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Abstract – The objective of this study was to assess the ability to estimate canopy biophysical variables from remote
sensing data observed at the top of the canopy in several directions and wavebands within the visible-near infrared
domain. The variables considered were the leaf area index, leaf chlorophyll content, the fraction of photosynthetically
active radiation absorbed by the canopy and the cover fraction. The SAIL radiative transfer model was inverted using a
simple technique based on look-up-tables. The size of the look-up-table, and the number of its elements selected to get a
distribution of the solution were first determined. The nadir reflectance in the red and near-infrared bands was consid-
ered to evaluate the retrieval performances in terms of the distributions and co-distributions of the solutions. The opti-
mal spectral and directional sampling to estimate the variables considered was investigated. Finally, the impact of spa-
tial heterogeneity on the retrieval performances, the effect of the model assumptions used to generate the look-up table
and the effect of radiometric noise were evaluated. These results were discussed in view of the definition of future satel-
lites and the selection of the best measurement configuration for accurate estimation of canopy characteristics.

Remote Sensing / model inversion / look-up table / optimal sampling / biophysical variable

Résumé – Évaluation d’une technique d’inversion pour l’estimation des variables biophysiques de cultures à 
partir de données de réflectance spectrale et directionnelle. L’objectif de cette étude était d’évaluer l’intérêt des don-
nées de télédétection pour l’estimation des variables biophysiques des couverts végétaux. Les données considérées
étaient acquises au niveau du couvert dans plusieurs directions, pour différentes longueurs d’onde du domaine du
visible et du proche infrarouge. Les variables estimées étaient l’indice foliaire, le contenu en chlorophylle des feuilles,
la fraction de rayonnement photosynthétiquement actif absorbé par le couvert, et le pourcentage de couverture du sol.
Une technique simple d’inversion de données basée sur des tables de correspondance a été utilisée. Dans un premier
temps, la taille de la table et le nombre d’éléments sélectionnés pour obtenir une distribution de la solution ont été 
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1. Introduction

The continental biosphere is one of the main
components of the Earth’s system since it controls
the energy and mass exchange at the soil-vegeta-
tion-atmosphere interface. The characterisation of
land surfaces is thus a critical issue, for which
satellite observations can largely contribute.

The accuracy of canopy characteristics estima-
tion from satellite data depends on the nature of the
radiometric data, i.e. the spectral and directional
information content of the data acquired.
Numerous studies have thus investigated the poten-
tial of many instruments to extract canopy bio-
physical variables in the visible [e.g. 5, 8, 15], ther-
mal infrared [e.g. 40] and microwave domains [e.g.
33, 46]. These variables must be both strongly cou-
pled with the radiative transfer in the canopy and
pertinent with regards to process models describing
ecosystem functioning and its relations to other
components of the global system. Apart from the
albedo which was investigated in many studies
[e.g. 27, 31], four key variables can be considered
in the visible-near infrared domain:

• The green leaf area index, LAI, that defines
the size of the interface for exchange of energy and
mass between the canopy and the atmosphere;

• The daily fraction of photosynthetically active
radiation absorbed by the canopy, fAPAR, that
allows to derive the biomass production from sim-
ple primary productivity models [38];

• The leaf chlorophyll content, Cab, that can be
used as an indicator of the nitrogen content [41];

• The cover fraction, fCover, that corresponds to
the gap fraction in the nadir direction. It is used to

decouple vegetation and soil contribution in energy
balance processes with particular attention to evap-
otranspiration. 

Both fAPARand fCoverare secondary variables,
i.e. they are combinations of primary variables
such as LAI and Cab that are state variables of the
canopy and describe the structure or the optical
properties of the elements. 

Empirical approaches based on spectral indices
have been developed since the early exploitation of
satellite data to estimate canopy characteristics
from remote sensing data. However, they are suf-
fering from severe limitations due to the lack of
physics introduced in the retrieval technique and
the small amount of radiometric information they
can exploit. Alternative approaches based on radia-
tive transfer model inversion techniques have been
recently investigated, in particular to exploit the
richer data provided by the new generation of sen-
sors such as POLDER, VEGETATION, MODIS,
MISR and MERIS. 

The accuracy of the biophysical variable estima-
tion from satellite data mainly depends on the
quantity and quality of the information used:

• The quantity of radiometric information,
which resumes to the sampling of the spectral,
directional and spatial dimensions;

• The quality of the radiometric information that
is mainly driven by the radiometric resolution,
including noise and inaccuracies coming from
radiometric, spectral, spatial, and directional
domains. Knowledge of the structure of the inaccu-
racies is thus mandatory to better control the inver-
sion process;

• The quality of the radiative transfer model
used, i.e. its pertinence with regards to the type of

déterminés. Les performances d’estimation des variables en termes de distributions et de co-distributions des solutions
ont été évaluées dans le cas le plus simple en utilisant les réflectances rouge et proche infrarouge au nadir. L’échan-
tillonnage spectral et directionnel optimal correspondant à la meilleure précision d’estimation de chaque variable consi-
dérée a également été déterminé. Enfin, les effets de l’hétérogénéité spatiale, des hypothèses du modèle de transfert
radiatif utilisé pour générer la table de correspondance, ainsi que du bruit radiométrique, sur l’estimation des variables
ont été quantifiés. Ces résultats sont discutés en vue de la définition des caractéristiques des capteurs à venir pour obte-
nir des estimations précises des caractéristiques des couverts végétaux.

