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Abstract – There are many incentives for applying a crop model on a regional scale, i.e. over an area larger than that for which it has been
developed. This is what we call “spatialising” a crop model. These large areas can have very heterogeneous soil, climate and management
practices. Consequently, spatialising a crop model can raise serious problems. One set arises from the fact that the basic concepts, hypotheses
and validity domains of crop models are derived on the plot scale and may not apply on a larger scale. Another set arises from the lack of
adequate and sufficient data to run the model on a regional scale. The workshop held in Toulouse (France) on 14–15 January 2002 dealt with
the topic of spatialising crop models. The present paper is a comprehensive summary of the thoughts we had before, during and after the
workshop.

crop modelling / scale change / spatial variability

1. INTRODUCTION 

The recent development of genetically modified organisms
(GMO), the new European Water Directive (2000) emphasis-
ing water quality, or climatic change and its impact on crop
development, runoff and irrigation demand raise new scientific
issues. The answers require in many cases the application of
crop models on a regional scale, with concomitant large heter-
ogeneities in soil, climate and management practices between
fields. Using a crop model over areas larger than those over
which it was developed is what we will call “spatialising the
crop model”. When all the information needed by the model
(input data and parameters) is available, this can be done quite
easily from a computational point of view but it still raises ques-
tions that need to be answered. Some of them arise from the
fact that the basic concepts, hypotheses and validity domains
of crop models were derived on the plot scale and are too restric-
tive when applying the models on larger scales. Others arise
from the lack of adequate and sufficient data to run the model
on regional scales. To clarify and attempt to answer these ques-
tions, a workshop was held in Toulouse (France) on 14–15 Jan-

uary 2002 on the topic of spatialising crop models. The authors
of the present paper are the scientific organisers of the work-
shop and the sessions' chairmen. The present paper is a com-
prehensive summary of the thoughts we had before, during and
after the workshop. In particular, it is based on a summary of
concluding notes taken by the various session chairmen at the
end of the workshop. The analysis in terms of scale change
arose from discussions held during the workshop, and contin-
ued after the workshop in a summer school entitled “for a good
use of crop models” and organised by INRA in Le Croisic
(France) on 14–18 October 2002.

In the next section, we first describe the main characteristics
of crop models and we define what we call the scale of a crop
model, pointing out in examples some specific questions that
have to be answered before spatialising a crop model. In the
third section, we summarise some spatialisation techniques that
were presented during the workshop or in the literature. A pres-
entation using the viewpoint of scale change is presented in the
fourth section, before discussing alternative approaches as a
conclusion to the paper.

* Corresponding author: dleenh@toulouse.inra.fr
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2. CROP MODEL AND SCALE

2.1. Main characteristics of crop models

Crop models are mathematical representations of the soil-
plant-atmosphere system (SPA system), involving interactions
between biological factors and environment [24]. They calcu-
late crop growth and yield, as well as the soil and plant water
and nutrient balances, as a function of environmental condi-
tions and crop management practices. The equations used in
crop models represent the elementary processes of the SPA sys-
tem. Three main modules or processes can  therefore be iden-
tified. The soil module represents water transfer within the soil,
which includes infiltration, drainage and redistribution [34].
The infiltration of water into the soil derives from the input of
water, mainly by rainfall or irrigation, and results in a hetero-
geneous distribution of water in the soil profile. The soil mod-
ule can also represent nutrient transfer, and specifically
nitrogen transport and transformations [8]. The plant module
describes two mechanisms: (i) the growth of the canopy, i.e. the
production of biomass, based on interception and transforma-
tion of the photosynthetically active radiation and modulated
by senescence, and (ii) the development of the crop, that sim-
ulates the main stages of crop life (germination, flowering, pro-
duction of seeds and senescence) and drives growth by
organising, throughout development, the opening and closing
of sinks, and by acting on sources [7]. The atmosphere module
links the soil and plant modules. It represents evapotranspira-
tion, which corresponds to two processes: (i) the evaporation
from the soil and (ii) plant transpiration or root extraction.
These two processes can be simulated as a whole or separately.
It allows interactions between the plant and the soil module:
when water supply in the soil becomes limiting, the main phys-
iological processes such as photosynthesis and leaf expansion
are reduced, depending on the intensity of the stress. Infiltra-
tion, drainage, redistribution and evapotranspiration are gener-
ally assumed to be one-dimensional and vertical. 

Mathematically speaking, crop models consist of a series of
equations, f. These equations contain parameters (or internal
coefficients), θ, which, once the model has been calibrated,
remain unchanged from one simulation to another. The models
work with input data, v, variable in time (including weather data
such as precipitation and temperature, and management prac-
tices such as dates and quantities of irrigation or fertilisation),
or fixed, specific to the simulated crop (soil characteristics of
the plot in question: soil type, soil depth, cultivar or variety,
etc.). They output variables, y (yield, evolution of leaf area
index or dry matter, water requirements, leached nitrate, etc.).
One can thus adopt the following notation: y = f(θ, v). The
parameters θ  of a crop model can be numerous (ex: 26 for 2CV
[56] and more than 100 for STICS [8]). Almost all process-
based crop models (e.g. CERES [25], EPIC [58], CROPSYST
[52], STICS [8] and SUCROS [51]) are deterministic: differ-
ences in output variables y are only due to variations in input
data. 

