the pixel that
includes the field of interest is considered (see example in
Fig. 2B for the field numbered 6). In other words, one or several
pixels are associated with each NDVI value, according to the
size of the field of interest and the spatial resolution of the sensor. 

2.3. Experimental data

In the winter of 1999–2000, an experiment was carried out
over a homogeneous surface of 20 ha (located in Fig. 2) of
wheat that had been planted on December 10th. After emer-
gence, different automatic sensors were installed on this main
plot. The following variables were measured: net radiation
components (CNR1, Kipp & Zonen, Netherlands); latent and
sensible heat fluxes (3D sonic anemometer CSAT3 and fast
response hygrometer KH20, Campbell Scientific Inc., USA);
soil heat flux, moisture and temperature at different depths
(HFP3 plates, REBS Inc., USA; CS615 water content probes
and 107 temperature probes, Campbell Scientific Inc., USA);

air temperature and vapour pressure (HMP45C, Vaisala, Fin-
land), and surface temperature (Everest thermoradiometer,
Phoenix, USA).  The raw data from the CSAT3 and KH20 were
sampled at 20 Hz and stored on a 23× data logger (Campbell
Scientific Inc., USA). The data were automatically downloaded
every minute to a notebook computer for subsequent process-
ing to produce 30-minute averages of latent and sensible heat
fluxes. The program used was developed at Wageningen Uni-
versity in the Netherlands. The other climate and soil variables
were sampled at 1 Hz and 30-minute averages were stored in
a CR10X data logger (Campbell Scientific Inc., USA).

On the same main plot, weekly measurements of spectral
reflectance were made using an 8-band radiometer (MSR87
MultiSpectral Radiometer, Cropscan Inc., USA) along 4 transects.
The transects were 350 m long, with 20 sites per transect and
4 observations per site. Average reflectance and NDVI were
obtained as a simple mean. The validity of the MSR87 reflect-
ance measurements was tested by comparison between the
MSR87 and a spectrometer with bandwidth of 4 nm (Personal
Spectrometer II, Analytical Spectral Devices Inc., USA) and
differences of less than 3% were found between the two sensors
in the red and near-infrared bands. LAI measurements were car-
ried out from anthesis to maturity stages using an AccuPAR
sensor (Mansfield, UK) making one observation above and
several below the wheat canopy to obtain the average light
interception. The maximum LAI was found to be around 5.

Observations were also collected for several other wheat
fields around the experimental site and Figure 2A gives the
location of these sites and illustrates the NDVI obtained at the
beginning, middle and end of the agricultural season from
Landsat-ETM+ images. Firstly, surface reflectances were col-
lected with the same procedure (spatial transect, weekly time
step) over a secondary plot where the wheat was sown 15 days
before the main plot (i.e. November 25th). Secondly, planting
and irrigation dates and grain yield were collected for 16 plots
in an area of about 80 km2 in the vicinity of the main and sec-
ondary plots (Tab. I and Fig. 2). These data were supplied by
the Yaqui Valley Farmers’ Association and there were only

Figure 2. Sub-samples of NDVI images acquired by Landsat ETM+ on the Yaqui Valley at three dates during the 1999/2000 agricultural season:
(A) January 25, (B) February 26 and (C) April 14. In Figure A, the numbers locate the fields with management practices and yield given in
Table I; the letters show the main (A) and secondary (B) plots which were intensively monitored. At the top of Figure B, we have represented
an example (field number 6) of one VEGETATION pixel (grey square) and the TM surface (white square) where the average NDVI value is
extracted.
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small differences in agricultural practices between the different
fields. Typically the wheat is irrigated three times after sowing,
with between 12 and 15 cm of water supplied for each irriga-
tion. Nitrogen is generously applied by the farmers (from 100
to 300 kg ha–1), so that no nitrogen restriction is present. 

For the main plot, NDVI was computed from reflectances
collected by the multispectral radiometer and combined with
estimates of maximum LAI in order to estimate the seasonal
dynamics of LAI by inversion of the following equation [2]
(which is also used for reflectance observations collected on the
secondary plot)

(1)

where: NDVIs = 0.14 observed for bare soil, NDVI∞ = 0.94 for
an “infinite” LAI (corresponding to a maximum LAI of around
5, as derived from AccuPAR observations on the main plot) and
KNDVI = 1 (value close to the ones found in [2] for wheat crops).