Télédétection / inversion de modèle / table de correspondance / échantillonnage optimal / variable biophysique
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canopy it will apply to, with particular attention on
the way canopy structure is represented and the
way the physical problem of the radiative transfer
is solved;

• The a priori knowledge of the distribution of
some canopy characteristics that will better con-
strain the inversion process. This could be partly
derived from knowledge of the type of vegetation
observed;

• The inversion technique used. Two groups of
inversion techniques can be defined. The first one
includes iterative optimisation techniques [16, 21,
25] and/or the use of simulated Look-Up Tables
(LUT) [23, 24]. They both consist in minimising a
distance between the simulated and the measured
reflectance. These two methods are multivariate
since the solution corresponds to the whole set of
primary input variables of the model. The sec-
ondary variables can be then derived in a second
step. The second group of inversion techniques is
based on empirical relationships developed over
radiative transfer model simulation and using spec-
tral indices [3, 29] or neural networks [6, 22, 45].
They both consist, during the calibration step, in
minimising a distance between the simulated and
actual variable of interest by adjusting the coeffi-
cients of the relationship between the reflectance
and the variable. Conversely to the previous
approaches, these latter are able to focus on one
single variable (primary or secondary) of interest.
One advantage of these techniques is their low
computer resources requirement when calibrated
and used in routine applications.

The objective of this study was to evaluate the
performances of canopy biophysical variable esti-
mation from remote sensing data. The four key
biophysical variables LAI, Cab, fAPARand fCover
will be considered. Previous studies [7, 32] have
shown that neural networks and LUT were gener-
ally performing the best. We used here the LUT
method since the learning phase of neural networks
requires larger computer time and thus becomes
difficult to handle when repeated several times as
we did. The study was restricted to top of canopy
reflectance data, and did not address the atmos-
pheric correction problem. Further, for simplicity,

the sun position was set to 45° zenith angle and no
diffuse radiation was considered.

The inversion process and the associated perfor-
mances in terms of the distribution and co-distribu-
tion of the solutions were first analysed using the
simple case where only red and near infrared bands
and nadir observations were considered. The opti-
mal measurement configuration was then defined
in terms of the set bands and view directions that
gave the better estimation performances. Finally,
the effect of the pixel heterogeneity, the impact of
radiometric noise and that of the radiative transfer
model assumptions used to generate the look-up
table were evaluated.

2. Data sets and methods

The look up table is one of the simplest tech-
nique used to invert models. It consists first in gen-
erating a table in ℜ p, the space of canopy realisa-
tion that contains p input variables of the radiative
transfer model. Then, the radiative transfer model
is used to generate the corresponding reflectance
table in ℜ n, where n is the number of measurement
configuration, i.e. the number of bands and direc-
tions considered. In the application phase, for a
given reflectance measurements in the n bands and
directions considered, the elements of the
reflectance table in ℜ n that are the closest to the
measurement are selected, and the corresponding
set of input variables in ℜ p represents the solution
of the problem. In this study, the distance criterion,
that corresponds to the cost function in optimisa-
tion techniques, was defined as the relative root
mean square error (RMSE*) between the measured
reflectance ρ and the estimated reflectance ρ̂ found
in the look-up-table:

(1)

where nd was the number of viewing directions and
nb the number of wavebands. The relative RMSE*
was preferred to the use of the classical RMSE
since it did not put the emphasis on bands or direc-
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nd ⋅ nb

ρij − ρij

ρij
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tions that have the largest absolute reflectance val-
ues. We should note also here that we did not
imposed particular constraints on the input vari-
ables to be estimated such as often done in iterative
optimisation techniques [36].

The LUT technique is defined by:

• The radiative transfer model used to derive the
reflectance table from the table of input variables;

• The way the space of canopy realisation was
sampled. It is driven by the distribution and co-dis-
tribution laws used for each input variable, and by
the number of cases (sets of input variables) con-
sidered that defines the size of both the input vari-
able and reflectance tables;

• The way the solution was extracted from the
table, i.e. how and how many cases were selected
from the reflectance table (and after, from the cor-
responding input variable table) to get a distribu-
tion of the possible solutions. This was investigat-
ed as a preliminary step before describing the
actual results.

These issues will be first discussed, before
describing the data sets used to evaluate the LUT
technique.

2.1. Radiative transfer model

The choice of the radiative transfer model must
satisfy at least two constraints: 

• it must allow a fair representation of the radia-
tive transfer in the canopy, both from the physics
and from the description of canopy architecture; 

• it must also be associated with a rather limited
number of input variables and small computational
requirements to facilitate the study. 

