

Application of endomycorrhizae to commercial production of Rhododendron microplants

Mc Lemoine, S Gianinazzi, V Gianinazzi-Pearson

▶ To cite this version:

Mc Lemoine, S Gianinazzi, V Gianinazzi-Pearson. Application of endomycorrhizae to commercial production of Rhododendron microplants. Agronomie, 1992, 12 (10), pp.881-885. hal-00885446

HAL Id: hal-00885446

https://hal.science/hal-00885446

Submitted on 11 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Mycorrhizae

Application of endomycorrhizae to commercial production of *Rhododendron* microplants

MC Lemoine, S Gianinazzi, V Gianinazzi-Pearson *

INRA-CNRS, laboratoire de Phytoparasitologie, Station de génétique et d'amélioration des plantes, INRA, BV 1540, 21034 Dijon Cedex, France

(COST Meeting, 21-23 May 1992, Dijon, France)

Summary — Rhododendron plants produced in vitro are weaned under greenhouse conditions but \approx 10% of the microplants either die or do not grow during this stage. A series of experiments was carried out to determine whether production could be increased through controlled mycorrhization. Of 7 fungi isolated from roots of plants sampled in a commercial nursery (Derly France, SA), 1 was mycorrhizal and 6 caused significant damage, showing the need to disinfect substrata before outplanting. Of 5 combinations of pH and substrata tested, only 1 was suitable for both plant growth and mycorrhization. Screening of different strains of ericoid mycorrhizal fungi from our laboratory against microplants of 9 cultivars of *R hybrida* indicated a physiological specificity between fungi and plants. These results show that the use of defined disinfected substrata, combined with specific mycorrhizal fungal strains, is essential for guaranteeing an optimal production of outplanted *Rhododendron* microplants at the nursery level.

endomycorrhiza / Rhododendron / microplants / nursery substratum

Résumé — Application de l'endomycorhization à la production commerciale de plants de Rhododendron micropropagés. Les plants de Rhododendron issus de culture in vitro subissent environ 10% de pertes lors de leur acclimatation en serre. Des essais de mycorhization contrôlée ont été effectués pour tenter d'améliorer le système de production. L'examen de racines de plantes prélevées en pépinières a révélé la présence de 7 champignons différents parmi lesquels 1 est endomycorhizogène et 6 sont défavorables à la culture, d'où la nécessité de désinfecter le substrat avant le repiquage des jeunes vitroplants. L'utilisation de 5 combinaisons différentes de substrats et de pH a permis de déterminer des conditions de cultures optimales. Un criblage entre plusieurs isolats de champignons endomycorhiziens et différents cultivars de Rhododendron a indiqué l'existence d'une spécificité physiologique entre les 2 partenaires. Ces résultats montrent que l'utilisation d'un substrat sélectionné et désinfecté associée à une endomycorhization controlée serait essentielle à l'optimisation de la production en pépinière de Rhododendron issus de vitroplants.

endomycorhizes / Rhododendron / micropropagation / pépinière

INTRODUCTION

Ericaceous plants constitute an important part of the ornamental horticulture business. About 50% of the production is based on micropropagated plants, but at weaning ≈ 10% of plants either die or do not attain market standards, causing significant losses at the commercial level. Mycorrhizal infection of *Rhododendron* has been studied (Peterson *et al*, 1980; Duddridge, Read, 1982; Moore-Parkhurst, Englander, 1981, 1982; Doug-

las et al, 1989) and has frequently been shown to enhance mineral nutrition and growth of ericaceous plants such as Calluna vulgaris L, Vaccinium or Rhododendron species (Gianinazzi-Pearson, Gianinazzi, 1981; Beaujard, 1982; Read, Bajwa, 1985; Straub, 1988). A series of experiments was therefore carried out to test the efficiency of controlled mycorrhization for survival of Rhododendron clones and therefore for improvement of the production system of this ornamental plant.

^{*} Correspondence and reprints

882 MC Lemoine *et al*

MATERIALS AND METHODS

Rhododendron hybrida microplants, provided by "Pépinières Derly France", were outplanted and weaned under growth chamber conditions (23 °C, 16-h day, 90% relative humidity) for 3 months. The different nursery substrata used for experimentation were sterilized by γ-irradiation (10 KGy). Nutrient solution (Liquo Plant FD2, Plantin) was applied twice a week and plant fresh mass was measured after 8 wk growth. Endomycorrhizal infection was estimated as percent root colonization. Ten replicate plants were used per treatment and data were analysed by ANOVA and Newman–Keuls test.

