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Summary &mdash; The maize line x environment interaction for biomass dry matter yield was analysed using a multilocal
factorial mating design. Various models, such as joint regression, biadditive model, factorial regression and structuring,
were performed in order to partition and explain the interaction. Except for the joint regression model, which oversimpli-
fied the interaction pattern, all the models were effective in accounting for the line x environment interaction. Biological
connections have been established between these models. The biological interpretation, using additional information,
shows that the line x environment interaction for biomass yield in maize could to a large extent be due to earliness
effects and yield-limiting factors, such as lodging susceptibility and water stress. The consequences of interaction mod-
elling in plant breeding are discussed.

genotype x environment interaction / factorial regression / biadditive model / pattern analysis / biomass yield /
maize

Résumé &mdash; Analyse statistique et interprétation des interactions lignée x environnement pour le rendement en
biomasse chez le maïs. Les interactions lignée x environnement pour le rendement en biomasse chez le maïs ont été
étudiées à partir d’un plan factoriel multilocal. Différents modèles, comme la régression conjointe, la modélisation biad-
ditive, la régression factorielle et la structuration, ont été utilisés dans le but de décomposer et d’expliquer ces interac-
tions. En dehors de la régression conjointe, trop simplificatrice, les autres modèles sont tous efficaces pour rendre
compte de l’interaction. Certaines connexions biologiques ont pu être mises en évidence entre les modèles. L’interpré-
tation biologique, grâce surtout à la connaissance d’informations supplémentaires sur les milieux et lignées, montre
que la plus grande part de l’interaction lignée x environnement pour le rendement en biomasse chez le maïs est due à
des effets précocité et à des facteurs limitants du rendement, comme la sensibilité à la verse et le manque d’eau. Les
conséquences en sélection sont aussi discutées.

interaction génotype x environnement / régression factorielle / modèle biadditif / structuration / rendement en
biomasse /maïs

* 

Correspondence and reprints



INTRODUCTION

In many trials in which a set of genotypes is

grown over a range of environments, the geno-
types have distinct differential responses. This

phenomenon, known as genotype x environment
interaction, presents serious problems in compar-
ing the performances of genotypes over several
environments and affects the extent of genetic
progress through selection. Thus, when the
genotype x environment interaction is significant,
its nature, cause and implication must be careful-
ly examined (Magari and Kang, 1993). The
detection and characterization of genotype x
environment interaction has been approached in
various ways, which have been reviewed by
Freeman (1973), Denis and Vincourt (1982) and
Westcott (1986).

In maize, it has been shown that grain and bio-
mass yield display significant high main effects
and genotype x environment interactions

(Vattikonda and Hunter, 1983; Geiger et al, 1986;
Kang and Gorman, 1989; Crossa et al, 1990;
Dhillon et al, 1990; Magari and Kang, 1993). The
objective of maize breeders is to produce high-
yielding and adapted genotypes for a wide range
of environments. Genotype x environment inter-
actions were studied for grain productivity (Kang
and Gorman, 1989; Crossa et al, 1990), but not
for biomass productivity.

Whole-plant dry matter yield is a major criteri-
on for silage maize breeding. Data from a multi-
local factorial mating design were used to study
the effects of contrasting environments on the
general combining ability of inbred lines. We
focused on the interaction between the breeding
value of lines and environments. Statistical mod-

els were used in order to characterize the lines

and environments, and reveal the biological fac-
tors responsible for the interaction, thus analyz-
ing the consequences for plant breeding. Several
statistical models were used in order to see if

their complementarity features could be of any
help to the biological interpretation of interac-
tions. Consequently, these models were com-
pared on the basis of their effectiveness in

accounting for line x environment interaction. The
prediction ability of the models was not consid-
ered.

MATERIALS AND METHODS

Experimental data

The study was conducted within the framework of an
agreement between various private breeding compa-
nies belonging to Promais1, the French research insti-
tute INRA and the French Ministry of Agriculture. Ten
inbred lines (table I) were chosen as parents of a fac-
torial mating design. These lines originate from various
germplasm and present a large variability for yield.
They were crossed to 4 tester lines (table I). The
crosses were evaluated on 21 environments. These 21

environments corresponded to 2 years (1992 and
1993) and/or different locations, from south-west of
France to the Netherlands (fig 1). The trials were ran-
domized block designs with one replicate, each block
corresponding to crosses with one tester line. Block
effects and tester effects were thus confounded. The

plant density was about 100 000 plants per hectare.
The trials were harvested at silage stage and in each
environment at the same date for all the genotypes. In
addition to whole plant dry matter content and dry mat-
ter yield, the following traits were measured: mid-silk-
ing date (as the number of days after July 1 st) and root
lodging susceptibility (marked from 0, not lodged, to 5,
all plants affected by severe lodging).

