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Abstract – Crop models are important tools in agronomic research, a major use being to make predictions. A proper parameter estimation
method is necessary to ensure accurate predictions. Until now studies have focused on the application of a particular estimation method and
few comparisons of different methods are available. In this paper, we compare several parameter estimation methods, related, on the one hand,
to model selection, and on the other, to ridge regression based on an analogy to a Bayesian approach. The different methods are applied to a
simplified crop model derived from the STICS model, using simulated data. The criteria for comparison are prediction error and errors in the
parameter estimates. Among the methods of model comparison a version of the Schwarz criterion, corrected for small samples and with
maximum and minimum bounds for each parameter, is the preferred method. Ridge regression is found to be superior to this best method of
model selection. 

parameter estimation / crop model / model selection methods / ridge regression

1. INTRODUCTION

Crop models are important tools in agronomic research and
are increasingly being considered as potential components of
decision support systems for agriculture. The two fundamental
components of crop models are the model equations and the
values of the model parameters. Both are essential in determin-
ing the usefulness of a model, and in particular the quality of
model predictions. 

The problem of parameter estimation has been very widely
studied in statistics. However, the application of the proposed
methods to crop models is often not immediate because crop
models, like complex dynamic models in other fields such as
hydrology, present several characteristics which make param-
eter estimation difficult. First of all, these models often contain
a large number of parameters (for example, approximately
200 parameters in the STICS model [6]), compared with the
amount of data available for parameter estimation. It is thus
often impossible to estimate all the model parameters from the
data, and even in cases where it is numerically possible this may
lead to overparameterization and consequent poor predictive
quality. In addition, prior information about the parameter val-
ues is often available, from experiments on the individual proc-
esses or from results that concern the system under conditions
not too different than those of interest. There is then the ques-
tion of how to use this information in the estimation procedure.
Finally, the structure of the data is often complex. In a given
plot several different variables (for example, grain yield, bio-
mass and leaf area index) may be measured, and certain of these
variables may be measured at several different dates during the

season. Thus the data available are not independent and there
is the question of how to take into account the complex corre-
lation structure of the data.

We will discuss below different aspects of the problem of
parameter estimation for complex dynamic models that have
been reported in the literature. We will see that while there have
been numerous studies on how to calculate parameter values,
there are very few studies which systematically compare a
range of different statistical approaches to parameter estima-
tion. It seems important to propose such a study, in order to
draw conclusions on the advantages and drawbacks of each
method. The purpose of this paper then is to propose several
methods for parameter estimation that could be applicable to
crop models, and to test them in a simulation study on a rela-
tively simple example. 

Many of the studies reported in the literature focus on the
problem of how many parameters to estimate and how to
choose those to be estimated. Olsthoorn [24] suggested that the
number of estimated parameters must be substantially fewer
than the number of observations to obtain a valid optimum.
Other studies have emphasized the importance of limiting the
number of estimated parameters lest prediction error be high
(for example, Refsgaard [28]). Perrin et al. [26] compared
19 hydrological models of different complexity (between 3 and
9 parameters) in order to see if the increase in the number of
parameters improved the performances of a model. They con-
cluded that models of small dimensions can have predictive
capacities as good as more complex models.

One can of course reduce the number of estimated parame-
ters by simply deciding that certain parameters will not be fit
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to the data but will have fixed values. The problem is then to
decide which parameters will be estimated and which will be
fixed. Sievänen and Burk [31] fixed those parameters of their
tree growth model which are easily measured and thus are avail-
able without fitting. Parameter values may also be fixed on the
basis of values in the literature [34]. A sensitivity analysis of
model outputs to different parameters may be the basis for esti-
mating only those parameters to which the outputs are most sen-
sitive. Yan and Haan [38] and Xevi et al. [37] reduced the
number of parameters based on the sensitivity for each param-
eter individually. In their sensitivity analyses, Van der Perk
[33] and Brun et al. [7] also took into account parameter inter-
actions. Finally, the data itself may be used to determine how
many and which parameters to estimate. This is the approach
adopted by Wallach et al. [35], who first classified the param-
eters using a forward regression analysis and then decided how
many parameters to estimate using cross-validation.

As underlined by Brun et al. [7], fixing some parameters may
introduce a bias in the estimates of other parameters. Further-
more, a modification of the fixed values may lead to different
estimated values because of the interactions between the
parameters, as shown by Zhang and Lindström [39].

In linear regression, principal component regression or par-
tial least squares regression may be used to reduce the number
of parameters to estimate. Wallach et al. [36] applied contin-
uum regression, which is a generalization of both those meth-
ods, to a crop model. 

The approaches mentioned above make use of prior infor-
mation about the parameters in a particular way. Either a param-
eter is fixed at its prior value, or the prior value is ignored and
the parameter is estimated from the data. A Bayesian approach,
on the other hand, treats the parameters as random variables.
The prior information furnishes a prior distribution for the
parameters, and then this is combined with the data to calculate
a posterior distribution. Increased computing power and spe-
cific numerical methods have made it possible to calculate the
posterior distribution even for fairly complex dynamic models.
The GLUE method (generalized likelihood uncertainty estima-
tion) [4] assigns a weight proportional to the likelihood to each
parameter set sampled from the prior distribution. This method
has been applied to distributed hydrological models containing
from 4 to 6 parameters [9, 10]. Schulz et al. [29] also applied
the GLUE method to a nitrogen budget model including
7 parameters. With the Metropolis Hastings algorithm [15, 23],
one can generate a sample from the posterior parameter distri-
bution. This algorithm has been used to estimate the parameters
of dynamic models [2, 8, 13]. Kuczera and Parent [19] and
Makowski et al. [20] compared GLUE and MCMC on models
containing, respectively, 4 and 21 parameters. The Metropolis
Hastings algorithm was preferred in both studies. Omlin and
Reichert [25] compared frequentist and Bayesian techniques
for estimating prediction uncertainty in a simple case (2 param-
eters). In the case of poor parameter identifiability, the Baye-
sian method was preferred.

