Mites of the family Phytoseiidae (Acarina, Mesostigmata) as predators of the Japanese bayberry whitefly, Parabemisia myricae Kuwana (Hom., Aleyrodidae) (1)
Manes Wysoki, Martine Cohen

To cite this version:
Manes Wysoki, Martine Cohen. Mites of the family Phytoseiidae (Acarina, Mesostigmata) as predators of the Japanese bayberry whitefly, Parabemisia myricae Kuwana (Hom., Aleyrodidae) (1). Agronomie, 1983, 3 (8), pp.823-825. hal-00884576

HAL Id: hal-00884576
https://hal.science/hal-00884576
Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Manes WYSOKI & Martine COHEN (*)

Division of Entomology, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, ISR 50250 Bet Dagan

(*) Laboratory of experimental Entomology, University of Amsterdam, 10985 M. Amsterdam

SUMMARY

The Japanese bayberry whitefly, *Parabemisia myricae* (Kuwana) (*Hom.*, *Aleyrodidae*), a newly introduced pest of avocado and citrus in Israel, is attacked by two predacious mites, *Euseius rubini* Swirski & Amitai, and *Amblyseius swirskii* Athias-Henriot (*Mesostigmata*, *Phytoseiidae*). Adults of *E. rubini* preyed on all stages of this whitefly; larvae attained adulthood when fed on eggs and larvae of *P. myricae*, but reached only nymphal stages when fed on 2nd and 3rd instars. The adults of *A. swirskii* fed on eggs and larvae and on 2nd and 3rd instars, and continued to lay eggs. The young stages of *A. swirskii* attained adulthood only when fed on eggs and larvae of *P. myricae*; when fed on 2nd and 3rd instars they died in the nymphal stage. A survey was made of *E. rubini* in association with *P. myricae* in avocado orchards.

Additional key words: *Euseius rubini*, *Amblyseius swirskii*, predation, avocado, citrus.

NOTE

I. INTRODUCTION

The Japanese bayberry whitefly, *Parabemisia myricae* (Kuwana), a newly introduced pest in Israel (*STERNLICHT*, 1979), causes serious damage to citrus and somewhat less damage to avocado plantations (*SWIRSKI et al.*, 1980a; 1980b). The pest occurs also on other plants (*SWIRSKI et al.*, 1980a). At the same time the pest was reported as new in California (*Anon.*, 1978; *ROSE et al.*, 1981). In Japan (*KUWANA*, 1927), its country of origin, the pest is successfully controlled by the parasitic wasp *Encarsia (= Prospaltella) bemisiae* (Ishii) (*Hymenoptera*, *Aphelinidae*) (ISHII, 1938; *YASUMATSU & WATANABE*, 1965). In Israel some natural enemies imported from other countries were released in the field: e.g. *Eretmocerus* sp. (*Hymenoptera*, *Aphelinidae*) sent by M. ROSE and P. DEBACH from California; *Delphastus pusillus* (Leconte) and *Nephaspis amnicola* Win. (*Coleoptera*, *Coccinellidae*) sent by Po-Yung LAI from Hawaii; *Cybocephalus binotatus* Grouvelle (*Coleoptera*, *Coccinellidae*) from laboratory culture of D.
BLUMBERG, originally from Pakistan. The establishment of these natural enemies in Israel is not yet known. Several local natural enemies were observed to prey on this pest: coccinellids, chrysopids (Chrysopa carnea Stephens), and a heteropterous predator from the family Aniiocoridae (SWIRSKI et al., 1982). Predatory mites from the family Phytoseiidae were found in considerable numbers associated with this pest, particularly Euseius rubini (Swirski & Amitai) and Amblyseius swirskii Athias-Henriot (SWIRSKI et al., 1982); the former is more abundant in avocado orchards, and the latter in citrus plantations (WYSOKI & SWIRSKI, 1971). In a Bet Dagan orchard, as many as 50 predatory mites of E. rubini were observed on one avocado leaf infested with P. myricae.

Laboratory trials were conducted to clarify the predatory habit of these mites on P. myricae.

II. MATERIALS AND METHODS

The laboratory culture of E. rubini was started from mites collected in avocado orchards at Bet Dagan heavily infested with P. myricae. The A. swirskii used in those experiments were from a laboratory culture of 9 years on Carpobrotus edulis N. Bal. pollen, so they were well adapted to this food. This strain is even less effective as a predator (RAGUSA & SWIRSKI, 1977). The mites were bred according to SWIRSKI et al. (1967) and all stages of P. myricae collected from the field were supplied as food. The experiments were done on small plates (3 cm diameter), with a base plate on which a sponge and filter paper were placed to ensure moisture for the avocado leaf used as substrate. A plastic cover with a 3 cm opening was placed on the leaf and fixed in place by 2 metal clips. A barrier consisting of Canada balsam and castor bean oil (1:1) surrounded the plate to prevent the mites from escaping. The experiments were conducted in incubators at a constant temperature of 27 ± 1 °C, 70 % R.H., and 16 h light/8 h dark regime.