Crop models suppose that the simulated plot is homogene-
ous as to input data: only one soil type, the same weather, the
same agricultural practices (irrigation, fertilisation, etc.) what-
ever the size of the plot. Usually, crop models are designed for
a specific use and therefore parameters are estimated and cal-

ibrated on a sample of small plots. Furthermore they are vali-
dated in a limited number of conditions. However, in practice,
these crop models are used on wider areas (for large plots) and
often they are used to evaluate new practices (the potential of
a particular cultivar in certain locations and so on). In precision
agriculture, the same crop model is used when considering an
inhomogeneous field plot. Thus we need to analyse the use of
crop models on units or scales outside their domain of validity
with respect to the hypotheses and the dedicated scale of the
model.  

2.2. Some examples to illustrate the whys 
and wherefores 

Examples of the application of crop models to large and het-
erogeneous areas are numerous (cf. Tab. I in addition to the
examples quoted by Hansen and Jones [20], Russell and Van
Gardingen [49], and Hartkamp et al. [21]). In most instances
crop models are used not only to predict crop yields but also to
estimate the impact of crop growth and management on the
environment; especially on water resources or on the green-
house effect. The ultimate objectives of crop model predictions
are very diverse and depend on the end users targeted. For
example, crop models are used for prognosis by managers [35],
while administrative decision-makers use them rather for diag-
nostics, but also for tests of scenarios. Indeed, crop models used
as tools for testing scenarios (“if … this agricultural practice
changes … then … this event occurs”) are aids for crop system
management and for policy analysis [6]. Scenario testing uses
hypothetical input data, but for diagnosis the crop model input
data must correspond to an accurate description of reality
(existing soils, past weather data and past agricultural prac-
tices). For prognosis, the use of crop models implies in addition
some specification of future weather and practices.

In many applications, the aim is not only to study the spatial
variation in crop model predictions between the fields of a sim-
ulation domain, but also to estimate global crop production and
water and nutrient flows of the domain. Consequently, the sim-
ulation units cover essentially the whole region of interest. In
general, the model is run independently from one simulation
unit to the other, and thus the possible interactions between the
simulation units, such as flows between the units, are not taken
into account. The output data processing then consists simply
of summing or averaging the predictions over the simulation
area: average production [14] or summation  of local water con-
sumption [35]. However, when the spatial interactions are
important and need to be considered, interfacing the crop model
with a spatial model becomes necessary: for example, the cou-
pling of a crop model with a hydrological model makes it pos-
sible to obtain the simulated result at the watershed outlet [2,
17]. In some examples, simulation units are discontinuous: they
do not cover the whole region. Then some kind of interpolation
of the output data is required to obtain the information for the
whole area [50]. 

2.3. Characteristic scales of crop modelling 
applications

The characteristic scales of a crop model are both spatial and
temporal. We will only define those relative to spatial aspects
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Table I. Some examples of use of crop models implying a change of scale.

Reference Spatial extent Support unit 
for simulations

Treatments on inputs Treatments on 
outputs

Type of results presented Utilisation of 
the predictions

Temporal 
extent

Agricultural production

Priya and 
Shibasaki
[47]

sub-continent 10 km × 10 km 
or 50 km × 50 km 
cells

– generation of weather and 
slope data by downscaling 
– agricultural management 
data obtained at state level

none Yield maps for different 
crops under interest: one 
value per cell

test of 
scenarios

decades

Donet et al.
[14] 

country spatial unit 
homogeneous for 
soil 
characteristics, 
climate and fodder 
practices

– soil characteristics derived 
from soil map
– interpolation of climate data
– regional sampling of fodder 
practices

outputs 
averaged by 
fodder region 
and over the 
whole country

fodder production maps: 
1 value per fodder region 
or 1 value for the whole 
country

diagnostic year

Faivre et al. 
[15]

region pixel (1 km2) – weather data from nearest 
meteorological station 
– soil data of predominant 
soil type from soil map 
– standard agricultural 
practices
– crop area obtained from 
land-use map
– crop reflectance determined 
from disaggregation of 
remote-sensing data 

outputs 
integrated over 
each district or 
the whole 
region

wheat production 
maps: 1 value per district 
or 1 value for the whole 
region

prognostic crop cycle

Launay 
[28]

region spatial unit 
homogeneous for 
soil characteristics 
within each 
agricultural field

– weather data from nearest 
meteorological station 
– soil characteristics from 
soil map
– agricultural practices 
obtained from assimilation of 
remote-sensing information 
averaged on spatial unit

outputs 
integrated over 
each 
agricultural 
field

sugar beet yield 
map: 1 value per field

prognostic crop cycle

Nicoullaud 
et al. [44]

field 
20 to 100 ha

spatial unit 
homogeneous for 
soil characteristics 
and agricultural 
practices

– soil characteristics and 
agricultural practices were 
mapped

none production maps: 
1 value per plot

test of 
scenarios

crop cycle

Lal et al. 
[27]

areas of  about 
3800 ha

spatial units 
homogeneous for 
soil and climate

– weather data from nearest 
meteorological station; 
– soil data derived from soil 
map

none yield maps for various 
crop and management 
combinations: 1 value 
per spatial unit

test of 
scenarios

crop cycle

Water quality

Gomez and 
Ledoux 
[17]

large watershed 

100 000 km2

spatial unit 
homogeneous for 
crop rotation, 
climate and soil

– weather data derived from a 
map of homogeneous 
meteorological zones
– soil  characteristics sampled 
in ramdom distributions 
derived from a
 soil map
– crop rotations randomly 
sampled in distributions, 
characteristic of each small 
agricultural region, and 
determined by mining data 
techniques

outputs are used 
as upper limit 
conditions for 
hydrological 
models

map: 1 value of leached 
nitrate flows per spatial 
unit;
values of nitrate 
concentration at defined 
outlets

diagnostic decades
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since the focus of this paper is on the spatialisation of crop models.
We present below some definitions based in part on Bierkens
et al. [5], and then discuss related scale change issues. 