We consider two families of approaches to parameter esti-
mation which seem to be reasonable candidates for crop mod-
els. The first family, model selection methods, indicates how
to identify a small number of parameters to be estimated. The
other parameters are fixed at a fixed value. The second

approach is the Bayesian approach, which combines the prior
information about the parameters and the information con-
tained in the data to estimate all the parameters. We do not cal-
culate the posterior distribution but rather just the mode of this
distribution, calculated using ridge regression. This provides
estimates of the parameter values that can be compared with
estimates given by the first family of methods. 

To compare the different statistical methods we did a sim-
ulation study. That is, we invented “true” parameter values and
data, and then tested each method to see how well it could
retrieve these “true” parameter values given the data. The
advantage of working by simulation rather than on real data is
that the true parameter values are known. It is thus possible to
calculate the quality of the estimated parameters and the pre-
dictive quality of the adjusted model for each method. The
drawback is that the generality of the results is hard to know.
The results may depend on the details of the model, on the way
the data are generated and on the specific data that are used.

The different variables and acronyms used throughout the
text are shown in Table I.

2. MATERIALS AND METHODS

2.1. Model

The model for which we tested different parameter estima-
tion methods is a part of the STICS model [6], which we shall
refer to as Mini-STICS. The use of only part of the STICS
model was dictated by the need to limit computing time, since
we were led to execute the model several million times. 

Mini-STICS simulates sunflower development over a
period of 20 days, starting at the stage Maximal Acceleration
of Leaf growth (AMF). We suppose that there is no nitrogen
stress and that the soil consists of two layers: the first layer
extends from 0 to 30 cm and the second from 30 cm to the bot-
tom of the soil. 

The five state variables are shown in Table II. The vector of
explanatory variables has 75 elements and includes soil char-
acteristics (percentage of clay and bulk density of the first soil
layer, and minimum and maximum soil available water of each
layer and soil depth), daily climatic variables (minimum and
maximum temperature, evapotranspiration and precipitation),
management operations (sowing density and depth of plough-
ing) and initial conditions (leaf area index, root depth and water
content of each layer). The parameter vector has 14 elements.
The “true” parameter vector, , is based on the values sug-
gested by Guiloufi [12] (Tab. III).

The model equations are presented in Appendix. These are
the dynamic equations that indicate how each state variable
evolves from one day to the next as a function of the current
values of the state variables and of the explanatory variables.
Integrating these equations over time (i.e. “running” the
model), allows one to eliminate the intermediate values of the
state variables and relate the state variables at any time to the
explanatory variables on each day up to that time. Then for any
given response (a response is a state variable or a function of
state variables at a given time), the prediction by Mini-STICS
can simply be noted  where the index j identifies the

θ T( )
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response, X is the vector of explanatory variables and θ is the
parameter vector. We will consider in particular the four
responses shown in Table IV.

2.2. Prior information

We assume the existence of prior information, that is, of
information about the parameter values independent of the data

Table I. Variables and acronyms used in the text.

Acronym Explanation

AIC Akaike Information Criterion

AICC Akaike Information Criterion corrected for small 
samples

BIC Bayesian Information Criterion

BICC Bayesian Information Criterion for small samples

BICC
B BICC

B with constraints 

CV Cross-validation

MSEP Mean Squared Error of Prediction

MSE Mean Squared Error

AMF Maximal acceleration of leaf growth

LAI leaf area index

HUR volumetric water content in full soil, HUR1+HUR2

Variable Explanation

q parameter vector of Mini-STICS (length 14)

Estimator of θ
θ(T) True value of θ
µ

k
mean of the prior distribution for θ (or initial value of θ) 

ω²
k

variance of the prior distribution for θ 

n number of individuals in the training sample

X Vector of explanatory variables of the Mini-STICS 
model

DXd
(x) probability distribution of X, where d represents the 

distribution number 

i(d) index of an individual with explanatory variables drawn 
from DXd

(x)

Xi(d) vector of explanatory variables drawn from DXd
(x) for 

the individual i(d)

yi(d),,j 
yi(d)

observed response j, j = 1, …, 4, of the individual i(d)
vector of observed responses (length 4)

fj(Xi(d);θ) 
f(Xi(d);θ)

model prediction of response j for individual i(d) vector 
of model predictions for individual i(d) (length 4)

εi(d),,j
εi(d)

model error for variable j individual i(d) 
vector of model errors for individual i(d) (length 4)

Σ covariance matrix of εi(d), of size 4*4. 

estimate of Σ
σ²j variance of εi(d),,j

estimate of σ²j
MSEPj

d(m) mean squared error of prediction for response j and 
individual drawn from DXd

(x), obtained with parameter 
estimation method m

COLS ordinary least squares criterion

CGLS generalized least squares criterion

θ̂

Σ̂

2σ̂

Table II. State variables of the Mini-STICS model.

Name Meaning Units

LAI Leaf area index m2 leaves·m–2 soil

HUR1 Volumetric water content of the layer 1 mm.cm–1

HUR2 Volumetric water content of the layer 2 mm.cm–1

SUDEVC
ULT

Cumulative effective temperature for 
plant development

°C

ZRAC Root depth cm

Table III. Parameters of the Mini-STICS model and true parameter
values θ(T).

Parameter Meaning Units True value

ADENS Parameter of compensation 
between stem number and plant 

density

– –0.8

BDENS Maximum density above which 
there is competition between 

plants

plants.m–2 1.25

CROIRAC Growth rate of the root front cm. degree-day–1 0.25

DLAIMAX Maximum rate of the setting 
up of LAI

m2 leaves.soil m–2. 
degree-days–1

0.0078

EXTIN Extinction coefficient of 
photosynthetic active radiation 

in the canopy

– 0.9

KMAX Maximum crop coefficient for 
water requirements

– 1.2

LVOPT Optimum root density cm root.cm–3 soil 0.5

PSISTO Absolute value of the potential 
of stomatal closing

bars 10

PSISTURG Absolute value of the potential 
of the beginning of decrease in 

the cellular extension

bars 4

RAYON Average radius of roots cm 0.02

TCMIN Minimum temperature of 
growth

°C 6

TCOPT Optimum temperature of 
growth

°C 32

ZPENTE Depth where the root density is 
½ of the surface root density for 

the reference profile

cm 120

ZPRLIM Maximum depth of the root 
profile for the reference profile

cm 150

Table IV. Response variables yi(d),j, j = 1, …, 4, available for param-
eter estimation and model evaluation.