Meteorological data were also recorded in each

environment: sum of air temperature from sowing to
harvest (degree days, basis 6°C); average daily air
temperature above 6°C; sum of rainfall from sowing to
harvest (mm); and sum of rainfall during the months of
June, July and August (mm), which correspond to the
period of maximum sensitivity of maize to water stress.

Statistical analyses

Preliminary analyses

As the objective of this study was to analyze the inter-
action between the line breeding values and the envi-
ronments, we considered the means of hybrids over
the testers in each environment. Let Yij be the breed-
ing value of line i in the environment j. A classical
model can be written:

where &mu; is the grand mean, li the average breeding
value of line i, ej the average effect of environment j,
and lij the interaction studied between the breeding
value of line i and the environment j.

1 Members of Promais who joined the network program: CACBA, Cargill, Caussade Semences, Ciba Semences, Corn
States International, Eurosemences, Limagrain, Maisadour, Northrup King Semences, Pioneer, Prograin Genétique,
RAGT, Rhône-Poulenc Agro, Rustica, SDME, Semundo, SES, Van der Have.



The data from the plots of all crosses between lines
and testers in the different environments, provided an
error term Eijk (degrees of freedom = 540), confound-
ing the triple interaction between line i, tester k, and
environment j, and the random experimental error.
Therefore, as we could not distinguish the triple inter-
action from the experimental error, since only one

replicate was available, we had to suppose that the
triple interaction was low compared to the experimen-
tal error, in order to perform the classical significance
tests. To confirm this hypothesis, the Eijk mean square
was compared to a mean of error variance estimations
provided by comparable trials including replicates. The
F-ratio, equal to 1.12 was not significant (p value =
0.21). Therefore, we could consider that the estimated
variance of Eijk overestimated the true error variance

by only a small amount. Consequently, this variance
estimation has been used in the significance tests
involved in interaction models. The estimated error

terms were confirmed to meet the required assump-
tions of the analysis of variance (they were identically
and independently distributed like N(0, &sigma;2)).

Interaction modelling

Several linear and non-linear models were fitted in

order to partition the sum of squares of the line x envi-
ronment interaction (SSI) in different ways. Each
model enables spliting lij into 2 parts. One accounts for
variation due to interaction while the other is supposed
to be a residual term. The analyses performed were:
joint regression; biadditive model; pattern analysis; and
factorial regression. All these models were regarded
as fixed-effect models. They were of 2 types: the first 3
models used no extra-information, the latter included

complementary characteristics of genotypes and/or of
environments.

Joint regression
The most classical approach of joint regression was
described by Yates and Cochran (1938), Tukey (1949)
and Finlay and Wilkinson (1963). The interaction is
assumed to be a linear function of the mean perfor-



mance of the lines in each environment. The model of

the expectation of the line i in the environment j is:

where &gamma;i stands for the regression coefficient of the
response of line i on the estimate êj of the environment
main effect.

Biadditive model

Biadditive models of interaction effects were described

by Gollob (1968), Mandel (1971), Crossa et al (1990)
and Denis and Gower (1992). The basis of these mod-
els is to partition lij as a sum of multiplicative terms
involving parameters which are specific to each of the
interacting factors. The expectation of response can be
written:

where r is the number of multiplicative terms, &lambda;ui and

&eta;uj are, respectively, the parameters specific to the line
i and environment j for the uth multiplicative term

(&Sigma;&lambda;2ui.=&Sigma;&eta;2uj, &forall;u). This model shows analogies with
principal component analysis. It is a bilinear model

which does not need to assume a linear response of
the genotypes over the environments.

Multiplicative terms were introduced as long as they
significantly explained the interaction and until the
residual term of the interaction was no longer signifi-
cant.