The “extent” is the area concerned by the study: this can be
a region, a watershed, an irrigated area or a farm. The extent is
divided into a finite number of smaller areas called “support
units”. Information is collected on some or all support units.
The “support” is defined by the total area covered by the
observed units. The “coverage rate” (or coverage) is the ratio
between the support and the extent. The term “resolution”
should be used with precaution because it sometimes means
“support” and sometimes “coverage rate”.

The term “scale” has a colloquial sense, in which “large
scale” refers to large areas, and a cartographic sense, for which
“large scale” would be associated with “high resolution” and
therefore, very often, to “small extent”. In the following we use
the colloquial sense of scale.

When crop models are involved, the support units typically
correspond to the simulation units (the field plot), i.e. the spatial

units considered as homogeneous to which the model is applied
to get simulated values.

Spatialisation of crop models needs to link different scales:
for example, the scale on which the processes are described by
the model, the scale on which input data or information (model
parameters and input variables) must be available, or the scale
on which output results are expected or sought. Thus, spatial-
isation often requires some kind of change of scale, for example
from the scale of validity of the model to the support unit of
the model predictions or from the support unit to the extent.

Often, instead of “scale change” one talks of “upscaling” (or
“downscaling”). Nevertheless, for Bierkens et al. [5], “upscal-
ing” specifically means increasing the support, which we refer
to as “aggregation” (and “downscaling” by “disaggregation”)
(Fig. 1). On the other hand, expressions such as “a crop model
is scaled-up from the field to the regional scale” [49] associate
“upscaling” with increase in extent.

Often, crop models are calibrated on the field scale and then
used to estimate the evolution of some variables for this field.

Table I. Continued.

Reference Spatial extent Support unit 
for simulations

Treatments on inputs Treatments on 
outputs

Type of results presented Utilisation of 
the predictions

Temporal 
extent

Beaujouan 
et al. [2]

watershed
(application to 
a virtual 
watershed of 
0.64 km2)

regular cells 
(application to 
virtual 40 × 40 m 
cells)

– not specified  for soil, 
climate, crops and 
agricultural practices because 
theoretical application
– at each time step (day) 
lateral nitrate flows simulated 
by the hydrological model are 
inputs of the crop model

at each time 
step (day) 
vertical nitrate 
flows simulated 
by the crop 
model are 
inputs of the 
hydrological 
model

map: one value per cell;
one value at outlet

test of 
scenarios

crop cycle

Irrigation requirements

Sousa and 
Pereira [50]

region meteorological 
stations

– weather data measured at 
the meteorological station 
– typical values of soil data

outputs 
interpolated 
over the whole 
region by 
kriging

interpolated map of net 
irrigation water 
requirements for a potato 
crop

diagnostic crop cycle

Heineman 
et al. [22]

region spatial unit 
homogeneous for 
climate and soil, 
within a county 
(administrative 
stratification)

– weather data from nearest 
meteorological station 
– soil data derived from soil 
map
– standard agricultural 
practices
– crop area obtained for each 
county

output of each 
unit affected to 
the centre of the 
unit, then 
interpolation 
over the whole 
area 

interpolated yield maps 
per crop: several values 
per spatial unit 

diagnostic crop cycle

Leenhardt 
et al. [35]

irrigated 
perimeter 1000 
to 15 000 km2

spatial unit 
homogeneous for 
crop and climate 

– crop and irrigated area 
determined from statistical 
surveys or remote-sensing
– interpolation of climate data 
– sowing date calculated from 
meteorological data
– irrigation practices 
determined by interviews of 
sampled farmers

outputs 
aggregated over 
the whole area

1 value of irrigation 
consumption for the 
whole irrigated 
perimeter

prognostic irrigation 
campaign 
(≅ crop 
cycle)
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In this instance, the field is both the extent and the support of
the study. When these models are used to make decisions at a
regional level (for example to map nitrate leaching), the extent
of the study is no longer the field. The input data, at least in part,
can no longer be determined for each field of the region. It is
then often supposed that many fields have the same character-
istics and therefore the same input data can be used to run the
crop model for all of them. The support unit can then be con-
sidered as a set of fields, although the measurement unit of input
data remains unchanged. The scale change here corresponds to
the passage from a small support unit (a field) to a bigger one
(a set of fields). This is aggregation or “upscaling”, and this
change of support is accompanied by a change of extent (from
the field to the region). On the other hand, the scale change
involved in using a crop model for precision agriculture corre-
sponds only to a change of support (one passes from a field to
a homogeneous zone within the field), without any change of
extent (which remains the field). Thus spatialisation of a crop
model is linked to scale change analysis.

Scale change corresponds to two opposite problems, the pas-
sage from a local to a global scale and vice versa. When the
modelling scale changes, it may imply both a change in the
scale of data observations (input data, output data or “valida-
tion” data), and a change in the structure of the modelling
approach. The latter change is well known in the field of hydro-
dynamics, where water flow is described by the Navier-Stokes
equations on the soil pore scale, and by Darcy’s equation on
the scale of the soil column. Specifically regarding crop mod-
els, the equations of the crop models are established on elemen-
tary surfaces (plots of the order of one m2) or even under

controlled conditions in the laboratory. But often crop model-
ling is sought on the field scale. In this instance, there is a
change of modelling scale. Most approaches assume that the
structure of the model can remain similar and that it is possible
to estimate effective values of the model parameters on the
upper scale. In practice, the parameters of the model are esti-
mated by calibrating the model with data observed on the scale
of an agricultural field. In applications over a region, there is
no such calibration step because the objective is not to erase
the heterogeneity of the region. Similarly, in precision farming,
homogeneous zones within the field are identified in order to
take into account the within-field variability. The model can be
applied to each of these zones. The models are then kept
unchanged, and the scale change concerns mainly the input and/
or output data. 