Index j Response variables Notation

1 LAI, day 20 yi(d),1

2 LAI, day 10 yi(d),2

3 HUR1+HUR2, day 10 yi(d),3

4 HUR1+HUR2, day 20 yi(d),4
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that is used for parameter adjustment. We represent this infor-
mation as a probability distribution. For each parameter θk the
prior distribution is assumed to be normal, ,
where  and  are, respectively, the prior mean and the prior
variance of the parameter k, k=1,…,14. We assume the param-
eters to be a priori independent. Thus the prior distribution for
the full parameter vector is

. (1)

We considered two different prior distributions. The means
and standard deviations are presented in Table V. For each prior
distribution, first the prior means were chosen at random within
limits proposed by agronomists around the true values. Then
the prior variance for each parameter was calculated as

× , which is equal to the variance of a uni-
form distribution with lower limit 0.7 ×  and upper limit
1.3 × . Note that the prior means are not equal to the “true”
parameter values.

2.3. Simulations

We consider that the explanatory variables of Mini-STICS
for different individuals (i.e. different site, year and manage-
ment combinations) are drawn from a probability distribution
that represents a range of conditions. We consider 6 different
distributions (Tab. VI). The distribution  corresponds
approximately to the range of conditions in the area around the
INRA experimental farm of the Toulouse research center. For
example, (Tab. VI), this distribution has a 0.25 probability of
rain each day, and if it rains the amount of precipitation has a
uniform distribution with a minimum of 1 mm and a maximum
of 15 mm. All the other explanatory variables also have uniform
distributions. The explanatory variables are independent of one
another and also independent from one day to another. The dis-
tributions , ,  and  represent,

respectively, more shallow soils, greater maximum available
soil water, lower sowing densities and less rainfall than .

 combines all of these differences.
The “true” response j for an individual i(d) drawn from

 is generated as

(2)

where  is a vector of explanatory variables drawn from
 and  is the model error term. This is a random var-

iable that describes, in terms of probabilities, that part of the
response which the model does not explain. We assume that the
vector of model errors  is dis-
tributed according to N(0,Σ), where Σ is the (4 × 4) variance
covariance matrix. The hypothesis that the error has expecta-
tion 0 and the same variance-covariance matrix regardless of
the values of the explanatory variables is a strong hypothesis.
We note yi(d) and  the vectors of observed and calcu-
lated responses, respectively, for an individual i(d).

We generated two sorts of samples using equation (2). First,
we generated training samples, which contain the responses
that are used for parameter adjustment. All individuals here
have explanatory variables drawn from . The responses
for different individuals in a training sample are independent. 

Secondly, we generated test samples, used for evaluating the
predictive quality of a model. The test samples each have
1000 individuals. We generated test samples for each of the
6 distributions of the explanatory variables. The responses in
the test samples are independent of one another and of the
responses in the training samples.

We did two simulation studies. In the first, we compared the
different model selection methods detailed below. The com-
parison between methods was done for three different sizes of
the training sample, namely n = 7, 14 or 28 and for two different
hypotheses about the prior distribution (Tab. V). The model
selection methods make use only of the expectation of the prior
distribution, this value being used as the initial value for each
parameter. In each case the training sample contained only a
single response variable, the leaf area index at day 20, noted
yi(d),1 for individual i(d), i = 1,…n. Parameter estimation was
repeated on 80 different training samples. Model predictive
quality was evaluated by comparing predicted values with the
values in the six test samples. Each test sample had 1000 values
of leaf area index at time 20, generated using equation (2) with
explanatory variables drawn from one of the six different dis-
tributions of explanatory variables described above. Thus the
different test samples correspond to testing the model for dif-
ferent ranges of soils or climates.

In the second simulation study, we compared the best model
selection method with ridge regression. Here we considered
only a single size for the training sample, namely n = 14, but
again the two different prior distributions for the parameters.
Each training sample here had four responses for each individ-
ual (Tab. IV). Once again, each method was tested on 80 dif-
ferent training samples, and evaluated using six different test
samples of 1000 individuals each, the test samples correspond-
ing to different distributions of explanatory variables. For each
individual in each test sample we generated four responses, the
same as in the training sample. Thus in this study the training

Table V. Mean (µk) and standard deviation (ωk), k=1, …, 14, of the
two prior distributions for the parameters. 

Parameter Prior distribution 1 Prior distribution 2

µk ωk µk ωk 

ADENS –0.6960 0.1206 –0.9048 0.1567

BDENS 1.1029 0.1910 1.4338 0.2483

CROIRAC 0.2913 0.0505 0.3787 0.0656

DLAIMAX 0.0061 0.0011 0.0079 0.0014

EXTIN 0.6396 0.1108 0.8315 0.1440

KMAX 1.4101 0.2442 1.8331 0.3175

LVOPT 0.5672 0.0982 0.7374 0.1277

PSISTO 12.29 2.13 15.98 2.77

PSISTURG 3.79 0.6564 4.9300 0.8539

RAYON 0.0167 0.0029 0.0217 0.0038

TCMIN 7.10 1.23 9.20 1.59

TCOPT 32.10 5.56 41.70 7.22

ZPENTE 113.10 19.59 147.00 25.46

ZPRLIM 154.90 26.83 201.40 34.88

( ) ( )2, kkkk
ωµθπ Ν=

kµ 2
kω

( ) ( )∏
=

Ν=
14

1

2,
k

kk ωµθπθ

( 6.02
kω = ) 122

kµ
kµ

kµ

( )xDX 0

( )xDX1
( )xDX 2

( )xDX 3
( )xDX 4

( )xDX 0( )xDX 5

( )xD
dX

( ) ( )( ) ( ) jdidijjdi Xfy ,, ; εθ +=

( )diX
( )xD

dX ( ) jdi ,ε

εi d( ) εi d( ) 1, εi d( ) 2, εi d( ) 3, εi d( ) 4,, , ,( )'=

( )( )θ;diXf
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samples allow us to test not only how prediction quality varies
when soil and climate conditions vary, but also how prediction
quality differs for different predicted responses. Table VII sum-
marizes the different simulation studies.

2.4. Criteria for comparing methods

To choose between the various parameter estimation meth-
ods, comparison criteria are needed. Since crop models are used
in multiple ways, it is natural to use several criteria.