We have chosen a simple turbid medium radia-
tive transfer model, SAIL, [42, 43] that offers a
good compromise between the computation time,
the realism of the simulations and the limited num-
ber of input variables associated with the degree of
complexity of canopy architecture description. The
hot spot correction [26] was implemented to better
describe the bi-directional variation of the
reflectance. We used an ellipsoidal leaf angle dis-

tribution function [10], which presents the advan-
tage to be a continuous function. The SAIL model
has been validated over a large range of crops such
as soybean [4, 17], orchards [18], maize [28] or
sugar beet [1]. 

The canopy structure was described by the leaf
area index (LAI), the average leaf inclination angle
ALA, and the hot spot parameter that represents the
apparent size of the leaves. The leaf optical proper-
ties were simulated thanks to the PROSPECT
model [14, 19], assuming that the leaf was bi-lam-
bertian. The input variables of the PROSPECT
model are the leaf chlorophyll, dry matter and
water contents (Cab, Cdm and Cw) and a structure
parameter N. The dry matter and water contents
were tied together, assuming a constant relative
water content of 80%, which is generally observed
for green active leaves. Departure from this situa-
tion will not affect seriously the simulations since
water and dry matter contribute only marginally to
the absorption in the visible and near infrared
domains. The soil was assumed to be lambertian,
with a typical soil reflectance spectrum, times a
brightness parameter bs.

2.2. Sampling the space of canopy realisation

The space of canopy realisation was generated
by randomly drawing each radiative transfer model
input variables within distribution laws. The input
variables were assumed independent because no
information was available about their possible
covariance. The distribution law of each variable
was selected so that the density of probability was
set to be proportional to the sensitivity of the
reflectance to the variable considered. It allowed to
better sample domains where the reflectance is
more sensitive to the considered variables. This
was achieved by applying transformations F for
each variable x such as the sensitivity of the
reflectance to the transformed variable was about
constant: dρ/dF(x) ≈ cste. The transformations
were selected using a trial and error process
applied to the simple case of red and near infrared
nadir observations. Then, uniform random drawing
were completed over the transformed variables.
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Table I presents the distribution laws finally select-
ed. One important consequence of this process is
that low LAI, Cab, Cw and hot spot values were
more densely sampled. A total of 280000 simula-
tions were generated using Monte Carlo drawings.

2.3. Test data sets

Two data sets, combining top of canopy bi-
directional reflectance and corresponding biophysi-
cal variables were used to evaluate the look-up-
table retrieval performances. 

First, a reference data set (called 3D) was gener-
ated by applying the PARCINOPY ray tracing
code [11] to a 3D model of maize canopy architec-
ture [13]. The combination of these models
allowed to get very realistic reflectance simulations
both from the physics of the radiative transfer and
from the canopy structure description. Each simu-
lation provided the bi-directional reflectance val-
ues covering the whole hemisphere by 5° zenith
and azimuth steps, for a given waveband. Small
noise associated to the Monte-Carlo process was
observed (relative noise of 2.5%), although 3 mil-
lion rays were traced. 

The second test data set (called 1D) was gener-
ated with the SAIL model. This made the 1D test
data set fully consistent with the look-up-table. To
be able to compare results obtained on 1D and 3D
data sets, the 1D data set was also perturbed with
2.5% relative Gaussian noise. 

Eighteen cases, corresponding to six develop-
ment stages and variation in leaf chlorophyll con-
tent and soil type were considered for the two test
data sets (Tab. II). 

Since ray tracing technique used for the 3D test
case required large computer resources, a limited
set of wavebands were simulated in the visible and
near infrared domains which is the more relevant
for LAI, leaf chlorophyll content, canopy structure
and fAPARestimation [2]. Nine wavebands, 10 nm
width, were considered: 500, 562, 630, 692, 710,
740, 795, 845, and 882 nm.

The directional sampling was reduced to 32
view directions, assuming a solar zenith angle at
45°, with no diffuse radiation (Fig. 1). Considering
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Table I. Transformation used to generate the distribution of the variables. The distribution laws of the transformed vari-
ables were uniform.

SAIL Variables Units Minimum Maximum Transformed variables

LAI Leaf area index Unitless 0 8 e–0.5LAI

ALA Average leaf angle ° 20 75 cos(ALA)
h Hot-spot parameter Unitless 0.05 1 e–3h

Cab Leaf chlorophyll content µg·cm-2 20 100 e–0.01Cab

Cw Leaf water content cm-1 0.005 0.025 e–50Cw

N Leaf structure index Unitless 1 2.5 N 
bs Soil brightness Unitless 0.5 1.5 bs

Table II. The 18 combinations of LAI, leaf chlorophyll
content and soil type used to generate the two test data
sets. For the 18 cases, ALA = 56°, h = 0.1, CW = 
0.014 cm-1, N = 1.4.