Interaction structuring
We chose the simultaneous agglomerative hierarchical
clustering procedure based on the interaction term
(Corsten and Denis, 1990). Groups of lines and groups
of environments were simultaneously identified, in

such a way that the interaction was mainly distributed
between groups. The simultaneous clustering of lines
and environments leads to the model:

where g(i) and h(j) designate the groups formed with
the lines and environments, respectively. In this way,
the line x environment interaction was split into 4 parts:
variation between groups of lines - between groups of
environments (BB), considered as the explained part
of line x environment interaction; variation between
groups of lines - within groups of environments (BW),
variation within groups of lines - between groups of
environments (WB); and variation within groups of
lines - within groups of environments (WW). The last 3
together were considered to be the residual term of
interaction.

As suggested by Baril et al (1994), we decided to
stop the clustering process when the determination
coefficient (defined as the ratio of the 2 main effects
plus BB variation on the total variation of the model)
was greater than 0.95.

Factorial regression
The factorial regression model (Hardwick and Wood,
1972; Wood, 1976; Denis, 1980, 1988) uses concomi-
tant genotypic and environmental information in order
to split the line x environment interaction into biologi-
cally interpretable terms. This method can be consid-
ered as expensive, for it requires additional recordings,
especially in an exploratory stage, when no precise
source of variation can be suspected. However it is the
only model that can directly lead to effective biological
interpretations that are useful for growth prediction
(Haun, 1982), environment potential characterization
(Abou-El Fittouh et al, 1969) and plant breeding
(Hardwick and Wood, 1972; Wood, 1976).

The mid-silking date (SD) and dry matter content
(DM) were chosen to serve as genotypic and environ-
mental covariates. Lodging susceptibility (LS) served
only as genotypic covariate because of technical prob-
lems. For each trait, the estimations of the genotypic
and environmental additive parameters respectively
defined the genotypic and environmental covariates,
as proposed by Baril (1992). The meteorological
observations also served as environmental covariates.

The stepwise process proposed by Denis (1988)
was applied. The factorial regression model was built
by successive addition of the most significant covari-
ates explaining the line x environment interaction. After
finding the best single covariate model among all the
possible 1-covariate models, the best 2-covariate
model was looked for, given the first covariate, and so
forth until the addition of a covariate brought no more
significant information. For example, using 1 covariate

(X) for the line effect, and 1 covariate (Z) for the envi-
ronment effect, the decomposition of the different
effects involved in the model is:

where &delta; and &omega; are the regression coefficients on main
effects (line and environment, respectively), &alpha;j and &beta;j
are the residual terms of the genotypic and environ-
mental main effects, respectively, &phiv; is the regression
coefficient on the product of the 2 covariates, &rho;i is the

genotypic regression coefficient on the environmental
covariate, and &tau;j is the environmental regression coeffi-
cient on the genotypic covariate.

The models were compared regarding their ability to
significantly explain the interaction. Classically, this is

made by use of the coefficient of determination R2,
which is computed as the percentage of the interaction
sum of squares accounted for by each model, namely:

where SSI and SSM are the sums of squares of the
total interaction and of the part of interaction explained
by the model used, respectively.
We also took into account the number of degrees of

freedom used by the models, because these were
intrinsically different regarding their degrees of com-



plexity (number of parameters). We therefore comput-
ed R2 adjusted for the number of parameters in the
model (Judge et al, 1980), calculated as:

where dfI and dfM are the degrees of freedom of the
total interaction and of the part of interaction explained
by the model, respectively.

The statistical analyses were performed using the
Intera software (Decoux and Denis, 1991) which pro-
vides least-square estimates of the parameters.

RESULTS

Table II indicates that, in the joint regression on
an estimate of the main environmental effect, the
differences between regression coefficients &gamma;i

accounted for 6% of the total interaction only. As
a consequence the residual term of interaction

was highly significant. The study of the residual
terms of the interaction revealed that the model

fitted the data badly for some particular lines like
LH74, F1772 and Co125.

Only 2 multiplicative terms were introduced in
the biadditive model and led to a non-significant
residue; they accounted for 56% of the interac-
tion sum of squares, using only 30% of the
degrees of freedom of the interaction (table III).
Figure 2 presents the plots of the first multiplica-
tive parameters (&lambda;1i and &eta;1j) against the additive
parameters and the second multiplicative para-
meters (&lambda;2i and &eta;2j) against the first multiplicative
parameters, for the lines and environments.
Figure 2a indicates the contrasting behavior of
line LH74, which displayed the highest additive
parameter and by far the highest &lambda;1i (this line is

also the latest one). Except for lines F1772,



Co125 and F271, which were susceptible to root
lodging and displayed quite a strong negative &lambda;1i,
the other lines had low &lambda;1i. The plot of &lambda;2i against
&lambda;1i (fig 2b), distinguishes F271 and Co255, which
displayed a high positive &lambda;2i, and W33, F1772
and Co125, which had a high negative &lambda;2i.
Figures 2c and 2d show a homogeneous distribu-
tion of the environments on both plots. Notably,
there was no structure according to the location
and/or the year.

