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A methodology to test the pertinence of remote-sensing data
assimilation into vegetation models for water and energy exchange
at the land surface
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CESBIO (UMR 5126 UPS-CNRS-CNES-IRD), 18 avenue Edouard Belin, BP1 2801, 31401 Toulouse Cedex 4, France

(Received 9 October 2002; accepted 10 June 2003)

Abstract — This paper presents a methodology to test the performance of assimilation of satellite data into models for the functioning of the
continental surface. This methodology applies the Kalman Ensemble Filter to modelling of plant growth and senescence in conjunction with
the water and energy exchanges at the land surface. It belongs to a family of methods known in meteorology and oceanography as the Observing
System Simulation Experiment (OSSE) approach. By combining information from modelling and observation, the Kalman Ensemble Filter
permits corrections in real time of the simulated state of the continental surface, as well as propagation in time of the associated uncertainties.
The OSSE approach may present a first step in designing a decision support system, and also in predicting the usefulness of new types of

satellite data.

surface functioning / data assimilation / remote sensing / OSSE / Kalman Ensemble Filter

1. INTRODUCTION

Continental surface processes including water, carbon and
energy cycles are particularly complex due to the numerous
interactions and the large range of the temporal and spatial
scales involved [2, 14]. These complex interactions are usually
described by (i) dynamic models which propagate the state var-
iables forward in time, (ii) ground or remote-sensing observa-
tions and (iii) observation models (including radiative transfer
schemes) relating the observation variables to the system state
variables. Each of these methods has its own strengths and
weaknesses.

Dynamic models describe the evolution of the state variables
through space and time in a continuous way, but face the prob-
lem of complexity: on the one hand, very sophisticated “state-
of-the-art” models have been developed that aim at represent-
ing the system in a precise way. But these models require many
input parameters whose estimation proves to be difficult. On
the other hand, simplified schemes, accounting for only some
parts of the interactions, have been developed to overcome the
difficulty of applying “state-of-the-art” models for a wide range
of spatial scales. For example, Soil-Vegetation-Atmosphere
Transfer (SVAT) models usually consider the vegetation char-
acteristics as an imposed function of time whereas vegetation
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growth models usually oversimplify the water cycle descrip-
tion. This oversimplification is often integrated into a concep-
tual parameterisation. Parameters that cannot be derived from
measurements are calibrated to fit an objective function over a
given period. They are usually tested for a limited number of
natural conditions (at several experimental sites) and a limited
period of time (over a small number of Intensive Observation
Periods).

Models are thus imperfect and accumulate (in variable pro-
portions) uncertainties on the modelling strategy (following the
degree of simplification) and on parameter specification
(according to the degree of complexity of the model and the
accessibility of the parameter value).

On the other hand, remote-sensing data provide repetitive
and spatially distributed information about the surface, but this
information needs to be interpolated in time and is usually indi-
rectly related to the biophysical variables of interest. Ground
data can also be collected at a satisfactory time sampling rate
butneed to be interpolated in space and time and their collection
is usually time-consuming.

Moreover, measurements are always noisy, first because the
measurement device is not perfect and induces a measurement
error, and secondly because the scale on which the measure-
ment has been made is rarely the one on which the observation
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is required. Interpolation of these observations implies hypoth-
eses or requires ancillary information that induces new uncer-
tainties.

If simulation or observation by itself cannot give an accurate
description of the behaviour of our continental system, com-
bining them should help us to monitor the land surface, and
improve both predictive and retrospective capabilities of cur-
rent surface process models.

The set composed of dynamic models, observations and
observation models to represent a system defines a System of
Observation.

Combining both model and observations inside the System
of Observation is the task of Data Assimilation methods. These
methods aim at minimising uncertainties in the estimation of a
given system state in an optimal way (i.e. with statistical crite-
ria). All of them try to reduce the discrepancy between the
measured and the simulated observation by adjusting either
poorly known parameters (calibration, [ 12]) or the system state
variables. In the latter case, the information provided by the
dynamic model is either ignored (inversion, [10]) or taken into
account (optimal control and optimal estimation).