LAI Dry soil, Wet soil
bs = 1.4 bs = 0.6

Cab Cab Cab Cab

0.25 30 50 70 50
0.86 - 50 - -
1.64 30 50 70 50
2.34 - 50 - -
3.01 30 50 70 50
6.25 30 50 70 50
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the symmetry with respect to the solar plane, only
half the hemisphere was investigated. A particular
attention was given to the principal plane, and the
sampling was refined near the solar position, since
the large reflectance variation are observed around

the hot spot [37]. Some regularly spaced points in
the perpendicular plane were added, following the
results of Roujean and Bréon [39] who estimated
fAPARusing a bi-directional vegetation index.

Figure 2 shows the difference between the
reflectance values simulated with the two models
(1D and 3D), for all wavelengths, all directions of

Figure 1. Polar representation of the directional sampling (■ 32 directions) used in this study. The sun direction is indi-
cated by a ✩ and is set at 45° zenith angle.

Figure 2. (a) Comparison between 1D and 3D data set reflectance values (18 cases, 9 wavelengths, 32 directions). (b)
Distribution of relative difference between 1D and 3D data set reflectance values.
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the 18 maize canopies. As can be noticed, there is
no particular behaviour of the difference between
the two models, depending on view directions and
wavelengths. This is confirmed by the distribution
of the relative difference between the 1D and 3D
reflectance values, which can be assimilated to a
Gaussian law.

3. Results

3.1. Optimal LUT size and number of cases
selected for the solution

The LUT was defined by the distribution laws
presented in the previous section and by the num-
ber of cases simulated defining the size of the
LUT. Increasing the LUT size would result in a
better sampling while requiring larger computer
resources. Therefore, we have first to trade off by
investigating the effect of the size of the LUT on
the accuracy of the retrieval of canopy biophysical
variables. The LAI was only considered here, used
as an example for the four biophysical variables of
interest. We also have to define how many cases
will be selected from the LUT and considered to be
the solution.

For sake of simplicity, this preliminary study
was performed on a limited basis using the 1D test
data set and considering only the nadir viewing
direction in a red (630 nm) and a near-infrared
(882 nm) bands. This corresponds to the minimum
sampling necessary to provide estimates of LAI,
such as the one provided by NOAA/AVHRR sen-
sors [3, 30]. Four look-up tables with increasing
size s = 25000, 50000, 100000 and 280000 were
derived from the 280000 initial simulations. 

For each of the 18 cases considered in the test
data set, the q LUT elements having the closest
reflectance values according to equation (1) were
selected. The median LAI value was computed
over the corresponding table of input variable and
was then considered as the estimated LAI value.
Then, the absolute RMSE value between the actual
LAI values of the test data set and the estimated
LAI value was computed. Finally, this process was

iterated for the number of cases, q, ranging from 1
to the total size, s,of the LUT.

Figure 3 shows that for the fraction of selected
cases (q/s) lower than 0.5%, the effect of the size
of the look up table was quite important for the
accuracy of LAI estimation. In these conditions, the
absolute RMSEfor LAI was the highest for a LUT
size smaller than s = 50000. The two highest LUT
sizes gave similar low RMSEvalues. We thus
decided to use LUT tables made of s = 100 000
cases that provided a good compromise between
the computer resources requirement and the accu-
racy of canopy variable estimates. It can also be
noticed that, for q/shigher than 0.5% and whatever
the LUT size was, the RMSEwas increasing with
the percentage of selected cases. This was due to
the fact that the number of selected cases became
too high, and thus the distribution of the solutions
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Figure 3. Absolute RMSEvalue between actual and
estimated LAI for the 1D test data set as a function of
the percentage of selected cases in the LUT (q/s*100).
The estimation was performed for a range of LUT size:
---- s=25000,-.-. s=50000, ... s=100000, — s=280000
elements.
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in terms of LAI was too wide to obtain good esti-
mates (median value).

By focusing on the lowest part of Figure 3 (q <
1000), i.e. the closest to the solution, results show
(Fig. 4) that the RMSE values on LAI gets a mini-
mum value for 20 < q < 50, except for the smallest
LUT size (s = 25 000). We observed that for the
lowest values of q, the RMSE values increased sig-
nificantly, indicating that the solution for LAI esti-
mation was not the best one although correspond-
ing to a closer match in the reflectance domain.
This illustrated some possible degree of hyper-spe-
cialisation of the process. We therefore decided
that the 50 best cases in the reflectance LUT (q =
50) would be considered as the solution. This solu-
tion was thus characterised by a distribution of
canopy variables values.

3.2. Retrieval performances from nadir
reflectance in the red and near infrared 
for LAI, fAPAR, fCover and C ab

Before considering a larger number of bands and
directions to address the spectral and directional
sampling problem, we first analysed the results
obtained in the simple case of nadir viewing in the
red and near infrared bands using the 1D test data
set. For each of the primary biophysical variables
and the two associated secondary ones (fAPAR,
fCover), we computed the distribution of the esti-
mated values over the 50 selected cases corre-
sponding to the 50 cases in the reflectance table (s
= 100000) that were the closest to the reflectance
values in the test data set. 

The results were illustrated mainly using 2 cases
in the test data set corresponding to low (LAI =
0.25) and high LAI values (LAI = 6.25) for Cab =
50µg·cm-2 and dry soil conditions. However, simi-
lar trends were observed for the other test data set
cases not shown. 