The most important objective of crop models is prediction,
which leads us to use the mean squared error of prediction
(MSEP) as the basic criterion. However, since crop models are
used for different types of prediction, we will define a number
of different MSEP values. First of all, we will consider predic-
tions for the 6 different distributions of the explanatory varia-
bles of Table VI. Furthermore, we will consider separately pre-
diction for each of the 4 response variables. Overall then, there
are 4 × 6 = 24 prediction quality criteria. 

The definition of the mean squared error of prediction for
response j, j = 1,…, 4, distribution , d = 0,…, 5, and
parameter estimation method m is

(3)

where  is the estimate of the parameter vector obtained
with the method m and the star indicates that the random vari-
ables are independent of those in the training sample on which

 is based. The expectation is over all the random quantities,
namely  and .

Table VI. Probability distributions, , d=0,…,5, of explanatory variables X.

C
L

IM
A

T
E

Précipitations (mm)
P = (P1…P20)’ 

Pi i.i.d.

Pi ~ B(0.25) *U†

(1,15)
B(0.25) *U†

(1,15)
B(0.25) *U†

(1,15)
B(0.25) *U†

(1,15)
0 0

Minimum temperature (°C)
Tmin = (Tmin1… Tmin20)’

Tmini i.i.d.

Tmini ~ 
U(9.5,17.75)

U(9.5,17.75) U(9.5,17.75) U(9.5,17.75) U(9.5,17.75) U(9.5,17.75)

Maximum temperature (°C) Tmax = 
(Tmax1… Tmax20)’

Tmaxi i.i.d.

Tmaxi ~ U(18,31) U(18,31) U(18,31) U(18,31) U(18,31) U(18,31)

Evapotranspiration (mm)
ETP = (ETP1… ETP20)’

ETPi i.i.d.

ETPi ~ 
U(1.5,6.75)

U(1.5,6.75) U(1.5,6.75) U(1.5,6.75) U(1.5,6.75) U(1.5,6.75)

SO
IL

Percentage of clay in he surface layer (%)
ARGI

ARGI ~ U(30,60) U(30,60) U(30,60) U(30,60) U(30,60) U(30,60)

Bulk density of the first layer (g·cm–3)
DA

DA ~ U(1,1.3) U(1,1.3) U(1,1.3) U(1,1.3) U(1,1.3) U(1,1.3)

Sowing density (pl·m–2)
DENSITE

DENSITE ~ 
U(5,7)

U(5,7) U(5,7) U(3,5) U(5,7) U(3,5)

Minimum volumetric water content 
(mm·cm–1)
HUMIN‡

HUMIN ~ 
U(1.5,2)

U(1.5,2) U(1,1.5) U(1.5,2) U(1.5,2) U(1,1.5)

Usable reserve (mm·cm–1)
HUCC-HUMIN

HUCC - HUMIN 
~ U(1.2,1.7)

U(1.2,1.7) U(1.7,2) U(1.2,1.7) U(1.2,1.7) U(1.7,2)

Soil depth (cm)
PROFSOL

PROFSOL ~ 
U(140,180)

U(40,80) U(140,180) U(140,180) U(140,180) U(40,80)

 denotes the transpose vector;
 i.i.d. independent and identically distributed;
 B(0.25) Bernouilli distribution with probability 0.25;

† U uniforme distribution;
‡ Hypothesis: HUMIN(1) and HUMIN(2) are distributed according to the same distribution;
 Hypothesis: HUCC(1)-HUMIN(1) and HUCC(2)-HUMIN(2) are distributed according to the same distribution;
 Hypothesis: depth of the first layer is fixed (30 cm) and depth of the second layer is equal to PROFSOL-30.

( )xD
dX

( )xDX 0
( )xDX1

( )xDX 2
( )xDX3

( )xDX 4
( )xDX 5

( )xD
dX

Table VII. The two simulation studies.

Study Methods 
compared

Situations considered

1 AIC, AICC, BIC, 
BICC, CV, BICC

B
 7, 14 or 28 individuals per training sample × 

two prior distributions. A single response, 
80 different training samples.

(BICC
B tested only for 14 individuals per 

training sample)

2 BICC
B, Ridge  14 individuals per training sample × two prior 

distributions. Four response variables, 80 
different training samples.

( ) ( ) ( )( )( )[ ]2**
, ;θdijjdi

d
j XfymMSEP −Ε=

( )mθ̂

( )mθ̂
( )mθ̂ ( )

*
, jdiy
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It is easy to see that if the parameter estimate is perfect, that

is if , then . The mini-

mum value of MSEPj
d(m) is thus σj

2, j = 1, …, 4.

In the simulations, MSEPj
d(m) is estimated by

. (4)

The first sum, indexed by l, is over the 80 different training sam-
ples (this estimates the expectation over ) and the second,
indexed by i, is over the individuals in the test sample. 

The quality of the parameter estimates is also important.
First of all, the quality of the parameter estimates determines
model prediction. Our MSEP criteria measure prediction qual-
ity directly, but not for all possible situations. Furthermore, cer-
tain parameters have a physical or biological significance and
so it is of interest to have estimates of their values. For each
model parameter, the mean squared error is defined as

, k = 1…14. (5)

In the simulations, MSE is estimated by

, k = 1…14,   (6)

where the sum, indexed by l, estimates the expectation over
.

2.5. Parameter estimation methods

2.5.1. Model selection methods

The model selection methods we consider are the Akaike
Information Criterion, AIC [1], the Bayesian (or Schwarz)
Information Criterion, BIC [30], versions of these two
approaches corrected for small samples, AICC [17] and BICC
[22] , and an approach where the best candidate model is chosen
by cross-validation CV [32]. Another method, noted BICC

B,
was also used in this study. In this method, the number of
parameters to estimate is chosen by BICC, but maximum and
minimum bounds are fixed for each parameter (see Tab.  VIII). 

These model selection methods have been widely studied in
the linear regression framework. For a linear model, model
selection corresponds to the choice of explanatory variables to
be included in the model. The parameters associated with var-
iables not included in the final model are set to zero. For crop
models as for nonlinear models in general, parameters may
occur in complex expressions and setting a parameter to zero
does not simply correspond to ignoring one particular explan-
atory variable. A reasonable analog of model selection for non-
linear models is to select those parameters that will be fixed at
their prior means rather than at zero. 