In a general way, the performance of Data Assimilation
methods strongly depends on the assimilation protocol and the
uncertainty specification. Moreover, they act globally, not just
on one component of the system of observation, and they can
affect any part of the system. Subsequently, one needs to per-
form several tests to find out the best Data Assimilation con-
figuration that suits a particular goal. In meteorology and
oceanography a methodology known as the Observing System
Simulation Experiment (OSSE) approach has been developed
for this purpose [1, 5, 16]. It uses optimal control or optimal
estimation data assimilation techniques.

Amongst such assimilation techniques, the Kalman Filter
can account for information which comes from observation and
modelling as well as their respective uncertainty in a simple
manner. One assumes in general that the parameters are known
apriori and uncertainty comes from the state variables and cor-
responding observations. The method also allows for the
dynamic model errors to be taken into account by adding a mod-
elling noise in the state-space equation:

state,, ;, = f(state,, parameters, forcing) + noise (1)

By making it possible to study the impact of the assimilation
of an observation on the results of a dynamic model, the OSSE
approach enables the following questions to be answered:

1-Does the assimilation of a particular observation improve
all components of the dynamic model's simulations? (“state
alteration” problem);

2—Can calibration errors be compensated by tuning state vari-
ables online instead of parameters? (“calibration comple-
ment” problem);

3—What is the optimum repetitivity of measurement in order
to have a realistic interpolation of a certain variable through
the process model that is close enough to the noisy observa-
tions? (“observation design” problem);

4—What is the most suitable assimilation strategy (noise spec-
ification, assimilation method, etc.) to fulfil a particular
goal? (“filter design” problem).

In this paper, an illustration of the OSSE approach is pre-
sented in the context of plant growth and senescence in con-
junction with the water and energy exchanges at the land
surface. The interest of assimilating remote-sensing data such
as radiative surface temperature and LAI into the modelling is
studied through a simple example where the following ques-
tions are considered. If midday nadir radiative surface temper-
ature and daily Normalised Difference Vegetation Index
(NDVI) are assimilated with given measurement errors, is the
simulation of soil moisture and latent heat flux improved? Or
are some of the state variables such as soil moisture altered?
For instance, how does the filter discriminate between affecting
positive innovations to LAI and soil moisture when radiative
temperature is largely underestimated?

In the first section, the special features of SVAT and growth
modelling regarding uncertainty will be developed. Then the
Kalman Filter theory will be briefly described in order to intro-
duce the OSSE in a third section. Finally, an example of appli-
cation will be given to illustrate the relevance of the method in
the context of the functioning of the continental surface.

2. MODEL SPECIFICITIES REGARDING
UNCERTAINTY

Vegetation growth modelling consists of evaluating produc-
tion (e.g. net photosynthesis) and losses (e.g. senescence) of
biomass, as a function of radiation conditions, and nutrient and
water availability. The dynamic equation (time evolution) for
green biomass (B) can then be written in the general form of:

aa—? = NetPhotosynthesis(B) — Senescence(B) (2)

On the other hand, SVAT schemes estimate soil moisture (6)
evolution by computing the water balance between rain or irri-
gation supply and drainage, runoff and evaporation losses for
a soil of depth d:

d % = RainAndlrrigation — Losses(0) 3)

Note that both equations (1) and (2) are linked through the
water availability, as plant growth requires water and the water
cycle is influenced by this uptake.

The major difference between these equations comes from
the fact that the soil moisture evolution resulting from the water
balance equation results from a “negative feedback”, whereas
the biomass time-series obtained from the growth and senes-
cence equation has, to a certain extent, a “positive feedback”.
Indeed, in the SVAT scheme, if there is a positive soil moisture
error (overestimation), losses are overestimated as well, and the
overestimation decreases with time. If the error is negative,
losses are underestimated and compensate the underestimation.
In all cases then, errors tend to smooth out with time and soil
moisture oscillates around a “long-term equilibrium”. On the
other hand, an error in the initial biomass estimate of the growth
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model can produce very different behaviours according to the
large uncertainties on both photosynthesis (e.g. growth effi-
ciency and stress functional) and senescence (e.g. proportionality
factor between senescence and actual biomass) parameters,
especially for small soil covers. The system does not compen-
sate biases and a small deviation or error on the estimates can
lead to significant changes. This distinction between both state-
space equations implies the following: in biomass modelling
the impact of initial condition errors is crucial to the prediction
of the whole seasonal cycle, whereas from the strict water
resources point of view, the “memory” of the system is short.
Butin the coupled case, the initial water content will have a crit-
ical impact on the biomass evolution, and in turn on the seasonal
water balance.