Table IV recapitulates the results of the opti-
mal factorial regression model, among the avail-
able covariates. With 3 covariates using 26% of
the available degrees of freedom, 55% of the
interaction sum of squares could be explained,
the residual term of the interaction being non-sig-
nificant at a 0.01 probability level. The genotypic
covariates SD and LS explained 24 and 22% of

the SSI respectively. Rainfall during the period
from June to August (RF) explained 9% of the
SSI. We can notice that these covariates also
explained a large part of the main effects. The 2
genotypic covariates SD and LS explained 56%
of the yield variation among lines and the envi-
ronmental covariate RF explained 28% of the
yield variation among environments (table IV).

Table V gives the values of the covariates for
the lines and the associated regression coeffi-
cients. Some environments displayed very high
negative regression coefficients on the genotypic
covariate LS, such as, for example, environments
206 and 104. In contrast, other environments
exhibited high positive regression coefficients on
the genotypic covariate LS, such as, for example,
environments 209 and 122. Regarding the
regression coefficient on the genotypic covariate



SD, we can particularly distinguish 2 types of
environments. Environments such as 108 and

209 displayed high negative regression coeffi-
cients. Environments such as 122 displayed high
positive regression coefficients.

Table V also gives the values of the environ-
mental covariate and the associated regression
coefficients. Some lines such as F1772, Co255
and F244 displayed positive regression coeffi-
cients on the environmental covariate RF, where-
as lines such as Co125, LH74, F288 and W33
exhibited negative regression coefficients.

By stopping the clustering process when the
determination coefficient was equal to 0.95, 7
groups of environments and 6 groups of lines
were obtained (table V). The BB term was highly
significant and contained 59% of the SSI with

only 17% of the total degrees of freedom (table
VI). Moreover, the remainder term was not signif-
icant at the 0.01 probability level.

DISCUSSION

The line x environment interaction can be ana-

lyzed by use of several models, such as joint
regression, the biadditive model, factorial regres-
sion and cluster analysis. This analysis can help
us to: i) propose a biological interpretation of the

interaction; ii) compare the different models
regarding their statistical effectiveness, their simi-
larity or complementarity; and iii) analyze their
relative consequences for plant breeding.

Biological interpretation

The factorial regression model provided an inter-
esting partitioning of line x environment interac-
tion of yield data into a sum of linear functions of
genotypic and environmental covariates, which
have the advantage of enabling biological expla-
nations of interactions for yield. Based on our
results, we can conclude that line x environment
interaction for biomass dry matter yield is mainly
due to earliness effects and yield-limiting factors
such as lodging susceptibility and water deficien-
cy, because the level of these stresses is vari-

able among the environments and the responses
of the genotypes are different.

The results of the regression coefficient on the
genotypic covariate SD could be clarified consid-
ering the sum of temperatures between sowing
and harvest, in each location, although this
covariate was not statistically effective in an
exhaustive model. We must notice that when the

sum of temperatures was alone, it was a signifi-
cant environmental covariate for explaining the



interaction, but that it lost its significance when it

was taken together with the genotypic mid-silking
date covariate, because of redundancy.
Nevertheless, climatic conditions were worth con-

sidering. Some environments with high positive
regression coefficients on the genotypic covariate
SD (for example, environment 122) accentuated
the effects of earliness, probably because the cli-
matic conditions at the end of summer, in these

environments (warmer with sufficient rainfall),

were favorable to the ripening of the latest lines.
In contrast, we observed that the environments
108 and 209 had the highest negative regression
coefficients. Thus, the latest lines were particular-
ly disadvantaged there. These environments
were characterized by the lowest sums of tem-
peratures between sowing and harvest.

