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Abstract - A methodology for choosing a model describing the wheat kernel growth of 16 wheat cultivars, grown in
nine environments, is presented. Indeed, it was a preliminary and essential step before comparing the cultivars for their
rates and durations of grain filling. Four current growth functions, i.e. logistic with three parameters assuming that the
lower asymptote equals 0, logistic with four parameters estimating the lower asymptote, Weibull and Gompertz func-
tions, were compared. In a first step the parameters of the curve were estimated assuming that the variance of the
observed kernel weight was constant. Examining the graphs of absolute values of standardized residuals against predict-
ed values of kernel weight highlighted that the variance of errors in the regression model was not constant and suggest-
ed modelling the variance using a power function. In a second step, modelling of the variance was added to the model.
The models were compared using the likelihood ratio tests, the graphs of residuals, Akaike’s criterion and the biological
meaning of the estimated final kernel weight. Significant likelihood ratio tests indicated that, for all functions except
Weibull, the assumption of homogeneous variances had to be rejected; thus, it was necessary to model the variance.

Comparisons of the four functions using Akaike’s criterion led to keeping the logistic function with four parameters and
modelling of the variance. Comparing the estimates of the final kernel weight (95 % of the upper asymptote) obtained
with this model with observed kernel weights revealed that some of the estimates were not realistic from a biological
point of view. Finally, we chose to model the kernel growth using the logistic curve with three parameters for modelling
the growth curve and the power function for modelling the heterogeneity of variance. In addition, a modification of the
sampling protocol is also presented. (&copy; Inra/Elsevier, Paris.)

growth function / non linear model / variance modelling / wheat kernel

Résumé - Méthodologie pour choisir un modèle de croissance du grain de blé. Une méthodologie pour choisir un
modèle décrivant la croissance du grain de 16 variétés de blé, cultivées dans 9 milieux, est présentée. En effet, c’est une
étape préliminaire et indispensable pour comparer les variétés pour leurs vitesses et durées de remplissage du grain.
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Quatre fonctions de croissance classiques, i. e. la logistique à trois paramètres supposant l’asymptote inférieure égale à
0, la logistique à quatre paramètres estimant l’asymptote inférieure, les fonctions de Weibull et Gompertz, ont été com-
parées. Lors d’une première étape, les paramètres de la courbe sont estimés avec l’hypothèse d’une variance des poids
de grain observés constante. L’examen des graphiques des valeurs absolues des résidus centrés réduits contre les valeurs
prédites des poids de grain indique que la variance des erreurs n’est pas constante et suggère de modéliser la variance à
l’aide d’une fonction puissance. Lors d’une seconde étape, la modélisation de la variance est introduite dans le modèle.
Les modèles sont comparés à l’aide du test des rapports de vraisemblance, des graphiques des résidus, du critère
d’Akaike et de la signification biologique des estimations du poids de grain final. Les tests de rapport de vraisemblance
significatifs indiquent que pour toutes les fonctions excepté la fonction Weibull, l’hypothèse d’homogénéité des
variances doit être rejetée; il est donc nécessaire de modéliser la variance. Les comparaisons des quatre fonctions avec
le critère d’Akaike conduit à garder la fonction logistique à quatre paramètres et modélisation de la variance. La compa-
raison des estimations du poids final du grain (95% de l’asymptote supérieure) obtenues avec ce modèle aux valeurs
observées de poids du grain révèlent que certaines estimations ne sont pas réalistes d’un point de vue biologique.
Finalement, une courbe logistique à trois paramètres pour modéliser la croissance du grain, avec une fonction puissance
pour modéliser l’hétérogénéité des variances est retenue. Une modification du protocole de prélèvements est aussi pré-
sentée. (&copy; Inra/Elsevier, Paris.)

fonction de croissance / modèle non linéaire / modélisation de la variance / grain de blé

1. Introduction

The protein content of a grain is a trait involved
in the end-use quality of wheat grain [11, 20]. It is
calculated as the ratio of the total quantity of pro-
tein in the grain to the total dry matter quantity in
the grain and results from two filling phenomena:
dry matter and nitrogen filling. In order to charac-
terize the effect of genetic and environmental vari-
ations on the protein content, the genetic, environ-
ment and genetic x environment interaction effects
for these filling phenomena have to be studied.
Each of these fillings corresponds to a growth
which can be described by a curve and character-
ized by a rate and a duration. We must then ask
which growth function to choose, as the calculation
of the filling rate and duration depends on this. We
present a process for choosing a function describ-
ing the growth of a kernel and corresponding to dry
matter accumulation.