Results showed that for low LAI values, the LAI
was accurately estimated, with a distribution well
centred on the actual LAI value and a small stan-
dard deviation (Tab. III, Fig. 5). When LAI was
increasing, the standard deviation of the distribu-
tion of the estimated LAI values increased. Further,
for large LAI values, the distribution was shifted
towards lower LAI values because of the saturation
and the distribution law used for generating the
input variable table that over-sampled the lower
LAI values. The average leaf inclination angle was
generally poorly estimated (high standard devia-
tion), with however a median value close to the
actual value. The leaf chlorophyll content was also
poorly estimated with median values often quite
different from the actual value, and large standard
deviation. This is explained by the insufficient
information provided by the two bands and the
nadir direction to accurately retrieve leaf chloro-
phyll content. This was also illustrated by the co-
distributions of the variables: high correlations
were observed between Cab and respectively LAI,
ALA and N (Fig. 6). It is interesting to notice that
the correlation coefficient between Cab and LAI is
negative, i.e. an increase of LAI is compensated by

Figure 4. Absolute RMSEvalue (averaged over a 10
cases width moving window) between actual and esti-
mated LAI values for the 1D test data set as a function
of the number of selected cases in the look-up-tables
(q). The estimation was performed for a range of LUT
size:
---- s=25000,-.-. s=50000, ... s=100000, — s=280000.
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a decrease of Cab to achieve the same radiometric
response. Conversely, the correlation coefficient
between LAI and ALA is positive, i.e. an increase

of LAI is compensated by an increase of ALA to
achieve the same radiometric response. Retrieval
performances for the soil brightness were quite
good for low LAI values, with however some cor-
relation with both ALA and LAI. Conversely, it
appeared impossible to retrieve the soil optical
properties when saturation occurs for high LAI val-
ues, which can be easily understood. As only the
nadir direction was considered, estimation of the
hot spot parameter was unsatisfactory. In the same
way, the leaf water content, and thus the leaf dry
matter content, were not well estimated since the
middle infrared domain where both leaf con-
stituents absorb strongly was not used here. The
retrieval performances for the leaf structure para-
meter N, were also unsatisfactory because the
effect of this variable spans very similarly over the
whole spectral domain and there are thus little
clues to get accurate estimates using only the spec-
tral variation.

The secondary variables, fAPARand fCover,
which are particular combinations of LAI and ALA,
were better evaluated since they partly account for
the compensations between LAI and ALA (Fig. 6).
Further, these secondary variables represent the
canopy gap fraction in particular directions, which
is one of the main driver of canopy radiative trans-
fer.

We therefore concluded that the amount of
information corresponding to this measurement
configuration was too limited to provide accurate
estimates of some key primary biophysical vari-
ables such as LAI and Cab. One way to improve the
estimation would be to impose some constraints on
the cost function (Eq. (1)) using a priori informa-
tion on the distribution of the probable input vari-
able values that would depend on canopy type. The
other way that was investigated in the next section
consists in increasing the amount of radiometric
information by optimising the spectral and direc-
tional sampling. For sake of simplicity, we will
first address the optimal spectral sampling. We will
then address the optimal directional sampling
based on the optimal set of bands determined in the
previous step.
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Table III. Primary and secondary SAIL variable esti-
mates on the 1D test data: actual, estimated value and
standard deviation computed on the 50 cases selected in
the LUT. Three treatments are presented, with three LAI
values for a leaf chlorophyll content of 50 µg·cm-2 and a
dry soil. 

LAI = 0.25 LAI = 1.64 LAI = 6.25

Actual. 0.25 1.6 6.2 
LAI Median 0.29 1.7 3.5 

Std 0.09 1 1.1 

Actual. 56 56 56
ALA Median 55 51 45

Std 13 15 13

Actual. 0.1 0.1 0.1
h Median 0.3 0.22 0.27

Std 0.21 0.19 0.26

Actual. 50 50 50
Cab Median 43 52 78

Std 22 21 14

Actual. 0.014 0.014 0.014
Cw Median 0.015 0.013 0.013

Std 0.006 0.006 0.005

Actual. 1.4 1.4 1.4
N Median 1.9 1.5 1.7

Std 0.45 0.39 0.39

Actual. 1.4 1.4 1.4
bs Median 1.4 1.1 0.95

Std 0.08 0.26 0.3

Actual. 0.21 0.76 0.99
fAPAR Median 0.24 0.76 0.95

Std 0.06 0.11 0.04

Actual. 0.13 0.58 0.96
fCover Median 0.14 0.6 0.89

Std 0.029 0.11 0.06

RMSE Actual 0.016 0.01 0.01
std 0.003 0.003 0.004
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Figure 5. Distribution of the primary SAIL input variable estimates on the 1D test data set. Two examples are
presented:LAI = 0.25 and LAI = 6.25, leaf chlorophyll content Cab = 50 µg·cm-2 and dry soil, bs =1.4.
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3.3. Optimal spectral sampling

Many studies demonstrated the interest of multi-
spectral and even hyper-spectral data [2, 12, 20].
However, Price showed that only a limited number
of bands were necessary to describe the whole
reflectance spectrum of soil [34] or to discriminate
water, snow, fire, vegetation and soil [35]. In a
same way, Weiss et al. [44] could estimate canopy
albedo using 5 bands with a relative accuracy bet-
ter than 2%. Our objective was thus to determine
how many, and which bands, among the 9 avail-
able, were necessary for accurately estimate each
biophysical variable of interest when just using
nadir observations. The directional sampling was
investigated in the next section.