2.4. Statistical analysis

Three statistics were used for analysing the data: (1) the
Mean Bias Error (MBE), which indicates the average deviation
of the predicted values from the measured values; (2) the Root
Mean Square Error (RMSE), which measures the variation of
predicted values around observed values, and (3) the correla-
tion coefficient (R), which shows the degree to which two var-
iables are linearly related.

2.5. Description of the STICS model

The STICS model [8–10] is a dynamic model with a daily
time step, which simulates biomass, component yield, and
water and nitrogen balance of several types of plants during
their entire vegetative cycle. It uses the following input data:
standard climate variables, management information, and soil
and plant parameters. STICS has a modular design that allows
the addition of new developments (e.g. ammoniac volatilisa-

tion, symbiotic fixation and organic residues). At the moment,
the modules available are: development, shoot growth, yield
components, root growth, thermal environment, water and
nitrogen balance and water, nitrate and heat transfer.  The phe-
nological development of the crop is largely controlled by can-
opy temperature, while the carbon balance drives biomass
accumulation. The main state variable is leaf area index (LAI),
which is controlled by phenology but regulated by water and
nitrogen stress. This model has some differences with others
in the development stages, because it represents growth stages
rather than organ stages. These stages are:  emergence, maximal
acceleration of leaf growth, maximal leaf area index, grain fill-
ing, beginning of senescence, physiological maturity and the
harvest stage. They correspond to change in the trophic or mor-
phological strategy of the crop that influences the evolution of
LAI or grain filling. One very important aspect of the STICS
model is its ability to link with reflectance models [35] and sup-
port for data assimilation [4]. 

2.6. Calibration of the STICS model version 5.0

Simulations were performed with the climate variables
measured on the main plot. Net radiation was calculated with
the Brutsaert equation [8], and evapotranspiration was derived
using the resistive approach [8]. After emergence, three irriga-
tion events and no rain occurred during the experiment. The
amount of nitrogen considered ensured that no stress occurred
in the simulation period. This is reasonable given the fertilisa-
tion practices observed in the Yaqui valley. The soil had high
clay and sand contents (clay: 48%; loam: 14%; sand: 38 %),
with moisture characteristics given in Table II. The soil mois-
ture is assumed to be 50% of readily available water at the sow-
ing date using data from several experiments on clay soils,
which range from 49 to 52% (F. Cabrera, INIFAP personal
communication).     

In order to calibrate the STICS model, we focused on LAI.
Four parameters (Tab. III) strongly related to this variable were

Table I. Agricultural practices and yield for 16 wheat fields sampled around the experimental site. The field are numbered by increasing sowing
date. 

Field Sowing Surface Irrigation dates Grain Yield (g m–2)

number date (ha) 1st Irrig. 2nd Irrig. 3rd Irrig. observed simulated

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Nov-14-99
Nov-18-99
Nov-18-99
Nov-19-99
Nov-21-99
Nov-24-99
Nov-27-99
Nov-29-99
Dec-04-99
Dec-08-99
Dec-09-99
Dec-09-99
Dec-10-99
Dec-11-99
Dec-17-99
Dec-24-99

25
100
100
50

100
25
90
46
50
25
46
40
10
25
16
8

Jan-07-00
dec-30-99
Jan-03-00
Jan-06-00
Jan-06-00
Jan-17-00
Jan-25-00
Jan-17-00
Jan-26-00
Jan-26-00
Jan-26-00
Jan-23-00
Feb-04-00
Jan-30-00
Feb-18-00
Feb-13-00

Feb-07-00
Feb-03-00
Feb-05-00
Feb-10-00
Feb-10-00
Feb-21-00
Feb-24-00
Feb-19-00
Feb-21-00
Feb-22-00
Feb-26-00
Feb-20-00
Mar-05-00
Feb-26-00
Mar-09-00
Mar-14-00

Mar-03-00
Feb-28-00
Feb-29-00
Mar-02-00
Mar-17-00
Mar-15-00
Mar-16-00
Mar-11-00
Mar-10-00
Mar-17-00
Mar-21-00
Mar-09-00
Mar-23-00
Mar-20-00
Mar-26-00
Apr-03-00