A method often used to calculate the filling rate
as a function of time, expressed in days or growing
degree-days after anthesis, consists in fitting a lin-
ear regression to a part of the data observed, the
slope of the line corresponding to the filling rate
[9, 12, 15, 23, 26, 27]. The duration can be estimat-

ed from the day of anthesis to the day correspond-
ing to the intersection of the regression line with
the horizontal line fitted through the last samplings
and considered to describe the maximal kernel

weight. It can be also calculated as the final kernel
weight divided by the filling rate [9, 23, 27]. It then
corresponds to the time interval defined by the
intersection of the abscissae axis with the regres-
sion line and by the intersection of this line with
the horizontal line describing the final kernel
weight [23, 29]. The time interval corresponding to
the lag period [23] is then omitted in the calcula-
tion. A visual examination on the curve has also
been proposed [26]. The difficulty of this method
is to define the linear period for fitting the regres-
sion [18]. In order to limit the subjective choice of
the linear period, regressions can be fitted succes-
sively and the interval giving the best coefficient of
determination can be kept [15, 23].

Fitting a quadratic [4, 18] or cubic polynomial
[1, 10] is a way of circumventing this difficulty.
For some studies, either a quadratic or a cubic
polynomial was fitted to each curve [2, 16, 17]. In
all the studies mentioned, the duration was defined
as the time when the first derivative of the polyno-
mial is equal to 0; the maximal weight predicted by
the function is reached at that time. In contrast, the



rate used to characterize curves varied according to
the authors. It was generally calculated as the max-
imal kernel weight predicted by the function cho-
sen, divided by the duration estimated and was
called the mean rate [4, 10, 16, 17]. The instanta-
neous rate is equal to the first derivative of the
function; the rate calculated at the time for which
the second derivative of the polynomial is equal to
0, called the maximum rate, was then used to char-
acterize the curves [15]. However, for Motzo et al.
[16], the maximum rate was estimated by the slope
of the linear regression providing the best fit,
among all the linear regressions calculated. In
Wardlaw and Moncur [28], a cubic polynomial was
only used to describe the curve and the rate and
duration were calculated by fitting a linear regres-
sion.

The logistic curve with a lower asymptote equal
to 0 was also used to model kernel growth [5, 8, 9,
15]. Such a non linear function is fitted to all the
values observed. The duration was defined as the
time required to reach 95 % of the upper asymptote
value and the maximum rate was calculated at the
time for which the second derivative of the logistic
function was equal to 0. In addition to the maximal
rate, a mean rate was calculated as the sum of
instantaneous rates estimated on a time interval

divided by the duration of this interval [5], for it

was considered as more representative of grain fill-
ing as it took into account the total duration.

Other non linear functions, such as Weibull and

Gompertz functions, are classically used to
describe growth phenomena [19, 22]. In this paper,
we compare the logistic, Weibull and Gompertz
models in order to describe kernel growth and to
estimate rate and duration of grain filling and final
kernel weight. The final model was chosen using
statistical criteria and biological references. The
variation of the variance of the observations versus
time was taken into account in the model.

2. Materials and methods

2.1. Field experiments

Sixteen bread wheat cultivars, Ami, Apollo,
Arminda, Baroudeur, Camp-Rémy, Forby, Qualital,
Récital, Renan, Rossini, Sidéral, Soissons, Talent,
Thésée, Trémie, Viking, all registered and cultivated in
France, were grown at Clermont-Ferrand in a random-
ized complete block design with two blocks, in nine
environments. Each environment corresponded to the
combination of one date of sowing, one nitrogen fertil-
ization practice and one year (table I). Plots consisted of



six rows spaced 20 cm apart, plot sizes were 4.5 m2 in
1995 and 7 m2 in 1996. On each plot, 100 stems were
collected at anthesis and 10 days after anthesis, then 50
spikes were collected every 5 days till maturity. Spikes
were oven-dried at 80 °C for 48 h. The mean dry weight
of one kernel was obtained after weighing 200 kernels,
except for the sampling at anthesis. Eight to I 1 sam-
plings were available per curve. As the study of grain
filling was destructive, a second identical trial was
planted in the same field to study yield, yield compo-
nents and quality. Mean kernel weights at maturity were
assessed in this trial.