3. MAIN ASPECTS OF SPATIALISATION 
METHODS

Assuming that the natural spatial scale of a crop model is a
field plot and that the extent of the study is a collection of field
plots (a drainage basin, an administrative region, etc.), spatial-
isation and/or spatial aggregation can be situated at three levels:
(i) determining input data, (ii) accounting for the interactions
between field plots, and (iii) evaluating the results. The first
point deals with the problem of being able to simulate crop
development for all individual fields. It requires the input data
specific to each simulated field. Because crop models do not
take into account specific processes concerning a larger scale

Figure 1. Basic operations involving extent coverage and support (from Bierkens et al., 1997).
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than the field, the second point involves coupling the crop
model with a model that explicitly simulates the spatial deter-
minism of some processes like, for example, those involved in
a watershed hydrological functioning.  Another solution is to
control or update the simulated values using observations of the
entire region, with satellite data, for example. Because crop
models are validated at the field plot level, the third point con-
cerns the problem of evaluation of the spatialisation process
when the results concern a large area. 

3.1. Determining input data throughout the extent

As a simplified representation of the soil-plant-atmosphere
system, a crop model refers to a locally limited environment
(local scale of the homogeneous field) and in particular soil and
climate conditions and crop management. In the case of the
application of such a model on the scale of a heterogeneous
field, a farm, a region or a country, the environment of the SPA
system becomes variable, not only in time but also in space. The
soil varies in depth, texture, and slope, climate, in particular
rainfall, is variable and finally, management practices (soil till-
age, irrigation, fertilisation, choice of cultivar, etc.) also vary.
It has been shown that the validity of crop model predictions,
summed or averaged over a region, depends on the quality of
the representation of the spatial variability of the input data
[20]. Thus moving from a homogeneous field to a larger scale
or to a heterogeneous field requires incorporating additional
environmental heterogeneity. 

Two main types of input data can be distinguished. The first
includes the environment characteristics. They are essential
since the basis of a crop model is to represent the interactions
between biological factors and environment. A second type of
data includes the technical details of management practices. 

3.1.1. Environmental data

The major environmental data necessary for running crop
models are climatic variables (temperatures, precipitation, radia-
tion and potential evapotranspiration) and soil properties. In
general these quantities are not known everywhere and on every
scale. They are measured or estimated on given spatial supports
(soil profiles and meteorological stations) at a limited number
of sites within the study area. For crop modelling purposes it
is therefore necessary to estimate their values on the scale of
every simulation unit within the simulation area. This implies
some kind of spatial estimation. Various techniques and meth-
ods have been developed and applied  for soil and climate data.
They are very diverse and may be distinguished by the kind of
model of spatial variation they are based on. Three groups of
approaches may be roughly distinguished.
• A first group of methods is based on models of spatial var-

iation that can be classified as traditional and that do not
consider random components. This is the case of many tra-
ditional choropleth mapping methods based on terrain
inventories and surveys which define and map classes of
soils, vegetation and climates, and assume that the property
of interest is best estimated by the class mean at all sites
within a given class. Examples of choropleth mapping are
the classical soil mapping techniques, of which a review
was proposed by Legros [37]. Other techniques such as

Thiessen polygons, trend analysis or arbitrarily weighted
averages of data also belong to this first type of method.
They have been extensively used for mapping soil and cli-
mate variables (e.g. [12, 29]).

• A second group of methods assumes statistical models of
spatial variation. The most well-known set of methods of
this kind are the geostatistical methods. They are well
described in several textbooks, such as, for example, those
by Journel and Huigbregts [26], Webster and Oliver [57]
and Goovaerts [18]. Their main advantages are to provide
sound spatial estimates from a statistical point of view
(unbiasedness and minimum variance), to take into account
the spatial dependence between the data and to propose an
estimate of the prediction error. The most popular of the
geostatiscal methods is kriging whose predictor of a prop-
erty at a given site is no more than a weighted average of
the observed values at neighbouring sites. Several forms or
extensions of kriging have been developed to cope with dif-
ferent kinds of variables: continuous and categorical, with
normal, log-normal and undefined density distributions. In
many applications to soil and climate variables, geostatisti-
cal methods have been shown to perform better than most
other methods (e.g. [12] for rainfall mapping; [54] and [55]
for soil texture mapping). They best apply to variables that
exhibit stationary and continuous spatial variations. But in
the case of discontinuous spatial variations, their perform-
ance was shown to be poorer (e.g. [54]). 