Therefore, part of the line x environment interac-
tion was due to the latest lines that displayed
reduced yield in cold environments and, on the



contrary, were advantaged in warm environ-

ments. This result was also found on wheat by
Baril (1992).
The regression coefficients on the genotypic

covariate LS revealed environments in which a

large amount of selective lodging occurred (for
example, environments 206 and 104) and envi-
ronments with proportionally smaller lodging (for
example, environments 209 and 122). The impor-
tance of lodging susceptibility in explaining the
line x environment interaction for biomass yield,
actually comes from the measure of yield. It is

biased by severe lodging for some genotypes in
some environments, since the harvests were

generally made without manual straightening of
the plants. This could have been suspected
because: i) during the 2 years 1992 and 1993, a
large amount of lodging occurred following
severe local windstorms; ii) the locations were
very distant from one another and thus great dif-
ferences in average lodging were to be expected;
and iii) among the 10 lines studied a large vari-
ability for lodging susceptibility existed.
The values of the regression coefficients on

the environmental covariate RF reveal that some

lines such as F1772, Co255 and F244 seemed to
either be more susceptible to water deficiency
during the critical period around flowering or to
take better advantage of natural water availabili-
ty. Therefore, the sum of rainfalls during the peri-
od of particular sensitivity of maize towards water
deficiency (June, July and August) explained a
significant part of the line x environment interac-
tion for yield. This is in agreement with the work
of Mohammad Saeed and Francis (1984) on
grain sorghum yield. However, Kang and

Gorman (1989) and Magari and Kang (1993), in
the USA, found that pre-season rainfall and rain-
fall during the growing season explained a very
low amount of the interaction for grain maize
yield.

From these results, it was noticed that 2 years
of experiment in the same location always dif-
fered from one another. The absence of evident
structure of environmental multiplicative parame-
ters quoted previously in the results suggests
that the effect of years on the magnitude of inter-
action could be as important as the effect of loca-
tions.

Comparison of the models

The 4 models used in the present study, joint
regression, biadditive models, factorial regres-
sion, and cluster analysis, accounted for 6, 56,
55 and 59% of the interaction sum of squares
using 9, 54, 47, and 30 interaction degrees of
freedom respectively (table VII) The adjusted R2
value provides an estimator of the variation
explained, adjusted for the number of parameters
in the model. This value allowed us to rank the

models as joint regression, biadditive model, fac-
torial regression and cluster analysis, respective-
ly, from the least to the most efficient model
(table VII). However, it must be pointed out that
this statistic is probably biased and overestimat-
ed for the non-linear biadditive and clustering
models.

The use of the joint regression on the estimate
of the main environmental effect did not allow a

satisfactory description of the data in our study,



probably because this model assumes a linear
response of the lines to the biological potential of
the environments. This oversimplification of the
joint regression model was previously mentioned
by Hill (1975).
The 3 other models were able to significantly

account for line x environment interaction,
explaining more than half of the interaction sum
of squares and the residual term was non-signifi-
cant (at the 0.01 probability level) (table VII). In

addition, the number of parameters included in
the cluster analysis model was smaller than the
others, and so this model showed a better effec-
tiveness, regarding the adjusted R2 criterion

(table VII). However, as already suggested, the
adjusted R2 calculation favored non-linear mod-

els, such as cluster analysis, over linear models.
Therefore, the effectiveness of cluster analysis
must be tempered. On the other hand, these 3
methods have their own advantages and disad-
vantages, but do not appear as independent
regarding the interpretation of the results.

Factorial regression is specific, since it

includes extra information (ie the covariates). A
number of types of covariates can be considered.
Some can be derived from the traits studied,
others are new characters recorded on the geno-

types which could be involved in the trait studied,
or data describing the environments (climatic
data). In our case, data on earliness, lodging sus-
ceptibility of the genotypes in the environments
and environment climatic characteristics such as

rainfall, mainly explained the line x environment
interaction for biomass yield. In this sense, facto-
rial regression was more effective for the biologi-
cal interpretation of the interaction. It allowed us
to reveal some key factors of adaptation to the
environment for maize: earliness (even though it

is probably overestimated here) in relation to the
temperature regime, susceptibility to lodging, and

sensitivity to water deficiency. It could therefore

enable us to characterize the response of the

genotypes to variable environments and assist in
the choice of experimental locations so that they
can better reveal possible defects of the evalu-
ated genotypes.