Concerning the soil-plant-atmosphere continuum, observa-
ble quantities mostly come from: (i) point measurements of the
surface characteristics (soil water content, vegetation height,
soil texture, root zone depth, etc.), (ii) point measurements of
meteorological forcing (precipitation rate, wind speed, atmos-
pheric radiation, etc.), (iii) integrated ground measurements
(stream flow, precipitation by radar signal, etc.) and (iv) multi-
resolution multi-spectral remote-sensing data (ND VI, radiative
temperature, and some information on soil moisture using
microwaves). This last type of information is certainly the most
promising data source in this System of Observation.

The observation model (for instance, the radiative transfer
scheme) that relates the available observation variables (for
instance, remotely-sensed observation variables such as emis-
sivity, temperature, reflectance, etc.) to the variables of interest
(biomass and root zone soil moisture for agronomic and water
management applications, or latent and sensible heat fluxes for
meteorological applications) is often complex and highly non-
linear. Therefore, a comprehensive assessment of the impact of
measurement errors on the retrieval of the biophysical variables
of interest is required. This is usually the task of many inversion
methods; but these methods relate any remote-sensing variable
to its corresponding biophysical quantity for a given date only.
In particular, they give no information on how to interpolate
this quantity in time. Combining the dynamic models and the
data in a single System of Observation goes a step further by
propagating in time all the information (including uncertainty)
regarding the system.

The methodology to assimilate remote-sensing observations
into a dynamic model presented below enables the quantifica-
tion of the impact of the introduction of a given remote-sensing
variable into the Observing System by taking into account the
entire combination of uncertainties in the system, including the
measurement error associated with this new variable.

3. THE KALMAN FILTER THEORY

The theory behind the Kalman filter has been fully explained
in a number of books on control theory [6, 11]: it was initially
developed for linear systems (Kalman Filter), extended to the
case of moderately non-linear systems (Extended Kalman Fil-
ter) and later to strongly non-linear systems with the Ensemble
Kalman Filter theory [5].

The Kalman filter is based on the Best Linear Unbiased Esti-
mator whose principle is described below.

Let us suppose that we are interested in evaluating a state
variable x (for example, soil moisture or biomass) which, for
the sake of simplicity, is directly observable (i.e. for which
direct measurements are available on some specific dates).
Thus two values of x are available: a simulation x;,, and an
observation xp.

The dynamic model propagates the simulated variable xg,
in time from an initial value xg,(. Its associated uncertainty
(variance) O, 1s also propagated in time up to the next obser-
vation. As soon as an observation X, with an uncertainty G,
is available, the “forecast” or simulated variable x];im is read-
justed instantaneously to account for this new information. The
new value of x is called the analysed variable and noted x& ., . This
analysed state value is a combination of the forecast and
observed values, weighted by their respective variances:

a f
Xsim — x;?m + Xobs (4)
a (¢
Gsim Y sim obs
with the analysed variance:
Lo Ly L 5)
(¢
Gsim Gsim obs
Equation (1) can be rewritten as
a _ _f . f
Xsim = X'sim T K (xobs —-X sim) (6)

The difference (x,,, — x‘);im) in (6) is called innovation. The

innovation reflects the discrepancy between the predicted value
Xgm and the actual measurement x;,¢. K is the Kalman gain that
minimises the analysed error covariance and is equal to:

S
K - o sim (7)

S
Oobs T O sim
The adjusted state is then taken as the new initial value for
the forecast and is propagated in time up to the next available

observation. Figure 1 illustrates the filter algorithm.