• The third group of methods relies on process-based models
of spatial variation. In this case, the spatial estimation of a
variable is made by simulating the processes that control
the variable. For example, the simulation of soil formation
on the landscape scale can provide a prediction of the actual
spatial variation of soil properties (e.g. [41]). Atmospheric
3D modelling that accounts for lateral energy fluxes
between fields can be used to predict the spatial variation of
the local atmospheric boundary conditions of a crop model
(e.g. [11]). But the development of this kind of process-
based approach is still at a very early stage and cannot be
considered operational yet for providing input data to crop
models. 
In many situations, the number of available measurements

of soil and climate input data is very small and insufficient to
allow for accurate spatial predictions over the simulation area,
whatever the performance of the mapping method used. This
is so especially because of the large costs involved in measuring
these data. Consequently, several approaches have been devel-
oped to investigate whether surrogate data, that are already
available in existing databases or easily measurable at high spa-
tial densities, can help in spatially predicting the variation of
the required soil and climate input data to environmental mod-
els. They are of two kinds. The first one corresponds to the
development of empirical or theoretical models that use the sur-
rogate data at a site to predict the data of interest at the same
site. This enables one to increase the spatial set of data for sub-
sequent mapping. Examples of this are pedotransfer functions
that use basic soil data from soil surveys, including soil mor-
phology, soil texture, structure, organic matter content, etc., to
predict more difficult-to-measure soil data such as soil water
retention curves or soil hydraulic conductivity. A review of
pedotransfer functions is available in McBratney et al. [38]).
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Although these functions provide only approximate results,
they are often used on regional scales to parameterise crop models
(e.g. [14, 30]). Another example is the assimilation of remote
sensing data in a 1D model describing the transfers between
soil-vegetation-atmosphere (SVAT) for estimating the local
climatic data, taking into account the effect of land-use [10].
The second approach is to use the information about the spatial
structure of the surrogate data to improve the spatial estimation
of the variables of interest. Several techniques exist; they are
most often extensions of the spatial estimation methods
described above. For example, the AURELHY method [3]
improves the spatial estimation of precipitation by taking into
account the landscape relief through a multivariate analysis.
Similarly, Monestiez et al. [43] used a special form of kriging,
namely kriging with an external drift, to account for local envi-
ronmental conditions of the measurement sites in the mapping
of air temperature. A last example is the use of outputs of large
scale numerical weather prediction (NWP) to take into account
the weather types when mapping precipitation [1, 39]. The use
of surrogate data, especially remote sensing data, to overcome
the lack of required input data when running environmental
models is very promising.

A last issue when mapping soil and climate input data is the
problem of change of support when the measurement support
unit differs from the crop model support unit (simulation unit).
Because the measurement units are generally smaller than the
simulation units, the problem is the upscaling of the observed
or mapped input data. This requires some knowledge about the
way the variables can be averaged in space, which most often
raises difficult theoretical problems. For example, how to cal-
culate the mean temperature over a squared kilometre when
land-use heterogeneities occur? It is a problem of upscaling by
aggregation. But in some cases, the change of scale can also be
the other way round (downscaling), particularly when the sim-
ulation area is very large. For example, to obtain predictions
on the Indian sub-continental scale, Priya and Shibasaki [47]
estimated the necessary local information (climate and slope on
a 1-km grid) by using information available on a wider scale
(meteorological stations of the national network and a digital
terrain model with a large grid), using a purely statistical
approach.

Finally, it is important to stress that, whatever the method
used, the fact of estimating model input data throughout the
extent introduces errors in the model inputs, as illustrated by
several examples reported by Hansen and Jones [20] and Russell
and Van Gardingen [49]. One example [49] concerns climatic
zoning that can be used to determine weather data at various
locations of a region. Weather data from the reference meteor-
ological station of each zone are used for sites located within
the zone. If the zoning is drawn up for cereals, it may not be
adapted to other crops (forage, for example): (i) because con-
ditions after cereal harvest have not been taken into account in
the classification, although they influence forage growth, and
(ii) because the choice of the representative meteorological sta-
tion is based on the spatial distribution of cereal crops, which
may be different from that of forage because of different cli-
matic requirements. Errors in the model inputs are likely to be
propagated to outputs [32, 33].

3.1.2. Management data

Management data include crop species, variety, sowing date
and density, irrigation, fertilisation and possibly crop protec-
tion and soil tillage information. They are discontinuously dis-
tributed in space. In fact, it is the spatial distribution of
management practices that determines the boundaries of the
fields. The management data also vary from year to year. In a
given field, different crops follow one another. Finally, man-
agement data result from decisions taken on different scales,
including the farm, the cooperative, the collective organisation
for irrigation, etc. At each of these levels, management deci-
sions for the various fields are interdependent [4, 45]. 

This complexity is the reason that spatial representations of
management data are rare. Often one simply uses values corre-
sponding to typical or recommended practices to run the models
[14, 20]. Nevertheless, it is very important to distinguish irri-
gated zones from non-irrigated ones, and to include the distribution
of sowing dates and the range of varieties used in a region. If
the spatial distribution of crops within the considered area has
no effect on the simulated process, and if the analysis of the
determining factors suggests it, it is possible to simply distribute
the management practices in space according to a law of proba-
bility [42]. This approach was adopted by Leenhardt and
Lemaire [31] for the sowing dates and by Mignolet et al. [40]
for crop rotations. These two studies combine segmentation of
the geographic space and sampling from probability distributions. 

An alternative approach to collecting information regarding
agricultural practices relies on the use of remote sensing. His-
torically, remote sensing has widely been used to obtain land-
use maps, which provide a description of the spatial distribution
of crops. More recently, it has provided a means to estimate the
exhaustive distribution of techniques difficult to observe
because of their transient nature (e.g. sowing date and nitrogen
applications) and their cost of acquisition. The principle con-
sists of re-estimating parameters (and/or input data). An exam-
ple is given for sowing and emergence dates by Guérif and
Duke [19] and Launay [28], where they compare LAI values
simulated by the crop model and the outputs of a reflectance
model applied to the remote-sensing data.