Fungal isolates

Indigenous fungi were isolated from 4-3-month-old nursery Rhododendron plants growing in bf3 substratum (Hydroazote, Lyon). Roots were washed in sterile water and disinfected with antibiotics according to Pearson and Read (1973). Small root pieces were incubated in water agar and the fungi growing out were isolated. Seven isolates were obtained. These and 5 isolates of known ericoid endomycorrhizal fungi from our laboratory (lpae 9, 13, 15, 25, 42) were grown for 14 d in Norkrans liquid medium with 20 ppm phosphorus, mycelium was filtered, washed, macerated and suspended in water; each plant received 1 ml of this inoculum suspension. Isolates Ipae 25 and 42 were identified as Hymenocyphus ericae Korf and Kernan, whilst the others were unidentified ascomycetes.

Substrata tested

Five nursery substrata were tested for growth and my-corrhization (lpae 25) of 4 clones (124, 206, 209, 282) of *Rhododendron* microplants: bf3 at pH 4.5, bf3 at pH 6.0, Stekmedium (Klassman), Hortipro (Wogesal) and Floratorf (Floragard).

Screening of fungal isolates

Nine clones of *Rhododendron* (110, 117, 119, 136, 200, 201, 209, 212, 232) were outplanted into substratum bf3 and inoculated either with 1 of the 5 different isolates of ericoid endomycorrhizal fungi or with a mixture of the 5 isolates. The 7 fungi isolated from nursery plants were tested individually by inoculating one

Rhododendron clone (126). Controls were uninoculated plants.

RESULTS AND DISCUSSION

Indigenous fungi

In spite of intensive fungicide treatments (2 or 3 fungicides* and insecticides** were applied twice weekly at the nursery stage) seven fungi were isolated (A-G) from Rhododendron roots (table I). Among these 7 isolates, only one (A) was mycorrhizal and presented a typical infection pattern (intracellular hyphal coils in 90% of the roots). Plants inoculated with this isolate showed good growth, similar to that obtained with isolate lpae 25, both isolates giving more homogenous populations. The other 6 isolates (B-G) caused significant damage to the microplants, which in some cases died, and only a few plants showed normal growth. These results indicate that fungicide treatments were not sufficient to eliminate all the fungi from the substrata and that it is advisable to disinfect the substrata before outplanting Rhododendron microplants.

Table I. Effects of fungi isolated from roots of *Rhodo-dendron* microplants on growth of clone 126.

Fungal strains	Fresh mass (mg)	% coefficient of variation	
A	2 161ª*	11.38	
В	507 ^b	37.31	
C	377 ^b	57.55	
D	14 ^c	16.76	
E	625 ^b	15.49	
F	94 ^b	36.36	
G	539 ^b	37.00	
lpae 25	1 817 ^a	8.53	

"Values for each clone followed by different letters are significantly different at 95% confidence levels.

^{*} Procymidone: Sumisclex; vinchlozoline: Ronilan; zirame: Pomarsol; iprodione: Rovral; prothiocarb: Previcur; benomyl: Benlate.

^{**} Deltamethrine: Decis; dichlorvos: Dedevap; methomyl: Lannate.

Nursery substrata

There was a significant effect of the different substrata on growth of the 4 tested clones of Rhododendron microplants inoculated with strain lpae 25 (table II). Substratum bf3 used at pH 4.5 gave best results for weaning of all Rhododendron plantlets, and significant mycorrhizal growth responses were observed for clones 124 and 206. For each of these clones, the coefficient of variation indicated that the mycorrhizal plant population was more homogenous than the non infected one. Stekmedium had good early effects but plant growth slowed down by 8 wk. In general, mycorrhization caused an increase in plant growth of clones on Stekmedium, whilst clones were generally less responsive on Floratorf and Hortipro. There was an effect of pH for substratum bf3, plant growth being generally lower at pH 6.0 than pH 4.5. Infection was high (50-80%) in

Table II. Effect of five nursery substrata on growth of 4 clones of mycorrhizal (+M) (lpae 25) and non-mycorrhizal (NM) *Rhododendron* microplants.