Starting from the initial combination of red and
near-infrared bands, we selected the band, among
the 7 remaining bands that provided the best esti-
mation performances evaluated by the absolute
RMSEcomputed for the canopy variable consid-
ered over the 1D test data set. The same process
was repeated until all the nine bands were selected
(Fig. 7). 

Results showed that for all the four variables
considered, when the number of bands used
increased, the absolute RMSEvalue was decreas-
ing until reaching a minimum, and then started to
increase with however a moderate slope. This
demonstrated that only a limited number of wave-
bands were required for canopy biophysical vari-
able estimation. Once the optimal number of bands
was reached, extra bands added some noise with-
out adding significant information on canopy char-
acteristics. The estimation of the secondary vari-
ables required less bands (4 bands for fAPARand 5
for fCover) than for the primary variables (6 bands
for LAI and Cab). The RMSE value difference com-
puted over the biophysical variables of interest
between the best and the poorest band selection
demonstrated that the choice of the bands was
obviously important, particularly for the first bands
selected (Fig. 7). Further, the third selected band
was always the green one, confirming that it is
highly recommended for vegetation applications.
The other bands were generally selected in the red-
edge domain (680-740 nm) where the dynamics of
the vegetation spectrum is the most important. For
the estimation of LAI, fCoverand fAPAR, only one
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Figure 6. Correlation coeffi-
cients between estimates 
of SAIL input variables 
(1: LAI/ALA, 2: LAI/Cab, 3:
Cab/ALA, 4: ALA/bs, 5: Cab/N,
6: LAI/bs) for different LAI and
configuration. These correla-
tions were computed over the
50 selected cases of the LUT.
Values were thus significant
when the correlation coeffi-
cient was higher than 0.3 (α =
0.03).
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band in the near infrared plateau was required.
Surprisingly, the band at the middle of the red-edge
(710 nm) was not one of the first bands needed for
the estimation of leaf chlorophyll content.
However, when considering the RMSEcomputed
during the band selection (Fig. 8), the RMSE
obtained by adding the 710 nm band was always
very close from the actual selected band.

As a conclusion of this step, we decided to keep
the band combination that gave the lowest RMSE
for each variable: LAI (630, 882, 562, 710, 500,
692 nm), Cab (630, 882, 562, 500, 795, 710 nm),
fAPAR(630, 882, 562, 710), fCover(630, 882, 562,
692, 740). For these optimal band sets, we will
investigate the optimal directional sampling. 

3.4. Optimal directional sampling

Considering the optimal set of bands for each
variable derived previously for nadir viewing, the
same procedure as the one used previously for the
spectral sampling issue was applied to select 
the optimal set of view directions. 

Results showed that for each of the four bio-
physical variables considered, less than six direc-
tions were required (Fig. 9). The other directions
contained redundant information and thus, their
use as additional bands induced noise in the
retrieval process. The first selected direction was
able to reduce significantly the uncertainty on the
retrieval of the four biophysical variables. For this
direction, the difference between the optimal and
the worst view angle was large. The first directions
were always located in the principal plane, either
close to the hot spot direction, or in the forward
direction at large zenith angles (Fig. 10).

For LAI estimation, only one direction, the hot
spot, was required to obtain the lowest RMSE
value, confirming the importance of that direction
for canopy structure estimation. Moreover, the fol-
lowing selected angles were very close to the hot
spot, except the second one which was located in
the forward direction with high zenith angle. The
leaf chlorophyll content estimation required more
directions (6), mainly located in the backward and
forward directions for large zenith angles, and

Figure 7. Absolute RMSE
value between actual and esti-
mated canopy variables con-
sidering the 18 cases of the
1D test data set as a function
of the number of bands select-
ed for each canopy biophysi-
cal variable of interest. The
solid line corresponds to the
best band combination and 
the dotted line to the worst
combination.
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Figure 8. Selection of the
best band combination (+
3 bands, o 4 bands, * 5
bands, 6 bands): Absolute
RMSE value between
actual and estimated vari-
ables considering the set
18 cases of the 1D data, as
a function of the wave-
band. The numbers corre-
spond to the rank of the
band selected, in addition
to the two first red and
near-infrared bands.