3.2. Accounting the interactions between field plots

Scale change implies the consideration of new processes and
properties, emerging on the scale considered and revealed by
the extension of the system considered. Such emerging proc-
esses or properties influence the SPA system but are not rep-
resented by the models developed on the local scale for
homogeneous fields. These processes can concern physical
transfers between neighbouring units, including: water transfer
between fields, pathogen propagation, weed or GMO diffusion,
etc. The interactions between fields can also result from the
multiplicity of actors in a region and from the decisions they
make. They arise because, on this scale, human and economic
sub-systems cannot be neglected. For example, on the scale of
an irrigated area, the water resource must be allocated between
farmers. On the farm scale water allocation but also other man-
agement decisions are interrelated between fields due to the
constraints of labour and equipment. Thus, when a model,
developed on the local scale, is used on a larger scale, the results
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become even more error-prone because they do not take into
account the phenomena appropriate for this scale.

Although the two approaches presented hereafter can pro-
vide solutions, the difficulty of spatialising crop models when
strong spatial interactions exist between fields must be empha-
sised. When runoff or propagation of pathogens are considered,
the relative locations of fields, as well as their sizes, are essen-
tial. For example, in an area where the proportion of different
crops are fixed runoff will be different depending on the sizes
of the fields. This will also affect biological diversity. The spa-
tial structure gives to the system properties that cannot be
directly accounted for by the crop models.

To account for spatial interaction between fields, the most
natural approach is to interface the crop model with a model
that represents these spatial interactions. Nevertheless, such an
interface is not without difficulties. First, it requires an
exchange of data between the two models at each time step dur-
ing the simulation process, while existing crop models are gen-
erally structured to simulate directly an entire growing season
[2]. Second, on larger scales (farm, watershed or region), sev-
eral crops are concerned, while crop models are generally
developed for one species. Embedding crop models into mod-
els of three-dimensional hydrology, intercrop competition or
farm operations would require restructuring the models so that
different crops could be simulated in parallel and that informa-
tion exchange could be possible at each time step of simulation
between the models. Although this is possible, the difficulty of
reorganising model code and the need to repeat the exercise
after each model revision suggests that combined models of
these higher-level systems will not be sustainable without a
commitment on the part of the crop-modelling community to
develop and maintain an appropriate modular structure [20].

An indirect approach to account for interactions between
field plots consists of accounting for the spatial variability of
the model state variables at particular moments of the crop
cycle, rather than modelling explicitly spatial interactions.
Injecting remote-sensing information into the model is the most
common way to do this. This refers to data assimilation
reviewed by Pellenq and Boulet [46]. But here, the information
is used to force the crop model to be consistent with the
observed data over the course of the growing season [15]. Data
assimilation implies that communication between the data and
the model occurs during the course of the simulation (that is,
during the course of the crop cycle), which poses computer
problems similar to those evoked above. However, this tech-
nique does not require a complete reorganisation of the model. 

3.3. Evaluating the simulated results 

When a crop model is applied to a large area, the overall pre-
cision of the predictions results not only from the quality of the
model itself, but also from the quality of the methods of acqui-
sition of the input data, of the choice of the units of simulation,
and of the calibration of the model. 

In the previous paragraphs, we underlined the importance of
errors affecting input data because of the necessity of involving
estimation methods over large areas. It is also important to note
that these methods (pedotransfer functions, interpolation meth-

ods, remote-sensing assimilation data or sampling from distri-
butions without any spatial constraint) can generate a spatial
structuration of crop model output prediction errors.

Evaluation of the overall results is possible in principle but
is often problematic in practice. The most common problem is
the quality of the so-called “validation” data. These data are
observed data, but generally their reliability can be questioned
(as is the case for the input data), which reduces the pertinence
of the comparison of observed and simulated data. For example,
to validate the ISOP model which estimates grass production
for every forage region, Rabaud and Ruget [48] used estima-
tions of production made a posteriori by local experts. There
thus arises a problem of reliability of data (varying from one
expert to another, depending on his/her own memory). Simi-
larly, Faivre et al. [15] simulated wheat production but, for val-
idation, they only had at their disposal statistics for the part of
the production collected for commercialisation. In addition,
they have a problem of discordance between spatial units: sim-
ulations are performed for 1 km2 support units (satellite pixels),
while validation data are available on a communal basis. Besides,
to estimate the quality of forecasts of total water demand for
irrigation in a region, Leenhardt et al. [36] use data relative to
farmers who subscribe to a collective irrigation system, while
in the study area, there are also farmers who irrigate from their
own reservoirs. There is therefore a discordance between the
simulations (relative to the whole extent of the study area) and
the observations (corresponding to that part of the area culti-
vated by farmers who irrigate from a collective system). Fur-
thermore, within these “collective” irrigators, some receive
water from collective pumping plants whose daily volume can
be obtained, while others use individual pumps and only the
total volume to the end of the experiment is available. Thus
none of the validation data sets covers by itself the full spatial
extent considered, that is, the whole irrigated region including
both collective and individual irrigators, nor the full temporal
extent, that is, the entire irrigation campaign with a daily time
step. Actually, the term “evaluation” is more appropriate than
“validation”. Rather than evaluating spatialised models by
comparing predictions with imprecise observations, it is pos-
sible to evaluate them by considering if the objective is attained.
In particular, does the model allow one to make decisions cor-
rectly? For example, Leenhardt et al. [36] verified, for a past year
for which water management decisions failed, that a regional
irrigation demand prediction model was able to predict the
delay in irrigation demand that was the cause of wrong deci-
sions. The model would then have been able to allow the water
manager to anticipate the difficulties and would have helped
him to make better decisions by improving the estimation of
the remaining potential irrigation demand.