640
700
700
700
700
640
650
700
630
650
700
700
630
650
400
500

708
689
701
708
701
710
693
698
692
680
680
664
668
680
567
523

NDVI NDVI∞ NDVIs NDVI∞–( )e
–KNDVILAI

+=
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selected based on the results and sensitivity analysis found in
[9, 4, 31]. These parameters are associated with all the proc-
esses that control the temporal evolution of LAI (Tab. III), and
several simulations were performed in order to understand the
effect of each one of them. The Simplex algorithm included in
the STICS model has helped us to determine some of these
parameters, but no particular method was used for optimisa-
tion: the parameters and the dates of phenological stages (forc-
ing option) were varied until the time series of LAI simulated
by STICS and those observed on the main plot (i.e. estimated
from NDVI by equation (1) matched fairly well. The result of
this optimisation procedure is shown in Figure 3; the best sim-
ulation leads to statistics consistent with those found in [16]
(MBE = –0.04, RMSE = 0.25 and R = 0.99).

Once the LAI seasonal dynamics have been optimised (Fig. 3),
the simulation for the main plot can be used to test the other
outputs of the model against experimental data. The same sim-
ulation provides parameters (last column of Tab. III) and the
thermal duration for each phenological stage (not shown here).
From now on, we assume that the STICS model can be run with-
out additional information except the agricultural practices
(sowing and irrigation dates). Additional simulation for the sec-
ondary plot - where field reflectance measurements are also avail-
able – allowed an additional validation for LAI, while the data
collected for the remaining 16 fields (Tab. I) were used to eval-
uate the performance of the model in terms of yield prediction.
It is important to note that all the simulations are based on the same
set of parameters and initial soil conditions (Tabs. II and III).

3. RESULTS AND DISCUSION

In this section, the results are presented as they relate to local
and then regional scale analysis.

3.1. Local scale validation

On the local scale, the model is evaluated against the exper-
imental data set obtained on the main  (surface temperature, net

radiation, evapotranspiration and soil moisture) and secondary
(LAI) plots. 

3.1.1. Surface temperature 

The daily crop temperature (TCULT) is an important vari-
able in STICS, which is used (iteratively) in the calculation of
plant development, evapotranspiration and net radiation. The
daily value is computed by STICS as the mean of the maximum
(TCULTMAX) and minimum (TCULTMIN) values and two
methods are provided to calculate these. The “surface energy
balance” approach is based on two instantaneous calculations
made at the time of maximum and minimum air temperature.
The “simplified relationship” uses a relationship between max-
imum surface temperature and daily evaporation including sur-
face roughness [33] and assumes that TCULTMIN is equal to
the measured minimum air temperature. We tested both meth-
ods against the daily average surface temperature measured
with the infrared thermoradiometer. A systematic overestima-
tion by about 2.5 °C was observed for both approaches (Fig. 4),
with greater overestimation for the energy balance method
(MBE = 2.94 and 2.02 °C, RMSE = 3.39 and 2.56°C, and R =
0.78 and 0.84 for the energy balance and simplified relationship
approaches, respectively). Since crop temperature is better simu-
lated by the simplified relationship, this approach was adopted. 

Table II. Initial soil parameters (FC = field capacity, WP = wilting
point and SD = readily available water on sowing date).

Layer
(cm)

Soil Moisture (kg/kg) × 100 Bulk 
density

FC WP SD

0–10
10–14
40–70
70–100
100–160

35
35
35
35
35

18
18
17
17
17

27
27
26
26
27

1.35
1.35
1.43
1.43
1.43

Table III. Plant parameters modified during the calibration of STICS.

Parameter Process regulated
by the parameter

Default
value

Value after
calibration

Dlaimax
Laicomp
Adens
DurvieL

setting up of LAI
inter-plant competition

stem density
life duration of leaves

0.00032
0.304
–0.6
0.8

0.00011
0.094
–0.3

1

Figure 3. Leaf area index simulated by STICS (after calibration, line)
and obtained from the NDVI measured at surface (Eq. (1) applied to
multispectral radiometer measurements, symbols) on the main plot.