For moderately non-linear systems, the uncertainty G, is
propagated analytically using a linear approximation (the
Extended Kalman Filter). When the tangent-linear model is dif-
ficult to infer manually, an automatic derivation tool can be
used, but in most cases the system is strongly non-linear, and
the linear approximation no longer holds; a statistical approach
known as the Ensemble Kalman Filter is then preferred. In the
latter case, an ensemble of possible states is generated and prop-
agated in time, and the statistics are performed on this ensem-
ble. The next paragraph briefly describes the Ensemble Kalman
Filter (EnKF) rationale.

To initialise the simulation, an ensemble of N initial state
vectors {x; (t=0)i=1, ..., N} is computed from a normal dis-
tribution with a mean equal to the first guess and covariance
Pl-j(t = 0) equal to the estimated uncertainties on the variables
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Figure 1. Schematic representation of the update of a state variable
when an observation is available using the Kalman filter theory (sim-
ple case where the state variable is directly observable).

(model). These N points are propagated in time until an obser-
vationis available (errors are implicitly propagated and are esti-
mated by the scatter of the points). Once an observation (or a
set of observations) is available, the vector of observations z is
used to generate a set of NV observation vectors {z,(t), i =1, ..., N}
from a normal distribution of variance equal to the estimated
observation uncertainty ¢ ,. For each point of the ensemble, the
state variables are then readjusted, according to the uncertain-
ties of the observed data and of the simulated variables:
a f
x; = x3+K(z;-2 ;) ®)

l

where x"; is the forecasted state vector, x| is the analysed state

vector after readjustment and z; ; is the simulated observation var-
iable.

z, ; and x{ are linked through the observation model. For
remote-sensing data assimilation, the observation model is the
radiative transfer scheme used to link state variables (biomass
and surface temperatures, respectively) to remote-sensing

observations (NDVI and radiative temperatures, respectively).

The difference (z; -z, ;) in (8) is called the measurement
innovation and reflects the discrepancy between the predicted
measurement z, ; and the actual measurement z;. The expres-

sion for the Kalman gain that minimises the analysed error cov-
ariance is now given by [5]:

K, = P/(M +O) 9)

’

— = . _
where P=(x";— %/ )(zi i— Z_i) is the simulated state-observations

. . - AT .
cross-covariance matrix, M = (z‘sf i—zf)(zsf i—z‘?) the simu-
lated observation variance-covariance matrix and O = o, the
measured observation variance-covariance matrix.

The filter algorithm is schematised in Figure 2.

The advantage of this method is that are only performed sta-
tistics only at the time of assimilation, i.e. when an observation
is available, and the variance-covariance matrix does not need
to be propagated in time. No adjoint model is needed, and the
dynamic model can be used as it is: the filter manipulates input
and output files only. This is particularly attractive for large

« First guess « N —> f':fii

(1) Initialisation of the ensemble from the mean and covariance X, and o,
%, 5%;+er}

(2) Initialisation of the ensemble error covariance matrix
Po=(X,0- X) (X0~ Xo)

vy

(1) propagation of the state vector

Propagation

(1) Kalman gain calculation

e o eR@my
& e —
(2% 25) (2% ) T+ o)
(2) readjustement of the state vector

=%, + Kz - 25 }

{x,.+=f( x,, ,forcing,Param.) +e, *}

X=X K-z

Figure 2. Schematic representation of the Ensemble Kalman Filter
algorithm.

model codes. Since in our system the number of state variables
is rather limited (in contrast to meteorology or oceanography
applications) the Monte-Carlo method is well suited because
less cumbersome.

For more information on Ensemble Kalman filter Theory
see [5]. For vocabulary definitions and notations on Data Assim-
ilation see [9].

4. THE OBSERVING SYSTEM SIMULATION
EXPERIMENT

A realistic mathematical representation of the combined
effect of most uncertainties into the mathematical representa-
tion of the system enables to study how the errors can be effi-
ciently reduced for predictive assessment through data
assimilation. For this purpose, the Observing System Simula-
tion Experiment (OSSE) approach has been mostly developed
in meteorology and oceanography [1, 16]. It was first applied
to the observation of the continental surfaces in the context of
future passive microwave satellite missions [4, 15]. An appli-
cation in the context of agronomy is described here.