Rhodo- dendro		Fresh weight (mg)		% coefficient of variation	
clones		NM	+M	NM	+M
124	bf3 pH 4.5	28 ^b *	73a	54.28	27.04
	Hortipro	8 ^b	9 b	11.02	27.32
	Floratorf	7 ^b	10 ^b	6.95	7.71
	Steklmedium	8b	26 ^b	5.67	29.61
	bf3 pH 6	9 _p	24 ^b	3.30	21.17
206	bf3 pH 4.5	45 ^b	123a	37.28	20.05
	Hortipro	12°	17 ^c	18.34	13.80
	Floratorf	19 ^c	27°	28.16	21.88
	Stekmedium	19 ^c	91a	18.68	9.18
	bf3 pH 6	10 ^c	22 ^c	3.44	31.14
209	bf3 pH 4.5	106ª	118ª	29.47	17.45
	Hortipro	36 ^b	39b	28.92	9.53
	Floratorf	21 ^b	75 ^{ab}	17.88	12.86
	Stekmedim	30 ^b	64 ^{ab}	23.11	13.78
	bf3 pH 6	42 ^b	82ab	36.20	16.66
282	bf3 pH 4.5	33ab	48a	38.92	25.70
	Hortipro	11 ^b	15 ^b	14.62	9.93
	Floratorf	10 ^b	21 ^{ab}	22.03	23.56
	Stekmedium	14 ^b	34 ^{ab}	9.23	11.49
	bf3 pH 6	20 ^{ab}	31 ^{ab}	34.25	18.15

Values for each clone followed by different letters are significantly different at 95% confidence levels.

bf3 and Floratorf, and low (10%) in the other substrata. The former was therefore used for screening of endomycorrhizal fungal isolates.

Screening of fungal isolates

Some physiological specificity was observed between the different Rhododendron cultivars and the fungal isolates (table III). Significant positive effects on plant growth, as compared to noninoculated controls, were only observed for isolates lpae 9 with clone 212 and lpae 13 with clone 232, although significant differences between isolates regarding effect on plant growth were also observed for clones 119 and 200. Isolate Ipae 25 tended to improve growth and decrease heterogeneity (lower coefficients of variation) of the Rhododendron clones 119 and 200, whilst positive effects of isolates lpae 9 and 15 were observed with clones 117 and 209; in the latter, growth stimulation was also observed with isolate lpae 42. With clone 201, the control became infected with mycorrhizal fungi, so there was no response. The mycorrhization by certain isolates was inclined to decrease heterogenity with smaller variations between plants (lower coefficient of variation) being related to positive growth effects for Rhododendron clones 117, 119, 136, 200 and 232. Improved homogeneity of the plantlet populations should constitute an important parameter for choice of the fungal strain. The mixture of isolates did not give better results than an isolate alone, indicating that it was sufficient to choose one specific fungal strain and that interactions between strains were not synergistic. Plant growth increase and root infection were not necessarily correlated. Some fungal isolates had negative effects on growth and homogeneity of certain Rhododendron clones (eg lpae 25/clone 201), underlining the necessity to screen for beneficial combinations.

CONCLUSIONS

The results reported here clearly show that defined culture procedures should be adopted to ensure successful production of microplants of *Rhododendron*. It is essential to carefully choose substrata with an appropriate pH (4.5) and this should be disinfected before outplanting of microplants, in order to eliminate

884 MC Lemoine *et al*

Table III. Growth of 5 clones of *Rhododendron* microplants outplanted into disinfected bf3 substratum and inoculated with different endomycorrhizal fungi.