Biadditive models are often considered as

good models to partition the genotype x environ-
ment interaction (Crossa et al, 1990). The biplot
display of parameters is also very useful in that it

helps visualize the overall pattern of the data as
well as the genotype x environment interaction,
both in terms of the main effects and multiplica-
tive components. Nevertheless, the interpretation
of the parameters provided by biadditive models
is not always obvious. It is made easier by the
knowledge of additional information on geno-
types and environments. Some associations
between the results of biadditive models and

those of factorial regression were thus highlight-
ed. Lines (eg, LH74, F1772, Co125, F271) and
environments (eg, 206, 104, 108, 209) with maxi-
mum and minimum MT1s in the biadditive model,
were characterized by extreme values of some
covariates and associated regression coeffi-
cients, estimated by factorial regression. The
parameters computed from the biadditive model
give an estimation of the contribution of the lines
to the interaction for biomass productivity, and
highlight lines of a high stability. Similar conclu-
sions could be drawn from the environmental

multiplicative parameters which could be used to
discard non-interactive locations.

Cluster analysis is a relevant tool to classify
genotypes and environments in order to decom-
pose and interpret genotype x environment inter-
action. A crucial point of this method is to deter-
mine the criterion that allows us to cut the cluster

procedure. We used the coefficient of determina-
tion, and chose to stop the clustering process



when this was greater than 0.95. However, it led

to a too large number of groups found (7 groups
of environments, 6 groups of lines). The difficulty
of interpretation of so many units together leads
us to consider the possibility of obtaining fewer
groups. A priori data on earliness, pedigree, or
usual agronomic traits did not really help interpret
the groups obtained. These characteristics

depend little on the environment and have strong
effects on yield. Such information is more likely to
explain a part of main line effect. However, it

could be observed that the groups corresponded
to lines which were not very different regarding
their multiplicative parameters. The interpretation
of environment groups was made easier by the
knowledge of additional information on the envi-
ronments, because some associations between
the results of clustering and those of factorial
regression could be highlighted. The 2 groups
including a single environment (122 and 206)
corresponded to the environment with by far the
highest positive regression coefficient on the
genotypic covariate SD and to the environment
with by far the highest negative regression coeffi-
cient on the genotypic covariate LS, respectively.
The first group was composed of environments
that displayed both positive regression coeffi-
cients on the covariate LS and negative regres-
sion coefficients on the covariate SD. The sec-
ond group included environments which exhibited

positive regression coefficients on the genotypic
covariate LS, whereas in the fourth group, these
coefficients were negative. The environments of
the sixth group displayed high negative environ-
mental covariate RF together with positive
regression coefficients on the genotypic covariate
LS. Therefore, some biological connections could
be established between the results of the pattern
analysis, factorial regression, and biadditive
models. From a breeding point of view, the clus-
tering method enables us to assess whether all
the environments of the experimental network
are really relevant to account for the genotype x
environment interaction or if some of them could

be removed. In fact, in our study we showed that
the number of environments could be consider-

ably reduced without losing too much information
on the interaction for biomass yield. This could
lead to rational savings in breeding programmes.
However, our work clearly pointed out the magni-
tude of year effect in the interaction. As a conse-

quence, the uncontrollable year factor should not
be included in highly performing trial networks. It

is a major limitation in the generalization of our
conclusions.

CONCLUSION

Joint regression failed to describe the line x envi-

ronment interaction satisfactorily, probably
because of an oversimplification. However, the
other 3 methods used in this study (biadditive
model, pattern analysis and factorial regression)
were able to significantly account for the interac-
tion.

In agreement with van Eeuwijk (1992), we
have shown that various methods led to similar

results and interpretation, and that biological con-
nections could be established between the

results of factorial regression, pattern analysis
and the biadditive model. However, even though
each of these models explained slightly more
than half of the interaction, they were not strictly
identical, because part of their results did not

agree with each other. Therefore, they probably
also exhibited some complementarity, which
could be very useful.

On the basis of our results, we concluded that
the line x environment interaction for biomass dry
matter yield in maize could essentially be due to
differences in line earliness and lodging suscepti-
bility (and to the different ability of the environ-
ments to reveal them), and to differences in envi-
ronment rainfalls (and to the variable susceptibili-
ty of the lines to water stress).

Interaction modelling has been shown to be
useful for maize breeding. It enables us to evalu-

ate the contribution of the genotypes to the inter-
action, to highlight some key factors of adapta-
tion to the environment for maize, and to optimize
the construction of the experimental networks.
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