III. RESULTS

A. Field records

In many avocado orchards of Israel E. rubini was found in association with P. myricae, and was observed to prey on the pest. The records are as follows (coll. with E. SWIRSKI and det. with E. SWIRSKI & S. AMITAI): Rosh Hanqiqa 19.XI.81, Matzuba 6.II.79, 20.III.81, 19.XI.81, Eylton 6.II.79, Cabri 6.II.79, 20.III.79 (abundant), Yetiam 5.IX.79, Regba 6.II.79, 19.XI.81 (Western Galilee); Daphna (abundant), Mulata, Sade Eliezer (abundant), Yesod Hamaala, Gadot, Shefer, 24.IX.81, (Upper Galilee and Hula Valley); Arbél 8.IX.81 (Lower Galilee); En HaShofet 8.XII.81 (Mt. Carmel); Bet She’arim, Kibbutz Sarid, Megiddo 8.XII.81 (Yizre’el Valley); Ramat Yohannan 23.VII.79, Ein Shemer (abundant), Ein HaHoresh, Nahshonim, Ramat HaKoves 31.VIII.81, Ga’ash 21.IX.79; 31.VIII.81 (abundant), Bet Dagan V.81 (abundant) (Coastal Plain); Tequma 25.III.82 (Negev).

B. Laboratory experiments

The laboratory experiments and field observations show that the adults of E. rubini prey on all stages of P. myricae, even on newly emerged whiteflies that still do not have extended wings. The mites were observed copulating and laying eggs. Moreover, when the mite populations started from larvae, they attained adulthood and laid eggs when fed on the eggs and larvae of P. myricae (table 1). The same populations (from larvae of E. rubini) when started on 2nd and 3rd instars, were not successful and the mite reached only nymphal stages. Nymphs of E. rubini attacked the eggs and larvae and reach adulthood, but if they preyed on 2nd and 3rd instars they did not reach adulthood. Laboratory mass rearing of P. myricae was successful for 6 generations.

In preliminary experiments with A. swirskii, the mites preyed on P. myricae. The adults fed on eggs and larvae and continued to lay eggs (average of 0.35 egg/female/day), as they did when fed on 2nd and 3rd instars (0.28 egg/female/day). The young stages of this predator did not develop beyond nymphal stages.

TABLE 1

<table>
<thead>
<tr>
<th>Stages of P. myricae as a food</th>
<th>Active stages</th>
<th>Initial population</th>
<th>Attaining adulthood</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>females</td>
<td>males</td>
</tr>
<tr>
<td>Eggs and larvae</td>
<td>larva</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>nymphs</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>adults</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>second and third instars</td>
<td>larva</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>nymphs</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>fourth instars (and pupae)</td>
<td>adults</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

(*) Did not develop beyond nymphal stages.
not develop on this prey to adulthood, except when fed on eggs and larvae. When larvae of *A. swirskii* bred on 2nd and 3rd instars they died in the nymphal stage. The *A. swirskii* used in those experiments was a strain which had been bred in the laboratory for 9 years and was well adapted to pollen of *C. edulis*. This strain is characterized by low fecundity, and thus, additional experiments should be carried out with field-collected mites.

IV. DISCUSSION, CONCLUSION

Mites of the family *Phytoseiidae* are known as predators of whiteflies. *A. swirskii* and *E. rubini* are effective predators of the tobacco whitefly, *Bemisia tabaci* (Gennadius) (Teich, 1966; Swirski et al., 1967). The immature stages of *B. tabaci* were also attacked by 3 additional phytoseiids: *Typhlodromus medianicus* Elbadry, *T. sudanicus* Elbadry (Elbadry, 1967) and *Amblyseius aleyrodis* Elbadry (Elbadry, 1967) and *Amblyseius aleyrodis* Elbadry 1967 (Elbadry, 1968). *A. aleyrodis* attacks the immature stages of *B. tabaci* and reaches a very high oviposition rate: 1.8 progeny on whitefly nymphs and 1.07 on whitefly eggs, per female per day (Elbadry, 1968); *E. rubini*, fed on the same food, had an average of 0.68 progeny (Teich, 1966; Swirski et al., 1967). In addition to *E. rubini* and *A. swirskii*, 4 other species are found in avocado orchards of Israel: *Typhlodromus athiasae* Porath & Swirski (Swirski et al., 1981, 1982), *Seiulus amaliae* Ragusa & Swirski (Swirski, 1980), *Amblyseius largoensis* Muma and *Iphiseius degenerans* Berlese, which was observed in one case to prey on *P. myricae* (Swirski et al., 1982). The predation of *P. myricae* by phytoseiid mites is one example of the adaptation of local natural enemies to a newly introduced pest.

REFERENCES