2.2. Statistical methods

Four growth functions were compared:
- the logistic function with three parameters (L3),

with a null lower asymptote;
- the logistic function with four parameters (L4),

with a non null lower asymptote;
- the Weibull function (W);
- the Gompertz function (G).
Each growth function was characterized by its maxi-

mum rate Rm, equal to the first derivative of the func-
tion at the time which sets the second derivative to 0,
and by its duration D, the time required to reach 95 % of
the upper asymptote value. We defined the estimate of
the final kernel weight as 95 % of the upper asymptote

value. Equations of the functions and calculations of the
upper asymptote, rate and duration are presented in
table II. Time was expressed in cumulative growing
degree-days after anthesis. The sum of temperatures for
a day was calculated as T = (Tmin + Tmax)/2 - Tb,
where Tmin and Tmax are the minimum and maximum

temperatures of the day and Tb the base temperature,
chosen to be equal to 0 [21].

The statistical model considered was a non linear
model: the relationship between P, the kernel weight
and t, the sum of temperatures (figure 1) was the sum of
a systematic component f(t,&thetas;) and a random error &epsiv;. The

function, f, or growth function, depended on unknown
parameters &thetas; to be estimated. In each environment, for
each curve corresponding to the combination of one
variety by one block (16 cultivars x 2 blocks) we wrote:

where i was the sample indice, which varied from 1 to I,
and I was the total number of samples per curve, and
varied from 8 to 11.

In a first step, the observations were assumed to have
a constant variance var(&epsiv;i) = &sigma;2, as usually found in the
literature. In each environment, 32 vectors of parame-
ters &thetas; were estimated plus one parameter &sigma;2. The mod-
els considered were noted L3, L4, W and G according to
the growth function chosen. The graphical examination
of the residuals led us to reject the assumption of vari-
ance homogeneity. In a second step, we took into
account the lack of homogeneity, assuming that the





variance of an observation was proportional to a power
of the kernel growth: var(&epsiv;i) = &sigma;2 f(ti,&thetas;)&tau;, where &tau; and

&sigma;2 were the parameters to be estimated. They were
assumed identical for the 32 data sets belonging to the
same environment. In this case, 32 vectors of parame-
ters &thetas; were estimated plus the two parameters &sigma;2 and &tau;.

Modelling the variance for each growth function intro-
duced four new models noted L3V, L4V, WV and GV.
Once the growth function was chosen, the model assum-
ing a constant error variance, L3, for example, was nest-
ed in model L3V. When the parameter &tau; was nul, L3
and L3V were identical. We compared L3 and L3V by
testing the hypothesis H0: ’&tau; = 0’ against the alternative
A: ’&tau; &ne; 0’. The parameters &thetas;, &sigma;2, &tau; were estimated by
the maximum likelihood method, under the assumption
of a Gaussian distribution of the errors. The tests were
based on the statistics of the likelihood ratio test. The
confidence intervals at 95 % of the functions of parame-
ters Rm and D were calculated from the quantiles of the
Gaussian law [13]. The comparison of the eight models
considered was based on Akaike’s criterion [25] which
formalizes the principle of parsimony, making a com-
promise between likelihood, which has to be high, and
the number of parameters. The higher the number of
parameters, the better the fit since the discrepancy
between the observed and fitted values is low, and thus
the higher the likelihood. In contrast, the higher the
number of parameters, the larger the variance of the
estimator. The model which maximized Akaike’s crite-

rion was kept.

All calculations were made with the nls2 library [3]
of SPLUS software [24].