2.5.1.1. Construction of candidate models

Since each parameter can either be estimated from the data
or fixed at its initial value, there are 2p different subsets of
parameters that we could choose to estimate from the data. In
our case that is 214 = 16384 subsets. To reduce the computa-
tional burden, we used a forward regression approach to gen-

erate a smaller set of candidate models. One first adjusts in turn
each parameter of the model in order to determine the best sin-
gle parameter to estimate. Then one determines the best second
parameter to estimate in combination with the parameter
already selected. If one goes all the way to the complete model,
where all parameters are estimated, the total number of param-
eter combinations estimated is p(p+1)/2 or 105 in our case with
p = 14. In general it is not necessary to continue until all param-
eters are estimated. The model selection methods are based on
minimizing a criterion. The criterion is calculated for increas-
ing numbers of estimated parameters, and as soon as the crite-
rion is found to increase, one stops the procedure. Note that
other methods than forward regression, such as stepwise
regression, could also be used to reduce the number of adjust-
ments. 

In the case of a single response measured for each individual,
for example, j = 1 (leaf area index at day 20), the parameters
are adjusted to minimize the ordinary least squares criterion,

. (7)

where the sum is over the n individuals of the training sample. 
For a multivariate regression model (several measurements

for each individual), the least squares criterion (7) is replaced
by the generalized least squares criterion

. (8)

The values of θ and Σ are estimated iteratively. From an ini-
tial estimation  (we use the identity matrix), an estimate 
is obtained by minimizing CGLS with regard to θ. Then the esti-
mation of Σ is updated using

. (9)

This procedure is repeated until the difference between two
successive estimates  is negligible. Gallant [11] showed
that the estimates obtained with this iterative procedure are
equivalent to the maximum likelihood estimates.

The routine DUNLSF of the library IMSL [18] was used to
minimize the least squares criterion. This routine uses the Lev-
enberg-Marquardt algorithm. 

2.5.1.2. Penalized likelihood methods

The methods AIC, BIC and their derivatives are penalized
likelihood methods. For example, in the case where the residual
errors in the training sample are independent and identically
distributed as N(0,σ2) (our case if there is only a single
response), BICC is defined by

, (10)

where  is the maximum likelihood estimate of σ2, n is the
number of individuals in the training sample and k is the number
of estimated parameters (including one parameter for the resid-
ual variance). The first term is –2 times the logarithm of the like-
lihood evaluated at the maximum likelihood estimates and the
second term is the penalization. The final model chosen by the
method BICC is the candidate model with the smallest value of
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BICC. Other methods are similar but with different penalization
factors.

Note that for a given number of parameters k, the penalization
term is constant regardless of which parameters are estimated.
Furthemore,  is equal to .
The ordinary least squares estimate, , is equivalent to
the maximum likelihood estimate, , since we assume the
residual errors in the training sample to be independent and
identically distributed as N(0,σ2). Thus, for a given k, the model
with the smallest value of COLS is best according to BICC.

The importance of the penalization term is that it serves to
decide between models with different numbers of parameters.
The penalization term divided by n increases as k increases and
decreases as n increases (see Tab. IX). 

In the case of multivariate regression, the method AICC cor-
responds to choosing the candidate model that minimizes

, (11)

[3], where | | is the determinant of the maximum likelihood
estimate of Σ and r is the number of responses measured for
each individual. The first term of equation (11) is again equal
to –2 times the logarithm of the likelihood estimated at the max-
imum likelihood estimates.

No bibliographical reference to the use of BICC in a multi-
variate regression setting was found. We use the expression for
the univariate case but with n, the number of individuals
replaced by n × r. Thus

. (12)

This is in agreement with the procedure LME of SPLUS
[27], where the total number of measurements n × r is also used,
but McQuarrie and Tsaï [21] use simply n.

2.5.1.3. Cross-validation

Cross-validationestimates the prediction error of each can-
didate model using

, (13)

where  arises from adjusting the same parameters as the can-
didate model, but based on the training data from which the
individual i has been removed. CV is computationally expen-
sive since for each candidate model the parameters are esti-
mated n times.

This is “partial” cross-validation in the sense that first the
candidate models are chosen using the full set of training data.
The cross-validation is then used only to choose between the
candidate models. In “true” (or complete) cross-validation, one
would also derive the candidate models for each sample of size
(n–1) obtained by removing an observation from the original
training sample. Breiman and Spector [5] showed that “partial”
cross-validation, which we have done, leads to downward
biased estimates of MSEP and to more complex models than
“true” cross-validation.

2.5.2. Ridge regression or mode of the posterior 
distribution

Ridge regression [16] can be presented as a method of penal-
ized likelihood. The criterion to minimize is

,
(14)

where λk and µk are, respectively, weight and initial value for
the parameter k, k = 1, …, 14.

With this approach, one estimates all the parameters simul-
taneously, by determining the values that minimize S(θ,Σ). The
minimization can be done iteratively, as for the model selection
methods.

It can easily be shown that with our assumptions about the
prior distribution (normal distribution) and the model errors
(normal distribution), then if , k = 1, …, 14, the ridge
estimate is equal to the mode of the posterior distribution

Table VIII. Constraints used in the BICC
B method.

Parameter Lower limit Upper limit

ADENS –2.00 0.00

BDENS 1.00 20.0

CROIRAC 0.005 0.30

DLAIMAX 0.0001 0.50

EXTIN 0.10 1.50

KMAX 1.00 4.00

LVOPT 0.05 1.00

PSISTO 1.00 25.00

PSISTURG 1.00 15.0

RAYON 0.005 0.07

TCMIN –10.0 15.0

TCOPT 10.0 35.0

ZPENTE 10.0 200.0

ZPRLIM 10.0 200.0
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Table IX. The penalty term of the BICC criterion as a function of
number of adjusted parameters and training sample size. 

Number of adjusted 
parameters k

Size of the training 
sample n

k/n Penalization†/n

2 14 2/14 0.48

4 14 4/14 1.17

8 14 8/14 4.22

2 28 1/14 0.27

4 28 2/14 0.58

8 28 4/14 1.40
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π(θ|Y). The values of λk corresponding to each of our prior dis-
tributions are presented in Table X.