OSSE aims at testing the potential of some chosen observa-
tions to constrain the dynamic model state variables. The idea
is to test, before any measurement campaign has been con-
ducted, or any sensor has been launched, the potential benefit
of the assimilation of a certain variable into the system when
known uncertainties are provided.

The OSSE is divided into two parts.

4.1. Generation of a “synthetic observation set”

In afirst step, a set of “synthetic observations” for the assim-
ilation period is generated. To do so, the given initial condi-
tions, parameters and forcing variables are used to generate a
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Figure 3. Schematic representation of the OSSE first step: creation
of a synthetic data set.

“true” (also called “nature”) set of N initial conditions, param-
eters and forcing variables.

4.1.1. Setting the “true inputs of the model”

Because of errors on measurement devices, heterogeneity or
lack of information, the true initial conditions are not the ones
that have been measured. The same applies for the parameter
values and the forcing data. It is assumed that the true initial
state is one of the possible states of a normal distribution with
amean value equal to the observed initial conditions and a var-
iance equal to the associated uncertainty. The set of possible
“true” initial conditions, parameters and forcing is generated by
perturbing the mean values and choosing random elements in
a Gaussian distribution built around the mean initial values and
their associated uncertainty.

4.1.2. Computing the “true state variables”

Once the “true” initial conditions, the “true” parameter val-
ues and the “true” forcing series have been determined, the
dynamic model is run to give a series of “true” state variables.

4.1.3. Computing the “true remote-sensing data”

These true state variables are then used as inputs by an obser-
vation model to generate “true” observation variables.

4.1.4. Setting the “measured remote-sensing data”

As for the initial conditions, a stochastic noise term is added
to these observation variables to account for the measurement
errors and generate what are supposed to be the “measured”
(synthetic) observation variables at the time of observation. This
step of the synthetic data set creation is schematised in Figure 3.

4.1.5. Computing reference, called the “openloop state
variables”

In order to evaluate the improvement (or alteration) of the
simulations due to the assimilation of the “measured” remote-
sensing variable, a reference simulation was performed, called

an “openloop” (or “control”) simulation. This was done using
the unperturbed data set (i.e. using the prescribed mean for ini-
tial conditions, parameters and forcing) in order to obtain series
of unperturbed state variables; that is, series of simulated state
variables that would be obtained if it is assumed that there is
no error in the simulation.

4.2. Propagation — Testing the observability

In a second step, the synthetic observations are introduced
into the Ensemble Kalman Filter assimilation algorithm
(Fig. 2). The algorithm uses the same normal distributions as
in the first step to generate a set of N initial conditions, N sets
of parameters and forcing variables time-series. These sets of
initial conditions, parameters and atmospheric forcing are then
used to simulate N probable initial realisations (also called par-
ticles) of the system. Each of these particles is then propagated
in time by the dynamic model up to the first available “syn-
thetic” observation. At that time, each of the particles is re-
adjusted using the Kalman Filter (Eq. (8)). The Ensemble is
propagated again forward in time until the next observation,
and so on. Some unrealistic particles can also be deleted in order
to avoid non-realistic spread (for instance: senescence-only
behaviours not corrected by the filter). This implies some re-
sampling.

The problem of reproductibility of the experiment is posed
here with respect to the Monte-Carlo assumptions: is the
number of particles used to generate the ensemble sufficient?
Indeed, if the Extended Kalman Filter provides one and one
result only, several EnKF can lead to different results depend-
ing on the number of particles (or replicates) used in the sim-
ulation. A preliminary study must thus be performed in order
to find the minimum ensemble size ensuring that a few particles
have the possibility of following the same trajectory as the true
state. It usually corresponds to the minimum ensemble size
above whose assimilation results are identical. If this condition
is not fulfilled, the solution will rarely converge towards the
true state.