Figure 9. Absolute RMSE
values associated to the
estimation of canopy bio-
physical variables consid-
ering the 18 cases of the
1D test data set as a func-
tion of the number of
selected directions. The
solid line and the dashed
line corresponds respec-
tively to the best and
worse sets of directions.
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around the hot spot peak. One direction in the per-
pendicular plane was also needed. However, for
the selection of the first direction, when consider-
ing the RMSEcomputed for each of the 32 direc-
tions, some directions were performing almost as
well as the selected one, especially for Cab which
showed low dynamics in terms of RMSE values
(Fig. 10). These directions were always placed at
large zenith angles. Considering fAPAR and
fCover, about six directions were required and only
the first one was actually discriminating.
Moreover, for fCover estimation, the first selected
direction was nadir, which was fully consistent
with the fact that fCover corresponds to the gap
fraction in the nadir direction. For fAPAR, the first
selected direction was located in the perpendicular
plane (zenith angle of 30°) and the second one
close to the hot spot direction. This was again con-
sistent with the fact that fAPARcould be approxi-
mated by the gap fraction in the solar direction. 

As a conclusion of this step, directional sam-
pling in the principal plane near the hot spot and
for forward scattering directions appeared to be of

great interest for canopy biophysical variable esti-
mation. We should notice that the nadir direction
was generally not optimal for the estimation of
canopy biophysical variables, except for fCover.
We should however note that these results were
limited to the 45° sun zenith angle and top of
canopy reflectance data considered in this study. 

3.5. Impact of spatial heterogeneity 
on the retrieval performances

Considering that the spatial resolution of Earth
observing sensors range from about 20 m (SPOT4)
to about 7 km (POLDER), the pixel size may be
large enough to observe heterogeneous pixels com-
posed of different canopies. The aim of this section
was to evaluate the sensitivity of the retrieval per-
formances on the degree of heterogeneity of the
pixel.

A mixed pixel database was derived from the 18
homogeneous canopies of the 1D data set. This
was achieved by dividing the 1D data sets in three

Figure 10. Selection of the five first
optimal directions (■) for biophysical
variable estimation: absolute RMSE
value between actual and estimated
canopy variable considering the 18
cases of the 1D test data set as a func-
tion of the view directions. Each line
corresponds to an increasing number
of view direction selected (solid line:
one direction, dashed line: 2, dotted
line:3, dashed-dotted line: 4 and dot-
ted line: 5). Taking the chlorophyll
content as example, the first selected
direction is in the principal plane, at a
view zenith angle at –70° (lowest
point of the solid line). The chloro-
phyll content is then estimated consid-
ering this direction and a second one
(dashed line). The second selected
direction is then located in the perpen-
dicular plane, at a view zenith angle
of 20°, etc.
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subsets corresponding to low, medium and high
values of the biophysical variable considered. The
reflectance and corresponding biophysical vari-
ables of these three subsets were linearly combined
to simulate a larger range of heterogeneity for the
mixed pixels:

X = w·Xi + (1 – w)·Xj; w ≤ 1 and i ≠ j (2)

where w corresponded to the fraction of the mixed
pixel composed of the canopy type i. A pixel het-
erogeneity index, H, was computed for each mixed
pixels with H = 1 for the most heterogeneous pixel,
and H = 0 for the homogeneous pixel: 

(3)

where maxX corresponds to the maximum value of
the considered X variable in the test data set 
(Tab. II). 

The LUT technique generated previously with
pure pixels was applied to the mixed pixels using
the optimal sets of bands and directions selected
previously. Comparison between the estimated bio-
physical variables and the actual ones of the mixed
pixels was achieved using the residual error
between the actual and the estimated variables,
divided by the amplitude of variation of the vari-
able considered on the 1D test data set (Fig. 11). It
allowed to compare the effect of the spatial hetero-
geneity between the four different variables. 

Results show that for LAI, the relative residual
error was increasing drastically with the pixel het-
erogeneity up to 45%, whatever the pixel LAI
level. High residual error values for LAI retrieval
were also observed for low levels of heterogeneity
combined with high values of LAI. In these condi-
tions, LAI was generally underestimated due to the
strong non-linearity between canopy reflectance
and LAI values. The same tendency was observed
for the estimation of Cab, with higher residual
value level for low Cab values. The estimation of
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H =
Xi – Xj

maxX

1 – 2w – 1 , i ≠ j

Figure 11. Relative residual
error (%) between actual and
estimated variable as a func-
tion of the heterogeneity
index (H) of the mixed pixel.
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the secondary variables (fCover and fAPAR) was
not very sensitive to the pixel heterogeneity level.
Further, the relative residual error remained low 
(< 15%) and better distributed around the x-coordi-
nate axis, as compared to LAI and Cab. This
demonstrated that a pixel average value of fCover
and fAPARis more susceptible of being accurately
retrieved from low spatial resolution sensors.
These two variables can be therefore considered
almost scale independent.