The parameter estimation was carried out with the routine
DBCONF of the library IMSL of Fortran [18]. This routine uses
a Quasi-Newton algorithm.

3. RESULTS AND DISCUSSION

3.1. Comparison of model selection methods

In the first simulation study we compared the different
model selection methods presented in Section 3.5.1 using just
the response variable 1 (LAI on day 20). We present the results
for n = 14 and for the first initial value vector. The results for
the other training sample sizes and the other vector of initial
values were similar. 

Figure 1 presents the number of parameters estimated using
each method. The methods AICC, BICC and BICC

B are the most
parsimonious. BICC selects between 1 and 2 parameters,
depending on the training sample, and the other two methods
between 1 and 3 parameters. CV, on the other hand, selects
between 1 and 7 parameters.

Since we are using simulation studies it is possible to deter-
mine, for each training sample, the optimal number of param-
eters to estimate in order to minimize MSEP1

d=0. For each can-
didate model, we use the test sample based on  to
estimate the true value of MSEP1

d=0. The optimal candidate
model, and correspondingly the optimal number of parameters
to estimate, is that which gives the smallest mean squared error
of prediction. This number varies between 1 and 3 depending
on the training sample. This is coherent with the recommenda-
tion of Harrel [14] that one should normally not estimate more
than n/20 or n/10 parameters (in our case with n = 14 this trans-
lates into between 1 and 2 parameters). It can be seen that the
penalized likelihood methods indeed very rarely estimate more

than 3 parameters, whereas cross-validation often estimates too
many parameters.

Table XI presents the values of mean squared error for each
parameter and each method. Each value is an average over the
80 training samples. For those training samples where the
parameter is not estimated but keeps its initial value, the mean
squared error is that of the initial value. The first column of the
table corresponds to the mean squared error for the initial value.
According to this table, BICC

B has the smallest mean squared
error among the different methods for every parameter. How-
ever, even this method has mean squared errors that are sys-
tematically larger than for the initial parameter values. 

Table XII presents the values of MSEP1
d(m) for the various

model selection methods. The first line of the table gives the
MSEP values calculated using the initial parameters values.
The last line gives the minimum value of MSEP, namely

. The columns correspond to different distributions
of the explanatory variables. 

BICC
Bgives the lowest mean squared error of prediction for

every distribution of the explanatory variables. For the distri-
bution , the reduction in prediction error compared with
the error using the initial parameter values is significant for all
methods. The initial value is 0.63, reduced to 0.44 for AIC and
CV, and to 0.39 for BICC

B. The MSEP value for BICC
B is close

to the minimum value.
The extrapolation populations 3 and 5 are of particular inter-

est. For these populations, only BICC
B gives prediction errors

which are lower or essentially the same as those obtained with
the initial values. All the other methods give worse predictions.
For example, the value of MSEP1

d=3 for the initial values is
0.65, but is 0.87 for BICC and 1.31 for AIC.

The fact that BICC
B has larger mean squared errors than the

initial parameter values, but predicts better, is noteworthy. This
is due to the fact that the estimated values of the 1 or 2 param-
eters estimated by BICC

B compensate for the errors in the initial
values in the other parameters. This compensation leads to

Table X. Weights λk used in the ridge regression.

Parameter Prior distribution 1 Prior distribution 2

ADENS 68.76 40.73

BDENS 27.41 16.22

CROIRAC 392.12 232.38

DLAIMAX 826446.3 510204.1

EXTIN 81.46 48.23

KMAX 16.77 9.92

LVOPT 103.70 61.32

PSISTO 0.2204 0.1303

PSISTURG 2.32 1.37

RAYON 118906.1 69252.1

TCMIN 0.6610 0.3956

TCOPT 0.0324 0.0192

ZPENTE 0.0026 0.0015

ZPRLIM 0.0014 0.0008

( )xDX 0

Figure 1. Histogram of number of parameters estimated by the model
selection methods AIC, AICC, BIC, BICC, BICC

B and CV, for n = 14
and the first vector of initial values. Total number of cases = 80.
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1 =σ
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larger errors for the parameter values but better predictions. Of
course, there is no assurance that the predictions will be better
for all possible distributions of the explanatory variables and
indeed, for distribution , BICC

B does not predict better
than the initial values. 

We have just argued that smaller errors in the parameters
does not necessarily imply smaller prediction errors. Thus the
fact that BICC

B has smaller errors for the parameters than the
other methods does not suffice to explain why this method pre-
dicts better. To get a better understanding of these results, it is
helpful to examine the different training samples individually.
Figure 2 shows the difference between MSEP1

d=3(m = BICC)
and MSEP1

d=0(m = BICC) for each training sample. Remember
that  corresponds to interpolation and  to extrap-
olation. The figure shows that while for most of the training
samples the difference is very small, for a small number of sam-
ples the difference is quite large. The largest differences cor-
respond to training samples where both the parameter ADENS

and one of the parameters BDENS, DLAIMAX or TCMIN are
estimated. In these cases there is a strong correlation between
the estimators of the two parameters, and as a consequence, the
estimates are far from the true values. For example, for the sam-
ple 55, the correlation between the estimators of ADENS and
TCMIN is equal to 0.99. The estimated values are, respectively,
equal to –3.03 and –779.0 °C. These bad estimates more or less
cancel out in interpolation, but can lead to very bad predictions
in extrapolation. This is typical behavior for parameter estima-
tion in the face of high correlations. 

The constraints imposed on the parameter values in the
method BICC

B make it impossible to have parameter estimates
that are totally unreasonable, like the values quoted above. The
estimated values of ADENS and TCMIN in the case cited above
are now –1.51 and –10.0 °C, respectively. That is the basic rea-
son that BICC

B is the best model selection method. It avoids the
worst prediction errors of the other methods. 

Table XI. Mean Squared Error (MSE) of parameter estimate  obtained with each model selection method, n = 14 and first vector of initial
parameter values.