Figure 4. Daily evolution of crop temperature (simulated by STICS
with the two possible approaches) and surface temperature (observed
on the main plot using an infrared thermoradiometer).
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The overestimation visible in Figure 4 is surprising, as the
model simulates the crop foliage temperature while the infrared
thermometer measures a composite of canopy and soil temper-
atures, with soil temperature generally higher than that of the
foliage. However, the overestimation is also significant when
the vegetation coverage is maximal (in the middle of the sea-
son) and the radiometer mainly observes the foliage. This com-
ponent of the model needs to be studied further.

3.1.2. Net radiation

Net radiation results from the balance between incoming and
outgoing short-wave and long-wave radiations at or close to the
surface. It represents the energy available at the surface for
other processes [1]. During full-cover stages it can be more than
90% of the energy available at crop level and, provided water
is available in the soil, most of this energy is used for transpi-
ration. In the calculation of net radiation, the crop temperature
is a significant term. 

Figure 5 shows the comparison between observed and sim-
ulated components of net radiation. The overestimation of crop
temperature (previously discussed in Fig. 4) results in consid-
erable dispersion and underestimation of net long-wave radia-
tion (MBE = –0.9 MJ m–2 d–1, RMSE = 1.97 MJ m–2 d–1 and
R = 0.61 in Fig. 5A). Simulated net short-wave radiation closely
matches observations (MBE = –0.05 MJ m–2 d–1, RMSE =
0.39 MJ m–2 d–1 and R = 0.99 in Fig. 5B), with better results
than those reported in [34]. Consequently, the agreement
between simulated and observed net radiation appears accept-
able (MBE = –0.86 MJ m–2 d–1, RMSE = 1.29 MJ m–2 d–1 and
R = 0.96 in Fig. 5C).    

3.1.3. Soil moisture

Soil moisture is another important parameter simulated by
STICS. It has a significant effect on soil evaporation, plant tran-
spiration and crop temperature. Figure 6 shows the simulated
and observed water content at two soil depths. After each irri-
gation, both simulated and observed values quickly reach field
capacity. Between irrigation events, important differences can
be noted between simulation and observation. Firstly, the sim-
ulated and observed soil moisture of the deepest layer do not
compare well during the initial drying phase. This is probably
due to a large underestimation of the initial value of soil mois-
ture chosen for the simulation. Secondly, the evolution of the
top layer moisture appears somewhat strange, with maximum
depletion at the end of the drying phases. The most likely expla-
nation is errors in the measurements due to loss of good contact
between the soil moisture probes and the soil, since the soil has
high clay content and cracks as it dries. Thirdly, four peaks are
observed on the experimental data, while we considered three
irrigation events in the simulation. Water supply has probably
been incorrectly reported during the end of the experiment, as
two irrigation events appear to occur within a short period (10 days
around day 100, Fig. 6). Despite these significant differences,
the general level and trend in soil moisture appear to be correctly
modelled (MBE = 0.020 and –0.032 kg/kg, RMSE = 0.063 and
0.045 kg/kg, and R = 0.73 and 0.67 for the surface and deep
layer, respectively, in Fig. 6).  

3.1.4. Evapotranspiration

Water stress affects the crop during all the growth stages,
reducing the forage and/or grain yield. Yield is very sensitive
to moisture deficit in the period from flowering to grain filling.
The ability of the STICS model to correctly simulate soil evap-
oration and plant transpiration is thus important, especially in
a semiarid environment. 

Measured and simulated evapotranspiration (ET) are com-
pared in Figure 7. The average level and seasonality of ET
appear to be well reproduced by the model (MBE = –0.21 mm,
RMSE = 1.03 mm and R = 0.74), but large differences occurred
around irrigation events (Fig. 7): 
• At the beginning of the period of observation (10-day period

before the first irrigation), the model underestimates ET. We
have assumed that this is a consequence of the underestima-
tion of the initial soil moisture of deep layers (see Fig. 6).

Figure 5. Components of the radiative budget on the main plot (in
MJ m–2 d–1): (A) Net long-wave radiation, (B) Net shortwave radia-
tion and (C) Net (all-wave) radiation.
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However, both the simulation and observation shows that
the crop is not stressed between the sowing date and the first
irrigation event. This probably arises from an underestima-
tion of LAI (and thus transpiration) at this period during the
simulation. 