3. Results

For each of the growth models L3, L4, W and G,
the parameters were estimated for each environ-
ment and the graphs of the residuals were exam-
ined to detect possible deviations from the model.
The graphs diagnosed variance heterogeneity
revealed by the higher scatter of the standardized
residuals for high fitted values (figure 2A). This
result was coherent with the phenomenon studied
and simply expressed that the variance of a growth
phenomenon varies during the time course of the
phenomenon and increases with the growth
progress [6, 22]. The variance was then modelled
with a power function defining models L3V, L4V,
WV and GV. For each set of 32 curves, a likeli-

hood ratio test for testing the hypothesis of vari-
ance homogeneity was performed.

3.1. Logistic models

The likelihood ratio test of the hypothesis that
the model was L3 against the alternative that the



model was L3V (table III, column 1) led to the
rejection of model L3. The examination of the
graphs of standardized residuals versus fitted val-
ues of the growth function for model L3V (fig-
ure 2B) confirmed the improvement brought by
modelling the variance: the distribution of the
points was more uniform for model L3V than for
model L3 (figure 2B) and the line joining the
points after smoothing was quasi-horizontal. The
graphs did not suggest any model misspecification.
Comparison between L4 and L4V models was
more critical as the numerical procedure to esti-
mate the parameters for model L4V did not con-

verge in four environments out of nine. If we
restricted ourselves to the environments for which

convergence was reached, results of the likelihood
ratio test for model L4 against model L4V as well
as the examination of residuals (figure 2) led to the
rejection of model L4 with the same arguments as
for model L3. All the environments for which con-

vergence was not reached corresponded to the year
1996. Examining the sums of temperature high-
lighted that, in these environments, higher temper-
atures after the anthesis of all cultivars delayed the
beginning of observations. Consequently, the lag
period was removed from some curves, particularly
those of late cultivars, as illustrated by cultivars
Apollo, Forby, Arminda and Viking in figure 3. In
consequence, estimation of a lower asymptote was
not always possible.

To overcome these convergence problems, we
strengthened the constraints on parameter &tau;. Model
L4V assumed that the &tau; value was common to the
32 curves belonging to the same environment, but
that &tau; could vary according to the environment. We
defined a new model, L4V2, for which we imposed
a fixed value of &tau;, common to the nine environ-

ments, as a new constraint. This parameter value
was set as equal to 2, by referring to the &tau; values
obtained in model L3V (table III, column 2). L4V2
can be neither compared to L4 nor to L3V with a
test that can only compare embedded models, but
Akaike’s criterion can be used. Comparing
Akaike’s criterion for models L3V, L4V and L4V2
(table IV) led us to prefer L4V or L4V2 except for
environments 3, 6 and 7, for which a value of 2 for
&tau; may not have been the most relevant. At this

stage of the analysis, it was necessary to remember
the aim of modelling. We wanted to estimate the
rate and duration of grain filling as well as the final
kernel weight. The definitions of these quantities
as functions of the model parameters are given in
table II. As experimental values were available for
kernel weight, the biological meaning of the esti-
mates of kernel weight could be assessed. The
approximate values were compared to the kernel
weight values observed on plots of the second
experiment designed to study yield and quality.
The estimates of the parameters differed from one
model to the other. The values of the kernel weight
estimates were not credible for some cultivars

(table V). Figure 4 showed that model L3V gener-
ally provided estimates of kernel weight closer to
the observed values than model L4V. A thorough
examination of the fit obtained for each variety
showed that the lack of observations at early filling
led to the estimation of the lower asymptote by a
strongly negative value. As a consequence the
maximal rate was under-estimated and the upper

asymptote over-estimated. Model L3V was thus

preferred among the different logistic models stud-
ied.

3.2. Weibull model

The likelihood ratio test (table III) and the
graphs of residuals (figure 2A and B) showed that
taking into account the variance heterogeneity did
not improve the fit when the growth function was
the Weibull function. The graph of standardized
residuals showed a systematic under-estimation of
the growth at the beginning of grain filling (figure
2B), which was not surprising, since the Weibull
function we proposed assumed that the kernel
weight was null when t was null, i.e. at anthesis. At
this stage, the weight of the ovary, although low,
cannot be considered as null. We generalized the
Weibull function by considering the function
defined by f(t) = a(1 - e -b(t + d)c), which is null
when t is equal to -d. The algorithm maximizing
the likelihood did not converge: the value of the

parameter d which contributed to the solution of
the algorithm seemed to tend to infinity. A Weibull
function cannot thus be kept.