3.6. Impact of noise and SAIL model 
assumptions on the retrieval performances

The optimal spectral and directional sampling as
well as the effect of the spatial resolution were
determined using the 1D test data set with only lit-
tle radiometric noise added. In these conditions,
the test data set was fully consistent with the LUT
because both data sets were generated with the
same 1D SAIL model. However, both the SAIL
assumptions and the inaccuracies induced by
atmospheric, geometric and radiometric correc-
tions could be limiting in case of actual remote

sensing observations. The performances of the
LUT technique were thus compared in four situa-
tions: 1D and 3D models with 2.5% and 10%
noise. Figure 12 showed that the effect of the noise
was definitely less important than the accuracy of
the model used to generate the look-up-table, what-
ever the biophysical variable of interest consid-
ered: the increase of the relative RMSE(RMSE
divided by the amplitude of the variable over the
test data set) was lower than 5% when considering
both (1D, 2.5%) and (1D, 10%), and (3D, 2.5%)
and (3D, 10%). For the same radiometric noise
level, the estimates of the variables were highly
sensitive to the radiative transfer model. This was
observed especially for the leaf chlorophyll con-
tent, which was already poorly estimated with the
1D test data set (Tab. III). 

4. Conclusion

The performances of model inversion were first
evaluated in the case where only limited radiomet-
ric information was available. We showed that

Figure 12. Relative
RMSEvalue associat-
ed to canopy variable
estimation (- LAI, -- ,
.... fAPAR, -.- fCover)
as a function of the
radiometric noise
level (2.5% or 10%)
and the radiative
transfer model (1D or
3D) used.
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many canopy variables could not be accurately
estimated when using only the red and near
infrared bands observed from nadir direction. This
was particularly the case of LAI and more over leaf
chlorophyll content. However, we observed that
secondary variables such as the cover fraction and
fAPARwere already relatively well retrieved. This
was explained by the fact that these variables were
not sensitive to the saturation problem as LAI or
Cab were. Further the strong covariance observed
between estimates of LAI and ALA making the
retrieval inaccurate for these individual variables,
were partly cancelled when combining LAI and
ALA into the secondary variables fCover and
fAPAR. 

The possible improvement in retrieval accuracy
was then evaluated when the radiometric informa-
tion available increases, by better sampling the
spectral and directional domains. To simplify the
optimisation process both aspects where consid-
ered independent, starting from the spectral issue.
When increasing the number of bands used still for
nadir viewing, the accuracy in the estimation of
LAI and Cab improved significantly, almost by a
factor of 2.0. The optimal number of bands was
around 6 bands. For the secondary variables fAPAR
and fCover, the accuracy of their estimation did not
improve much when more than three to four bands
were used. However, and particularly for LAI, the
performances of the estimation degraded when all
the nine bands available were used, probably
because the noise induced by the bands added to
the optimal bands induced more noise than useful
information. Starting from the optimal sets of
bands, we then defined similarly the best set of
view directions. The results showed that four to
seven directions generally allowed to get the best
accuracy. However, the optimal view directions
were located mainly in the principal plane either
close to the hot spot direction, or in the forward
direction for large zenith angles.

New sensors, such as POLDER are now able to
provide well distributed sampling in the principal
plane [9] and thus seem well adapted for canopy
biophysical estimation. However, sampling for
large zenith angle values will probably be associat-

ed to larger uncertainties due to atmospheric cor-
rection. 

The spatial heterogeneity problem was finally
investigated. It appears that the two secondary
variables fAPARand fCoverwere little sensitive to
the spatial heterogeneity. We should note that these
two quantities are actually particular flux physical
quantities, which are known to be generally addi-
tive. Conversely, this was not the case for LAI and
Cab, which will be thus very sensitive to the scaling
issue. The only way to improve their estimation
should be to use a priori information on the hetero-
geneity that could be derived from higher spatial
resolution satellites. This important issue should be
one the main avenue of research for the use of low
spatial resolution satellite data. 

We should however note that these results were
limited to the particular conditions of the simula-
tions. Only nine particular wavebands in the visible
to near infrared spectral domain were used, the sun
zenith direction was always set to 45°, and the
atmosphere was not accounted for. 

The retrieval performances were evaluated on
two different data sets: one generated with the
same model as the one used to simulate the LUT,
and one with a 3D ray-tracing model applied on a
realistic 3D canopy architecture. We showed that
the accuracy of the model used to generate the
LUT was more important than the effect of the
radiometric noise. The radiometric noise level con-
sidered was quite small, with no particular struc-
ture. The effect of the radiometric uncertainties
taking into account the structure of the noise
should be further evaluated. 

This study focused on top of canopy reflectance
data. However, the atmosphere and the canopy
radiative transfer are strongly coupled. It should
therefore be quite pertinent to apply the methodol-
ogy developed in this study to top of atmosphere
reflectance data in order to deal with the complete
remote sensing problem. There is no doubt that the
sampling strategy in the spectral and directional
domains will be changed when the atmosphere is
to be accounted for. 

This study clearly demonstrated the potentials of
using LUT to investigate the model inversion 
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problem in remote sensing. It mainly presented a
methodology that has to be refined as stated earlier,
but already drove original results in terms of the
number of bands, directions, scaling problem,
which appear to differ as a function of the biophys-
ical variables considered. 

Acknowledgements:Thanks are conveyed to the
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