• After the first and second irrigation events, the simulated ET
increases (because of a high level of soil evaporation) but
the measured ET does not. The same behaviour was observed
in a previous study in the Yaqui Valley [17]. It is due to the
fact that the foliage completely covers the space between
rows at this time in the wheat development, resulting in very
low soil evaporation, whereas the model simulates evapo-
ration peaks. 

• During the final irrigation events, both measured and simulated
ET increase. At this time, the wheat cover has decreased and
there is a significant soil evaporation component to ET.
Moreover, a delay of around one week can be observed
between the modelled and observed increase in ET. Better
information about the conditions for this irrigation would be
needed in order to reach clear conclusions about the accuracy

of simulated ET (as well as soil moisture, see Fig. 6) at the
end of the experiment. 
From this analysis, it appears that the STICS model gener-

ally simulates the evolution of ET very well, but it does not
work correctly for irrigation events when the vegetation cov-
erage is nearly total. 

3.1.5.  Leaf area index

Reflectance values acquired in the red and near-infrared
bands were used to calculate NDVI and then to deduce the LAI
by equation (1). A comparison of the estimates for LAI with
those simulated by STICS on the secondary plot is shown in
Figure 8. The simulated LAI shows excellent agreement with
estimation from the NDVI (MBE = 0.02, RMSE = 0.3 and R =
0.98). This result is comparable with that obtained on the main
plot (see Fig. 3), on which the model was calibrated. These
good results were expected, since the major difference between
the main and secondary plots is a short delay (15 days) of the
sowing date.

3.2. Yield estimation and NDVI analysis on a regional 
scale

Table I compares prediction and observation of yield on
16 fields with contrasting sowing and irrigation dates. The yield
data were collected by the local farmers' association and no
technical details were available on the protocol for these obser-
vations, so that their reliability is somewhat questionable.
Therefore the difference between these yield values and those
simulated by STICS may be due, at least in part, to errors in
these data.

In Table I, most of the fields record similar yields, between
600 and 700 g m–2. This is a consequence of the homogeneity
in agricultural practices in the Yaqui Valley. Most farmers
apply a large amount of fertilisers, and the irrigation system
allows water to be supplied according to a regular calendar (on
average 50, 80 and 100 days separate the sowing date from the
1st, 2nd and 3rd irrigation events, respectively, with a standard
deviation of around 6 days). This ensures that plants do no suf-
fer severe stress. This assumption is confirmed by predictions,
with yields around the observed values and no reduction
because of nitrogen or water deficit (stress indices are always
close to 1, whatever the period and the simulation). The two

Figure 6. Daily evolution of soil water content for two different layers
(main plot). The three irrigation events, with 150 mm of water sup-
plied each, are highlighted by the bars plotted at the dates of supply
used as input in the simulation.

Figure 7. Daily evolution of simulated (dotted line) and observed (full
line) evapotranspiration (main plot). The three irrigation events, with
150 mm of water supplied each, are highlighted by the bars plotted
on the dates of supply used as input in the simulation.

Figure 8. Same as Figure 3 for the secondary plot.
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fields that were sown the latest (end of December, see the fields
numbered 15 and 16 in Tab. I) show the lowest yields (400 and
500 g m–2). STICS reproduces this trend (decrease in yield of
around 150 g m–2) because of delayed growth and the negative
effect of high temperatures during maturity (with shorter phe-
nological stages). This is consistent with the statements found
in [6, 15].

As a result, there is reasonable agreement between simulated
and observed yield values (MBE = 29.5 g m–2, RMSE =
55 g m–2 and R = 0.84 g m–2 in Tab. I), with errors comparable
with other studies in the same area [25]. This indicates the
robustness of the model, which predicts values consistent with
observations associated with different agricultural practices
after calibration using the data collected on only one plot. 

Figure 9 shows NDVI evolution for the main plot as obtained
from satellite data (Terra-MODIS, Landsat-ETM+ and VEG-
ETATION) together with the corresponding field data (multi-
spectral radiometer measurements). The seasonal variation of
NDVI is apparent in all these remotely-sensed data. However,
the maximum value of NDVI (for the mature crop at full cover)
is about 10% less for the satellite data compared with ground-
based measurements. This is a consequence of the sensor type
and depends on its spatial resolution and mixing effect, as well as
data processing. The field and VEGETATION data, acquired
on a weekly or 10-day basis, show the same seasonality:
growth, maturity and senescence stages are clearly identified.
The five MODIS scenes show good agreement with the other
data for the period from maturity to senescence. 