3.2. Gompertz model

The examination of the standardized residuals
for the Gompertz model indicated an over-estima-
tion at early filling followed by an under-estima-
tion (figure 2B). After studying the absolute stan-

dardized residuals, we chose to model the variance

using the power function previously defined (fig-
ure 2A). However, the convergence was only
reached for GV in three environments (table III).
Similarly to model L4V, we set the value of &tau; to 2,
making the convergence problem disappear. The



likelihood ratio test and the graph of absolute stan-
dardized residuals suggested that model GV was
better than model G (table III and figure 2).
However, the graph of the standardized residuals
(figure 1B) showed an over-estimation at the end of
grain filling which led us to finally reject this
model.

4. Discussion

Taking into account both Akaike’s criterion and
the graphs of residuals showed that a logistic
model was well adapted for fitting the data and
thus characterizing the growth curves for their rate
and duration. The relationship between the kernel
weight estimates and the kernel weights observed
in the second experiment planted to study yield led
us to choose the logistic function with a null lower
asymptote and a modelling of variance (L3V).
Studies which compare models depicting grain
growth are few. Jones et al. [14] compared, in rice,
the negative exponential, the logistic and Gompertz
functions and the cubic polynomial. The latter
model was retained but the method for the choice
was not described. Loss et al. [15], after compari-
son of the linear regression, the cubic polynomial
and the logistic function with three parameters,
considered the logistic as more useful owing to
smaller confidence intervals for duration and to a
better fit of the curve to observed values (smaller
residuals). A characteristic of our study compared
to the previous one was a definition of the rate and
duration similar for the three growth functions; the
presence of an upper asymptote in each model
allowed a definition of duration common to the
three curves.

None of the studies using the logistic with three
parameters [5, 7, 8, 15] proposed modelling the vari-
ance errors. However, this modelling appeared nec-
essary for well fitting the data sets when using the
logistic and Gompertz functions. Thus, the possibili-
ty of modelling the variance of observations must be
introduced into every process to model growth.
The introduction of two additional parameters,

the lower asymptote and the parameter &tau;, com-

bined with the lack of observations at the begin-
ning of grain filling, explained the problems of
convergence of the estimating algorithm of the
parameters. Indeed, the estimators of parameters
maximized a criterion, the likelihood, for which
the contribution of each observation depended on
the inverse of the variance of that observation. For
a model in which the variance of an observation
increased with its expectation, the observations
made at the beginning of grain filling contributed
more to the estimation of the parameters than those
made at the end of filling. This may explain why
the environments in which the lag period was not
observed presented problems of convergence dur-
ing the estimating procedure for model L4V. This
problem of no convergence for the environments of
the year 1996, due to higher temperatures in early
grain filling than in 1995, led us to reconsider the
protocol for sampling. Indeed, in order to simplify
the task of the experimenter, sampling dates are
usually determined with numbers of days after
anthesis, even if time is expressed as cumulative
degree-days. Our results indicated that, to correctly
describe growth using a thermal scale for the time,
it is better to directly define sampling dates with
sums of temperatures rather than with days; an
alternative is to make the first sampling early after
anthesis in order to integrate the lag phase. In the
case of the 1996 environments, the first samplings
started around 200 degree-days after anthesis, a
sum of temperatures which seemed too high.
Taking into account the sums of temperature
observed in 1995, it seems preferable to start sam-
pling spikes at 150 degree-days at the latest.

5. Conclusion

Comparing several functions classically used to
describe growth phenomenon, using several statis-
tical criteria, led us to keep the logistic model with
three parameters and modelling of the variance to
characterize dry matter filling in wheat kernel. The
variations of the rate and duration of dry matter
and nitrogen grain fillings and their relationship
with the variations of the protein content will be
presented in a subsequent paper.
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