A global evaluation gives an idea of the reliability of the
results, but does not indicate how to improve them since the
sources of error are not identified. To go further, it would be
possible to study each individual source of error and its prop-
agation through the model. The contribution of each type of
error to the total error of the simulation result could then be
identified. This type of analysis would also make it possible to
choose the most adequate method of data acquisition, taking
into account the effect of error in each type of data on the pre-
cision of the results. Analytical methods of decomposition and
of propagation of error exist for linear models (cf. for example



Spatialising crop models 213

[23]). For crop models, which are strongly nonlinear, these
methods do not apply. The procedure then becomes very com-
plex. Indeed, no complete analysis of sources of error and of
their propagation has been conducted for spatial applications
of crop models. Nevertheless, the procedure has been illus-
trated by Leenhardt and Voltz [32] for one kind of crop model
input data, namely soil water properties. The aim was to choose
the method of acquisition of such data, that is, what resolution
for the soil map, what estimator of the water properties within
the mapping units? A more complete approach but without spe-
cific application to crop models is given by Crosetto et al. [13]
and by Tarantola et al. [53]. They propose an application of
uncertainty and sensibility analyses to GIS-based models in
order to estimate the precision needed for the various types of
data. The objective is to obtain results with a precision within
limits acceptable to the user, thus allowing decision-making.

4. WITH REGARD TO SCALE CHANGE 

Since extent and support are not on the same scales (homo-
geneous plot for the latter and region for the former), analysis
in terms of scale change seems to be a good means of presenting
the approaches of spatialisation of crop models. The decision-

tree proposed by Bierkens et al.  [5] (Fig. 2) can be a good sup-
port for discussing the different studies presented in the previ-
ous section.

One of the most common strategies is to look for exhaustive
information all over the extent at the crop model support unit
level (field) in order to simulate everywhere, and then to aggre-
gate results to obtain information on the extent scale. This
methodology corresponds to class 1 of the decision-tree. It is
represented in Figure 3, way A, corresponding to a “calculate
first, average later” strategy as mentioned by Bierkens et al. [5].

In Section 3.1.1, we described the methods for spatialising
environmental input data, with a first view of the problem of
scale change. These methods mainly correspond to a change of
coverage (see Fig. 1) where the most common method is inter-
polation (Fig. 3, way Au). To characterise the soil typology at
the necessary crop model support unit, one needs to proceed,
from the original databases, to different scale change modes
(Carré [9], ways Ad or Au).

When technical input data are involved (see Sect. 3.1.2),
interpolation methods are inadequate when local information
concerning management is available. When the coverage rate
of these technical information is not high enough, the use of
assimilation techniques of remote-sensing data allows the mod-
eller to estimate actual technical input data as Guérif and

Figure 2. Decision-tree with four major classes of upscaling methods (from Bierkens et al., 1997).
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Duke [19] did for the emergence dates, which corresponds to
class 1 of the decision-tree (Fig. 2). In general, local informa-
tion concerning management is not available. Representative
management practices are used in the course of spatialising
crop models. This corresponds to class 2 in the decision-tree.
The meaning of “easily” in the question of Bierkens et al. [5]
(“Can the model be easily applied at many locations?”) should
be clarified. In the case of technical input data, it is numerically
easy to apply the model but information is missing. Depending
on other input data, two main strategies are used. If environ-
mental data are also classified in different soil types, generally
no spatialisation is performed [14]: all combinations of soil
types and management types are simulated on the crop model
scale and upscaled by weighting the results of each combina-
tion (Fig. 3 way A). If environmental input data are spatialised,
i.e. if available for all the plots of the extent, the recommended
management practice is used for all plots [15], i.e. scale change
only concerns environmental input data while technical input
data is constant over the extent. An alternative could be to spa-
tialise management data by drawing at random from a known
distribution of practices (generally available in an agricultural
administrative region, see [31] and [40]); such a strategy should
be used when spatial dependencies exist between plots (e.g.
water flux between field plots).

The strategies presented above consist of spatialising input
data for all the support units of the extent, then of running the
crop model for all these support units and finally of aggregating
the outputs over the extent. Another strategy, implying strong
hypotheses, consists of applying the model to some support
units and then of extending the results to the extent by some
method of interpolation (Fig. 1, Change of coverage). This is
the approach implemented by Sousa and Pereira [50] to get
water requirements for potatoes for a region. The outputs
obtained by simulation at the locations of meteorological sta-
tions were then extended by spatial interpolation using kriging.
Interpolation is based on the assumption that outputs are spa-
tially structured (often varying continuously in space). In this
application, water requirements are assumed to depend on cli-

matic factors only. However, in most applications of crop mod-
els, such an assumption is not realistic: as noted before,
agricultural practices vary in space discontinuously with no
known spatial structure. Therefore, there is no reason to sup-
pose that outputs vary continuously. 

We presented above the spatialisation of crop model input
data in order to predict outputs for all crop model support units.
It could also be possible to spatialise crop model state variables.
The same hypotheses of spatial structuration are necessary.
More, spatialising intermediary (state) variables is very time-
consuming. Assimilation from exhaustive information over the
extent is a means of overcoming these problems. It allows the
updating of some of the simulated state variables in the course
of the simulation. It is another method of assimilation, different
from that used by Guérif and Duke [19] which estimates input
data only. 