Parameter Initial AIC AICC BIC BICC CV BICC
B

ADENS 0.0108 0.6290 0.4558 0.5229 0.3782 0.5482 0.0934

BDENS 0.0216 1.09 1.32 1.32 1.32 1.13 0.7712

CROIRAC 0.0017 3.83 0.0017 0.0017 0.0017 2574.3 0.0017

DLAIMAX 2.9 × 10-6 0.1818 1.87 × 10–5 1.60 × 10–4 1.72 × 10–5 5.60 × 10–4 9.56 × 10–5

EXTIN 0.0678 0.0731 0.0731 0.0731 0.0678 0.1362 0.0724

KMAX 0.0441 4.93 4.17 4.32 4.17 11.38 0.1678

LVOPT 0.0045 0.0045 0.0045 0.0045 0.0045 0.0931 0.0070

PSISTO 5.24 336588.9 5.24 336588.9 5.24 233.80 5.24

PSISTURG 0.0441 6.12 0.6767 6.01 0.4124 1149.7 0.2680

RAYON 1.1 × 10–5 1.1 × 10–5 1.1 × 10–5 1.1 × 10–5 1.1 × 10–5 0.0071 1.1 × 10–5

TCMIN 1.21 8782.4 8675.5 8779.8 8675.5 4890.3 7.29

TCOPT 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ZPENTE 47.61 47.61 47.61 47.61 47.61 2.84 × 1011 47.61

ZPRLIM 24.01 511.5 473.6 473.6 191.7 343957 24.01

Table XII. Mean squared error of prediction for predicting leaf area index on day 20 using different parameter estimation methods. These are
averages over 80 training samples, each with n=14 individuals. The first vector of initial parameter values is used. The different columns corre-
spond to predictions for different distributions of explanatory variables. The first row uses the initial parameter values. The last row is the min-
imal theoretical mean squared error of prediction, equal to the residual variance. 

MSEP1
d=0 MSEP1

d=1 MSEP1
d=2 MSEP1

d=3 MSEP1
d=4 MSEP1

d=5

Initial 0.6297 0.4573 0.6931 0.6513 0.5011 0.3978

AIC 0.4362 0.3969 0.4647 1.3112 0.4084 0.6298

AICC 0.4189 0.3843 0.4370 0.9009 0.3958 0.5039

BIC 0.4225 0.3904 0.4446 0.9724 0.3994 0.5297

BICC 0.4141 0.3823 0.4290 0.8657 0.3917 0.4946

CV 0.4360 0.4132 0.4741 0.9621 0.4208 0.5610

BICC
B 0.3976 0.3766 0.4098 0.4869 0.3811 0.4012

Minimum 0.36 0.36 0.36 0.36 0.36 0.36

θ̂
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3.2. Comparison between the best model selection 
method and ridge regression

In the second simulation study, the best model selection
method, BICC

B, was compared with ridge regression. Here the
training sample size was n = 14. Four responses were consid-
ered, both for parameter estimation and for predictive quality.
The following results correspond to the second initial parame-
ter distribution. The results for the first vector of initial values
were similar. 

Consider first the effect of having 4 responses instead of
only 1. The method BICC

B estimates 1 or 2 parameters. That
is, the increase in the amount of data did not lead to an increase
in the number of estimated parameters. There is, however, a dif-
ference in the choice of parameters to estimate. The most fre-
quently selected parameters are here TCMIN, ADENS,

DLAIMAX and KMAX. When only leaf area index at time 20
was used to estimate the parameters, the parameters most fre-
quently selected by BICC

B were ADENS, TCMIN, DLAIMAX
and BDENS, parameters which are all directly linked to leaf
growth. The KMAX parameter, selected for only 1 training sam-
ple in the case of one response, is now selected 9 times. A sen-
sitivity analysis (in which each parameter was varied by 30%)
showed that KMAX is the parameter to which HUR is the most
sensitive. It is thus not surprising that adding measurements of
HUR to the training data leads to estimating this parameter.

Figure 3 presents the mean squared errors for ADENS,
DLAIMAX, KMAX and TCMIN. In this case, BICC

B has smaller
errors than the initial values for 2 of the 4 parameters. For all
four parameters, ridge regression has smaller errors than
BICC

B. The difference is particularly flagrant for DLAIMAX,
whose initial value is close to the true value. Here both methods
are worse than the initial value, but ridge regression is much
better than BICC

B. 
Figure 4 shows the values of MSEPj

d=0(m), j = 1, …, 4, for
the initial values of the parameters and the two estimation meth-
ods, as well as the minimal value of MSEP. Both estimation
methods reduce prediction error compared with the initial
parameter values. The improvement is substantial for the pre-
diction of LAI, but less significant for HUR. 

Figure 5 presents the values of MSEPj
d=5(m). Now the pre-

diction errors for HUR on day 10 and on day 20 are greater with
BICC

B than for the initial parameter values, while the values of
these prediction errors for ridge regression are comparable with
the values for the initial values, themselves close to the minimal
values. Similar behavior is observed for the other distributions
of the explanatory variables.

Figure 2. Difference between MSEP1
d=3(m = BICC) and

MSEP1
d=0(m = BICC) for each of the training samples, for n = 14

and the first vector of initial values. 

Figure 3. Mean squared error (MSE) of the parameters ADENS,
DLAIMAX, KMAX and TCMIN estimated by BICC

B and by ridge
regression for n = 14 and the second vector of initial values.

Figure 4. Mean squared errors of prediction. The explanatory
variables are drawn from the distribution , n = 14 and the
second vector of initial values is used. The index j = 1, …, 4, indicates
which response is considered. The columns labeled “I”, “B”, “R” and
“M” correspond, respectively, to using the initial parameter values, to
using the method BICC

B for parameter estimation, to using ridge
regression for parameter estimation and to the minimal value of
MSEPj

d=0.

( )xDX 0
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4. CONCLUSIONS

Several model selection methods were compared. Among
these methods, BICC

B is the best both in terms of mean squared
error of the parameter estimates and in terms of prediction error
for 6 different distributions of the explanatory variables. Of
course, the results could be different for different minimum and
maximum bounds on the parameter values. In particular, if the
constraints are very weak, they will be less useful in forcing the
parameter values to be reasonable. If the constraints are strong
but exclude all good parameter values, then prediction error
will be increased. The initial values used for the nonselected
parameters are also important and the results might also be dif-
ferent depending on these values. However, we might have a
bit more confidence here, since we did in fact test two different
sets of initial values. 

The optimal number of parameters to estimate for training
samples of size n = 14 was found to be 1–3. The number of
parameters selected by BICC

B is 1–2. This underlines the
importance of estimating relatively few parameters with the
model selection methods.