5. EXAMPLE OF APPLICATION

5.1. Description of the dynamic model

The complex Soil-Vegetation-Atmosphere-Transfer Scheme
SiSPAT [3] has been coupled to the vegetation functioning
model STEP [13] which is designed to describe the evolution
of annual herbaceous vegetation in a water limited environ-
ment. State variables are the soil matric head and temperature
vertical profiles (28 nodes) and the total biomass. Forcing var-
iables are standard climate forcing at an hourly time-step. For
convenience, both models run at a minute time-step. SiISPAT
propagates the soil and temperature profiles through time. It
estimates the stomatal resistance, leaf potential and leaf tem-
perature for each time-step. These values are used by STEP,
which estimates in turn the evolution of LAI as the total bio-
mass divided by the Specific Leaf Area value at the end of this
time-step. The new LAI value is then used by SiSPAT at the
next time-step (there was no evolution of the root density pro-
file through time in this example).
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5.2. Strategic choices regarding uncertainty
specification

The assumption made here is that models are not perfect, but
that there is at least one parameter set that reproduces satisfac-
torily the natural conditions. Therefore no model noise was
added. The spread of the ensemble of points arose only from
initial conditions and parameter sets. The spread of the ensem-
ble represents the growth or collapse of the simulated variance,
i.e. decrease or increase (respectively) in the associated preci-
sion or confidence in the model outputs. The diverging (resp.
converging) behaviours of the growth (resp. water balance)
equations have an important impact on the simulated covari-
ances: for the biomass, chaotic properties will ensure a diver-
gence of the ensemble, whereas for the soil moisture (in the
absence of rainfall errors or additional incremental noise) the
ensemble will eventually converge towards the equilibrium soil
moisture. Thus for biomass, there is always a way to specify
the parameter uncertainty so that the simulated variance is large
enough to correct the state variables, whereas for the water bal-
ance monitoring the simulated variance tends to be too low. If
parameters (saturated soil moisture, for instance) are errone-
ous, the filter won’t perform any correction and will simply
propagate the error through time.

Since our assumption is that calibration errors exceed all
other model errors, parameter uncertainty should sustain the
spread of the ensemble through time. As above, if the ensemble
does not spread, no assimilation is performed. One can add an
incremental noise term to correct insufficient spread, for soil
moisture, for instance. This noise sums up all the remaining
unexplained uncertainties. Adding model noise will give more
flexibility to the assimilation and give observations closer to the
true, but the model will generally lose at the same time its integ-
rity (i.e. some of the interdependence between variables). A
compromise must be found between fitting model outputs to the
observations and keeping a model-consistent signal (i.e.
smoothing out sampling problems or measurement errors in the
observations). Incremental noise must be treated as a parameter
and as such obtained by calibration for a dedicated calibration
period.

We must note that the method presented here is not the “clas-
sical” OSSE approach. In meteorology and oceanography, the
model used to generate the “true” time-series is a complex,
exhaustive, physically-based and “state-of-the-art” model, while
the model used for data assimilation (and in the future for mul-
tiple-scale data assimilation) is a rather simple model. In our
case, and again because parameter uncertainty is such an issue
for most land-surface process models, we suppose that any
“natural” evolution of the surface can be explained by the
model using an appropriate set of parameters. This is certainly
overoptimistic and the OSSE results should be interpreted with
this restriction in mind.

5.3. Results

The coupled model was applied during the entire growing
season to an annual grassland site in a mixed herbaceous field
during the SALSA experiment [7]. In order to use a realistic
basis for the OSSE, the extensive data set (biomass evolution,
soil moisture, temperature, and heat flux profiles as well as tur-

bulent fluxes and radiative surface temperature time-series)
was used to evaluate the sensitivity and then calibrate the value
of the main parameters. This realistic simulation obtained
using this rough calibration was kept as an “openloop” config-
uration. For our application, the chosen parameters for uncer-
tainty assessment are the soil hydraulic conductivity and
retention curve parameters, the minimum stomatal resistance,
the growth efficiency, the wilting point leaf potential and the
senescence factor. Very large uncertainty ranges were defined
for all the above-mentioned parameters, as well as the initial
values of the state variables. This choice was made deliberately
according to the OSSE philosophy in order to generate very
contrasting “true” behaviours of our system. This large uncer-
tainty was kept in the specification of the parameter noise for
the filter, indicating that very little information is accessible for
estimating the initial state and the parameter values of our system.