Scale change is often necessary due to a gap between the
observed data support unit and crop model support unit. We are
in the same configuration as in Figure 3, but replacing “crop
model input data” with “crop model state variables”. Faivre
et al. [15] are concerned with scale change to match the support
unit of observed data and the crop model support unit. They first
unmixed data to recover the specific value of the considered
crops [16]: in the coarse satellite data of 1 km2 support unit
(pixel), data consists of aggregated values of different types of
crops. The scale change (way Ad in Fig. 3) is carried out when
the average value of the observed data in the pixel is affected
by each field (crop model support unit).

Another problem relative to scale change is the spatial ade-
quacy between evaluation data and crop model outputs over the
extent. In Rabaud and Ruget [48], the validation is performed
on the same support; validation data and output data are aggre-
gated over the same extent. In Faivre et al. [15], validation data
is available on an intermediary support unit (an administrative
communal support unit), lower than the extent (region) but
larger than the crop model support unit (field). Here, for com-
munal and regional evaluations, a change of support by aggre-
gation is necessary. In Leenhardt et al. [36], there is a difference
of coverage: validation is based on a sample of the extent
(Fig. 1, change of coverage).

In terms of scale change, all work relative to spatialisation
of crop models concerns only data, but never the model itself.
Besides, simulations are always performed on the scale of the
crop model (way A in Fig. 3), never on the scale of the target
(way B in Fig. 3). Consequently, input data spatialisation meth-
ods (cf. Au et Ad in Fig. 3) and the upscaling methods of output
data should benefit from the scale-change point of view. There-
fore, the general principles of scale-change methods can be use-
ful.

The specificity of crop model spatialisation is that, most
often, two scale changes occur: one on the input data, the other
on the outputs. Input data scale change can be downscaling or
upscaling. Generally, output data scale change is upscaling
only (by aggregation to have global information). The common
strategy consisting of simulating everywhere should be chosen
either because of its better efficacy or because it respects spatial
structurations that are difficult to account for differently. A way
of checking the efficacy of this strategy would be to compare
simulated and observed spatial variations. This would need

Figure 3. Strategies for upscaling a crop model: upscaling outputs
(way A), upscaling inputs first (way B). 
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information over the whole extent on the support unit scale,
which is rarely the case. An alternative would be to disaggre-
gate global information (often concerning the entire extent),
taking into account some spatial dependence models. This is
specifically addressed in the downscaling methods issues.

5. BY WAY OF CONCLUSION

The “spatialisation of crop models” has been implemented
in a number of applications. Different techniques have been
used but it appears that there is a lack of analysis of the methods
and strategies and of the requirements.

Spatialising crop models requires a large amount of geo-
graphical information. This is why Heineman et al. [22] and
Nicoullaud et al. [44], for example, coupled crop models to a
geographical information system (GIS). We can see, with this
analysis in terms of scale change, that this need for data can be
decreased. A first solution is to use spatialisation techniques
such as interpolation methods. Another one is to consider
another strategy, such as the way B described in Figure 3. This
new strategy would consist of calculating a mean temperature
or using representative types and then simulating with these
synthetic data. This is possible because a crop model has no
dimension: it simulates the outputs (for example, the mean
yield) per unit of area, that is, it can be used whatever the sup-
port unit of input data. In fact, the processes represented in a
crop model (and assumed to be exact) are considered as being
applicable only for a homogeneous support unit of the size of
a field plot.

A crop model is developed for a homogeneous simulation
unit, generally the field plot. It takes into account only the proc-
esses that are significant on such a scale (the field). When the
crop model is used on a larger extent, we have to deal with
emerging processes, for example fluxes between fields. In this
case, it is possible to interface the crop model with another kind
of model: a hydrological model to account for lateral water
flows [2], farm system model to account for constraints due to
work organisation, etc. Contrary to what Bierkens et al. [5] pro-
posed  (class 4 in Fig. 2), the crop model is complexified. The
corresponding question in the decision-tree should be: “shall
we continue to apply the crop model as it is or shall we create
a new model in which the crop model is only a sub-part?” An
alternative to complexification is the use of assimilation, as
noticed in Section 4. The proposition of Bierkens et al. [5], that
is, simplifying the crop model, is in fact never considered.

Although there exist a number of applications of  crop model
spatialisation, there is a crucial lack of operational and trans-
ferable tools adapted to this problem. Efforts exist but are not
coordinated. In most examples, the interfaces are partial and not
automated, which does not make the tool easily transferable to
other researchers. These studies are often specific to one appli-
cation; that is, they consider one particular model, they use one
particular set of data from one study site, they address one spe-
cific question. In order to formulate a general spatialisation
approach, one idea would be to combine the different points of
view in terms of processes to be modelled, which implies hav-
ing a multidisciplinary team working at and observing the same
study site. The existence of a common study site where
researchers of different disciplines would work could be a good

opportunity (i) to test advanced techniques, (ii) to evaluate the
impact on predictions of different sources of error (correspond-
ing to different methods of input data acquisition), and (iii) to
study the techniques that should be combined to develop deci-
sion support systems. The recent creation of long-term obser-
vation experiments by research organisations in France (the
Environmental Research Observatories, “ORE”, and the regional
working zones, “zones atelier”) could provide the opportunity
to achieve progress in crop model spatialisation. These studies
would need to be viewed through the prism of the scale-change
analysis. 

All the scientific questions evoked here are under study and
in the present paper we attempt to provide a framework for ana-
lysing the spatialisation of crop models. To that extent, this
paper is to be considered as a contribution to the great debate
concerning the use of crop, and more generally, vegetation
models on a large scale.
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