			Substratum and		1pa 20	02	10.47
inoculated w	ith different	endomycorrhi	zal fungi.		lpa 42	41 ^b	15.97
					Mixture	46 ^{ab}	16.90
					Control	50 ^{ab}	17.22
Rhododendı	ron Fungal	Fresh mass	% Coefficient				
clones	strains	(mg)	of variation	201	lpa 9	97ª	17.99
					lpa 13	60 ^{ab}	12.99
					lpa 15	49 ^b	19.37
110	lpa9	136 ^a *	11.70		lpa 25	106 ^a	17.74
	lpa 13	197 ^a	12.64		lpa 42	124 ^a	22.12
	lpa 15	134 ^a	6.64		Mixture	99a	10.62
	lpa 25	122 ^a	12.33		Control	124 ^a	22.26
	lpa 42	160 ^a	12.65				
	, Mixture	173 ^a	9.80	209	lpa 9	1 181ª	12.64
	Control	174 ^a	13.53		lpa 13	803a	15.74
					lpa 15	1 230 ^a	10.00
117	lpa 9	178 ^a	6.32		lpa 25	886a	19.83
-	lpa 13	141 ^a	20.23		lpa 42	1 177 ^a	7.50
	lpa 15	175 ^a	9.48		Mixture	1 190 ^a	15.96
	lpa 25	116 ^a	23.08		Control	860a	15.50
	lpa 42	109 ^a	16.76		00111101	000	10.00
	Mixture	132 ^a	11.06	212	lpa 9	441 ^a	19.07
	Control	109 ^a	13.60	212	lpa 13	340 ^{ab}	24.39
	Control	100	10.00		lpa 15	295 ^{abc}	14.78
119	lpa 9	67 ^{ab}	23.40		lpa 15	294abc	13.29
	ipa 3 lpa 13	48 ^b	22.50			283abc	7.03
	•	40 ^b			lpa 42	202bc	14.38
	lpa 15		28.60		Mixture	134 ^{bc}	
	lpa 25	115 ^a	16.09		Control	13460	18.55
	lpa 42	83 ^{ab}	22.01	220	les 0	010hc	14.04
	Mixture	48 ^b 65 ^{ab}	22.60	232	lpa 9	210 ^{bc}	14.34
	Control	poan	16.38		lpa 13	450 ^a	12.99
136	l== 0	0002	44.44		lpa 15	353 ^{ab}	10.69
	lpa 9	326ª	41.41		lpa 25	169 ^c	13.01
	lpa 13	303a	13.43		lpa 42	217 ^{bc}	16.15
	lpa 15	345 ^a	17.31		Mixture	281bc	13.73
	lpa 25	410 ^a	16.19		Control	305bc	19.70
	lpa 42	345 ^a	16.55				
	Mixture	257a	11.20				
	Control	283 ^a	16.61				
				* Values fo	r each clone folk	wed by differer	nt letters are s
200	lpa 9	54 ^{ab}	13.54	ficantly diff	erent at 95% con	fidence levels.	

lpa 13

45ab

49.18

ACKNOWLEDGMENTS

The authors thank the Pépinières Derly France for supplying the plant material and for financial support to MC Lemoine and are grateful to C Pimet for technical assistance.

REFERENCES

Beaujard F (1982) Problèmes posés par la mycorhization des bruyères en pépinières. *C R Séances Acad Agric* 68 (2), 1178-1192

47ab

82a

22.38

16.47

lpa 15

lpa 25

Douglas GC, Heslin MC, Reid C, 1989 Isolation of *Oidiodendron maius* from *Rhododendron* and ultrastructural characterization of synthesized mycorrhizas. *Can J Bot* 67, 2206-2212

Duddridge J, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in *Rhododendron poncticum*. *Can J Bot* 60, 2345-2356

Gianinazzi-Pearson V, Gianinazzi S (1981) Role of endomycorrhizal fungi in phosphorus cycling in the ec-

harmful fungi. It would also be advantageous to inoculate microplants with an appropriate endomycorrhizal ericoid fungus adapted to both the substratum and plant clone, in order to ensure optimal growth and homogenous production of microplants.

- osystem. In: The Fungal Community. Its Organization and Role in the Ecosystem Mycology Series (Wicklow DT, Caroll GC, eds) 2 (33), 637-652
- Moore-Parkhurst S, Englander L (1981) A method for the synthesis of a mycorrhizal association between Pezizella ericae and Rhododendron maximum seedlings growing in a defined medium. Mycologia 73, 994-997
- Moore-Parkhurst S, Englander L (1982) Mycorrhizal status of *Rhododendron* spp in commercial nurseries in Rhode Island. *Can J Botany* 60, 2342-2344
- Perterson TA, Mueller WC, Englander L (1980) Anatomy and ultrastructure of a *Rhododendron* root–fungus association. *Can J Botany* 58 (23), 2421-2433
- Read DJ, Bajwa R (1985) Some nutritional aspects of the biology of the ericaceous mycorrhizas. *Proc R Soc Edinburgh* 85B, 317-332
- Straub S (1988) Amélioration de la multiplication, de la conservation et de l'acclimatation du *Rhododen-dron* par utilisation des vitrométhodes et de la mycorhization. *Mém Fin d'Etudes, Ecole Nat Sup Hortic Versailles*, 144 pp