The comparison between BICC
B and ridge regression is to

the advantage of ridge. Ridge regression leads to smaller pre-
diction errors, even though the differences we found are not
very large, and can lead to much better estimates of the param-
eter values. This is no doubt due to the fact that with BICC

B only
1 or 2 parameters are estimated. In order to compensate for
errors in the other parameters, the estimated parameters may
take values that are rather far from the true values. On the other
hand, this situation does not occur with ridge regression, where
all parameters are estimated simultaneously.

One can make some remarks about the comparison between
the results here and certain common practices concerning
parameter estimation for crop models. A common practice is

to estimate only certain of the model parameters, and to impose
constraints on the values of those parameters. If the choice of
methods is limited to model selection methods, then both these
practices are certainly supported by the results here. One should
severely limit the number of parameters to estimate (a number
in the range of 1/10 to 1/20 seems reasonable), and it is advan-
tageous to constrain the parameters. It is probably important
that the upper and lower limits really bracket the true value
without defining an excessively large interval. 

The choice of parameters to estimate is no doubt quite impor-
tant. All the methods here choose these parameters on the basis
of their joint ability to increase the likelihood. This seems log-
ical, but we did not explicitly test other approaches. 

An important result here is that ridge regression in a form
corresponding to a Bayesian approach was found to be better
than the best model selection method. This should orient future
research into the problem of parameter estimation. 

The importance of evaluating model prediction quality for
different conditions (different distributions of the explanatory
variables) should also be stressed. Notice that this multiplicity
of prediction criteria, a consequence of the multiple possible
uses of crop models, is a specificity of this type of model. In
most regression studies, the model is just tested on data gener-
ated in the same way as the data in the training sample. All of
the methods give good results for interpolation (prediction for
conditions drawn from the same distribution as the training
sample), but can differ substantially for extrapolation (predic-
tion for conditions drawn from a different distribution than the
training sample. 

The ridge regression approach supplies only the mode of the
posterior parameter distribution. It would be very advantageous
to have the full posterior parameter distribution or a sample
therefrom, which would make it possible to generate a distri-
bution of model results. This could be one answer to the prob-
lem of defining “validity domain” as far as parameter errors are
concerned. Given the posterior distribution and a vector of
explanatory variables, one could calculate the distribution of
model results. If this distribution is very dispersed, the model
is of little use (not “valid”) for these conditions. If the distribu-
tion is very concentrated, the model gives relatively precise
results (“valid”). 

The MCMC (Markov Chain Monte Carlo) algorithms
should make it possible to generate a sample from the posterior
parameter distribution, even for very complex models. We are
currently working on applying the Metropolis Hastings algo-
rithm [15, 23] to the Mini-STICS model.

Another extension of this work is to consider cases other than
those where the same variables are measured at the same dates
for all the individuals of the training sample. Generally, with
true data the measured variables are not of the same type and/
or the measurements are not made on the same dates. The struc-
ture of the variance-covariance matrix of the measured
responses can then be much more complex than here.

APPENDIX: MODEL EQUATIONS

The state variables, parameter and explanatory variables of
the Mini-STICS model are presented (name and meaning) in
Tables I and II, respectively.

Figure 5. Mean squared errors of prediction. The explanatory
variables are drawn from the extrapolation distribution , n =
14 and the second vector of initial values is used. The index j = 1,…,
4, indicates which response is considered. The columns labeled “I”,
“B”, “R” and “M” correspond, respectively, to using the initial
parameter values, to using the method BICC

B for parameter
estimation, to using ridge regression for parameter estimation and to
the minimal value of MSEPj

d=5.
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The parameters ACLIM, Q0, ZESX, NBDJAMF-LAX, TDMAX
and TDMIN are assumed to be fixed. Their values are presented
in Appendix Table I. Other variables are intermediate variables
and are presented in Appendix Table II.

Efficient temperature for development

 

Root Depth
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 × 
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 .

Leaf Area Index

× 

× 

Appendix Table I. Parameters assumed to be constant.

Name Signification Value

ACLIM climatic component of A 20 mm

NBDJAMF

LAX

sum of development units between the 
stages AMF and LAX

420 degree-day

Q0

TDMAX maximum threshold for the 
development

32 °C

TDMIN minimum threshold for the 
development

6 °C

ZESX
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Appendix Table II. Intermediary variables.

Name Signification Units

A parameter of the soil 
evaporation during the reduction 

stage

mm

AMF maximal acceleration of leaf 
growth, end in the juvenile phase

CUMULRACZ sum of the effective root lengths cm root.cm–2 soil

DELTAI daily increase in the leaf index m2 leaves.m–2 soil.day–1

DELTAZ deepening of the root front cm

DRAIN water flux drained out of the soil mm.day–1

EFDENSITE density effect acting on the 
setting up of the LAI

–

EO intermediary variable for the 
computation of 

evapotranspiration

mm.day–1

EOP maximum transpiration flux mm.day–1

EOS maximum evaporation flux mm.day–1

EP actual transpiration flux mm.day–1

EPAIS(Z) thickness of the layer Z cm

ES actual soil evaporation flux mm.day–1

HA residual moisture of the soil cm3.cm–3

HI volumetric water content at the 
field capacity of the surface 

layer

mm.cm–1

ILAX day of the stage LAX –

ILEV day of the stage LEV: 
emergence

–

J running day –

LAX maximal leaf area index

LRAC(Z) effective root density in the layer 
Z

cm root.cm–3 soil

PFZ(Z) water status of the layer Z –

PROF(Z) depth of the layer Z

S parameter for the calculation of 
root density

cm–1

SWFAC stomatal stress index –

TCULT surface temperature in daily 
average

°C

TETA water content of the soil, 
available to the plant

cm3.cm–3

TETSTOMATE threshold of TETA below which 
SWFAC decreases

cm3.cm–3

TETURG threshold of TETA below which 
TURFAC decreases

cm3.cm–3

TURFAC turgescence stress index –

UDEVCULT effective temperature for the 
development, computed with 

TCULT

°C

ULAI physiological time units for the 
calculation of the leaf area index 

between ILEV and ILAX

–

Z layer index –

ZDEMI depth where the root density is ½ 
of the surface root density

cm
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