Since both remote-sensing observations of reflectances and
radiative temperatures are likely to be the most common
remote-sensing variables to be assimilated in the near future,
the OSSE is illustrated by the assimilation of midday (12 h 30)
nadir radiative surface temperature and NDVI. NDVI s related
to LAI with a simple exponential function [8]. Prescribed
observation errors (standard deviations) are 1 °K for the radi-
ative temperature, and 0.05 for NDVI. Results are shown in
Figure 4a for an average synthetic “true” run, and in Figure 4b
for a peculiar case.

In the first example (Fig. 4a), which is similar to most syn-
thetic cases that were generated for this example, both the
“true” and “openloop” time-series are very similar, and the
amplitude of the true LAI is mostly related to wetter initial con-
ditions. In that case, LAl is well retrieved by the filter, and water
content is efficiently corrected only during the first long dry-
down (DOY 200-210). At that time, the soil is mostly bare and
the filter efficiently assimilates temperature information to cor-
rect the soil moisture. However, in the second dry-down after
senescence at the end of the simulation period, the soil is again
mostly bare but the filter performs very poorly, indicating that
the error-covariance is certainly inaccurate, and that an addi-
tional incremental noise should be implemented. In the second
example, the “true” time-series is related to a combination of
parameters that induces a vegetation less sensitive to the dry
conditions. Therefore the phase of maximum growth is sus-
tained throughout the dry conditions that prevail at the end of
the simulation (cf. the plateau of the “true” LAI time-series,
Fig. 4b). In that case, the generally dry conditions force senes-
cence for most of the other parameter sets and NDVI uncer-
tainty is too large to correct the LAI adequately (Fig. 4b). Most
of the measurement errors are negative and thus the “meas-
ured” NDVI values are compatible with these very dry condi-
tions. Apart from this peculiar case, and for most synthetic
“true” cases, LAI is very well retrieved with the daily NDVI,
while water content is usually little corrected by the filter. Cases
of soil moisture error increase are numerous. The best soil
moisture corrections are performed at the beginning of the
growing season (low LAI) when temperature differences are
very well correlated to soil moisture biases.

Except for cases similar to Figure 4b where drought condi-
tions are consistent with observation noise and lead to an under-
estimation of LAI, small errors on the vegetation growth model
can be efficiently reduced by the Ensemble Kalman Filter.
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6. CONCLUSION

Land surface processes are particularly complex due to the
strong non-linearity of the processes and the large range of
time/space scales involved. Therefore, dynamic models (con-
tinuous in time and space) can only give an approximation of
reality whereas observations, even if they are almost certain,
are sparse and discontinuous in time.

From these considerations, it appears that current monitor-
ing frameworks should focus on two important research topics:
(1) an adequate modelling strategy which is able to simulate a
given set of remote-sensing variables — this concerns dynamic
models and observation models that relate the observation var-
iables to the system state variables — and (ii) an adequate data
assimilation method to control the dynamic model with the set
of remote-sensing information.

In this paper, a method called the Observing System Simu-
lation Experiment approach, which assesses the quality of an
observing system, was applied to plant growth and water
budget modelling. It is designed to test the added value of new
remote-sensing products for a given purpose, and to test the
efficiency of a particular assimilation framework (including,
for instance, the impact of poorly or unknown uncertainties,
like the model error). Future improvements of the method
include the use of other data assimilation methods such as the
Kalman smoother, which could be better suited for assimilation
of observations with a short fluctuation period (like tempera-
ture) to retrieve variables whose evolution has a long charac-
teristic timescale (such as biomass or soil moisture). Since in
land-surface applications parameter estimation is very critical,
online parameterisation can also be performed online by con-
sidering the parameters as state variables whose time evolution
is either constant or show a strong auto-correlation.
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