An apparent limitation concerning the use of remotely-
sensed data is confirmed in Figure 9: the NDVI saturates at the
full development stage [21], so that the LAI may continue to
increase but with little or no increase in the NDVI. Conse-
quently, accurate estimates of LAI from satellite data through-
out the agricultural season would require: (1) the exact
knowledge of the maximum LAI value estimates on the spatial
scale of the sensor, and (2) a sound data processing scheme for
calibration, atmospheric correction, normalisation between
various sun-target-sensor geometries and compositing of sat-
ellite data. These two requirements are difficult to meet. How-
ever, it has been suggested that inaccurate knowledge of LAI
only becomes important when it is small or is being used to esti-
mate canopy N content [22], so this problem might not be so
serious. 

In order to illustrate the effect of spatial resolution, Table IV
presents the statistics obtained on the fields of interest from
ETM+ and VEGETATION observations. As expected, the var-
iation in NDVI values between the fields is larger at high than
at low spatial resolution, by around a factor 2. Large spatial var-
iation of NDVI on a 30-m scale (ETM+) appears between and
even within fields (see Fig. 2, especially on the first and the last
dates). In contrast, the standard deviation associated with the
spatial variation in NDVI derived on a 1-km scale is low (begin-
ning and end of the agricultural season) to very low (middle of
the season). Given the size of the fields of interest (Tab. I), the
potential of the VEGETATION system to track the variability
of crop development within each irrigation block appears lim-
ited. This limitation is reinforced by the fact that 10-day com-
posite data are obtained from the MVC technique, which tends
to artificially smooth out the spatial variability of NDVI because
misregistered pixels can be selected if they display a higher
NDVI than their neighbourhood [14]. 

4. CONCLUSION

An experiment was carried out to validate the STICS model
for wheat in a semiarid environment in Northwest Mexico.
First, STICS was calibrated to optimise the LAI simulated by
the model for a large wheat field, by comparison with values
retrieved from the NDVI measured at the surface using a mul-
tispectral field radiometer. The calibration site was carefully
monitored throughout the season and measurements of surface
temperature, net radiation, evapotranspiration and soil moisture
were used for validation. The simulated crop temperature was
found to be overestimated by 2–3 °C and the simplified rela-
tionship performed somewhat better than the energy balance
approach. Crop temperature is the principal variable, which
drives crop phenology, so that this overestimation has an
important impact on net radiation (through long-wave net radi-
ation) and evapotranspiration. The soil moisture is simulated
correctly in the wetting and drying phases. However, important
differences were observed between simulated and measured
soil moisture at the end of the drying phases, which are probably
due to errors in the observations. 

On a larger scale, the potential for using satellite data was
studied over the calibration site. Values of NDVI derived from
different satellite platforms showed the correct seasonal behav-
iour and the onset of growth and senescent stages could be easily
identified. However, there were significant (10%) differences
between the maximum NDVI from satellite data and that obtained

Figure 9. NDVI evolution from different satellite platforms and field
measurements on the main plot.

Table IV. Statistics of NDVI values observed at high and low spatial
resolution (std = standard deviation associated with the NDVI spatial
mean of ETM+ data on each field or to the value of the VEGETATION
pixel that includes the field, see Fig. 2).

Date LandSat - ETM + SPOT-VEGETATION

mean std mean std

January 25
February 26
April 14

0.70
0.78
0.34

0.08
0.04
0.12

0.73
0.86
0.47

0.05
0.02
0.07
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in the field. Furthermore, the observed spatial variation in NDVI
decreased (i.e. smoothing) as the pixels size increased, while
images with high spatial resolution were not available with suf-
ficient frequency. This emphasises the need for satellite
remote-sensing systems with both high spatial and temporal
resolution, as well as the use of sound-processing schemes in
order to reduce the various causes of errors associated with sat-
ellite data.  

After validation on the local scale, the model was run for 16
fields where the sowing and irrigation dates were known. The
grain yields predicted by the model have comparable errors
with those obtained in previous studies [25]. Thus the STICS
model, after calibration over one wheat field using estimates
of LAI obtained from ground reflectances, was able to achieve
good prediction of grain yield over other wheat fields in the
region. 
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