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Abstract – We present a plant trait database covering autecology for rain forest trees of French Guiana. The database comprises more than thirty traits
including autecology (e.g., habitat associations and reproductive phenology), wood structure (e.g., density and tension characteristics) and physiology
at the whole plant (e.g., carbon and nitrogen isotopes) and leaf level (e.g., specific leaf area, photosynthetic capacity). The current database describes
traits for about nine hundred species from three hundred genera in one hundred families. For more than sixty species, data on twelve morphological
and ecophysiological traits are provided for individual plants under different environmental conditions and at different ontogenetic stages. The database
is thus unique in permitting intraspecific analyses, such as the effects of ontogenetic stages or environmental conditions on trait values and their
relationships.

plant traits / tropical forest / French Guiana / functional groups / plasticity / ontogeny

Résumé – Une base de données sur l’autécologie des arbres de la forêt tropicale de Guyane française. Nous présentons une base de données sur
l’autécologie des arbres de la forêt tropicale de Guyane française. La base contient des données sur plus de trente traits concernant l’autécologie (par
exemple, les préférences d’habitat et la phénologie reproductive), la structure du bois (par exemple, la densité et les caractéristiques du bois de tension)
et la physiologie aux niveaux de la plante entière (par exemple, les isotopes du carbone et de l’azote) et de la feuille (par exemple, la surface spécifique
ou la capacité photosynthétique). Dans son état actuel, la base décrit les traits d’environ neuf cents espèces de trois cents genres dans cent familles.
Pour plus de soixante espèces, des données sur douze traits morphologiques et écophysiologiques sont fournis au niveau individuel pour des plants dans
différentes conditions environnementales à différents stades ontogéniques. Cette base de données permet donc des analyses intraspécifiques, comme les
effets des stades ontogéniques ou des conditions environnementales sur les valeurs des traits et leurs relations, ce en quoi elle n’a pas d’équivalent.

traits / forêt tropicale / Guyane française / groupes fonctionnels / plasticité / ontogénie

1. INTRODUCTION

Databases compiling species traits are important tools for
plant ecologists to understand patterns of species abundance
and distribution at a time of rapid loss of species diver-
sity [10, 16, 17, 23, 24]. Recent studies have underlined at
least four compelling research applications for such databases.
First, trait databases can help us to understand basic strategies
of resource use or biomass allocation among plants. Recent
compilations [10, 34, 51, 52] illustrate how data from many
different sources can be combined to confirm general conclu-
sions of plant functioning that have been suggested from lo-
cal datasets. Second, trait databases permit comparisons and
contrasts of species diversity and plant functional types across
natural environmental gradients, both within and among sys-
tems. For example, several studies demonstrate how trait val-
ues such as high foliar nutrient content are associated with
particular environmental conditions such as high annual pre-
cipitation [33, 49, 50]. Third, trait databases are being used to
select focal species for experimental communities to test re-
lationships between species diversity, functional diversity and
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ecosystem function [21, 40], or to refine subsequent analyses
for existing experiments [31]. More recently, a fourth objec-
tive has been underlined, to understand evolutionary patterns
among trait associations, such as the origin of seed mass asso-
ciations with other plant traits [27, 28].

In general, within-species analyses for continuous traits,
such as leaf attributes, use a mean trait value for species, with-
out consideration of the variability masked by that mean value.
To address this gap, we propose a fifth application of trait
databases of a particular construction, within-species analyses.
We recognize three particular types of intra-specific variability
that could influence the mean value of traits reported in most
databases, noting that analyses of each of these levels of vari-
ation represent advances for the application of trait databases.
First, the observed phenotype of many plant traits can be
strongly influenced by genotype of individuals for which trait
screening has been conducted; we refer to this as the effect
of genetic diversity. For example, Balaguer et al. [1] found
significant differences in biomass allocation patterns and fo-
liar nutrient contents among Quercus coccifera seedlings from
three Mediterranean ecotypes differing in isozyme patterns. A
second level of intraspecific trait variability occurs based on

Article published by EDP Sciences and available at http://www.afs-journal.org or http://dx.doi.org/10.1051/forest:2007058

http://www.edpsciences.org
http://www.afs-journal.org
http://dx.doi.org/10.1051/forest:2007058


782 M. Ollivier et al.

the environmental conditions under which measurements are
made; we refer to this as species plasticity. For example, foliar
traits are often reported for ‘sun leaves’, but the definition of
sun may include plants grown in pots under high transmission
shadecloth and those in the field under open conditions [48].
In some cases, these environmental effects can interact with
genotype effects so that the observed phenotype is the result
of genotype × environment interactions; for example, in the
study by Balaguer et al. [1], the three ecotype populations re-
sponded differently when grown in sun vs. shade. A third level
of variation that may occur within species involves differences
in trait values with plant size or developmental stage; we re-
fer to this as ontogenetic plasticity. In a recent meta-analysis,
for example, Thomas and Winner [47] report significant dif-
ferences between saplings and adult trees of 35 tree species,
for several photosynthetic traits.

In this paper, we present MARIWENN, a trait database for
woody plant species of the Guiana Shield region of South
America that has been constructed to permit both intra- and
inter-specific contrasts. First, we describe the construction of
the database and the sources of available data; in doing so,
we contrast the design and potential uses of the database with
those of other plant trait databases such as GLOPNET and
LEDA. We then present some examples of analyses that can
be conducted using the database, including the unique aspect
of within species comparisons in addition to the contemporary
interspecific contrasts.

2. CONTENT

We gathered plant trait data for more than nine hundred woody
plant species from French Guiana, representing over three hundred
genera in more than one hundred families. Many data sources appear
only in the grey literature, and thus would not otherwise be easily
accessible to all researchers. The first part of the database was built
to be an exhaustive compilation of the results of research on general
species traits. No standardization of the data was made at this step;
the purpose was just to organize the data rigorously to allow users to
find data sources and the methods employed. The result is a compre-
hensive synthesis of data covering fields from wood structure to re-
productive phenology (Tab. I). The modular structure of the database
allows new data to be entered as it is generated.

The second purpose of the database was to structure data of plant
traits to allow multivariate analyses. Unlike the first approach, this
framework requires normative rules of measure and organization of
the data. Moreover, specific measures are required to structure the
database. The trait list reflects the state of the art of research and
may change according to demands and new discoveries (Tab. II). Un-
like the GLOPNET [23] databases, MARIWENN contains trait val-
ues measured on individual plants. Each value is then linked to many
other fields that permit more complex queries: details of measure-
ments (protocol); its author (reference); the environment, described
with two levels of detail (general environment such as glasshouse
or canopy, and detailed environment indicating the soil or the to-
pographic position, or light level); and the ontogenetic stage of the
plant. The mean and standard deviation of the trait can be computed
as requests are made, for each ontogenetic stage and each environ-
ment type. Filters are available to reduce the dataset to a chosen light

level or detailed environment. This organization allows the retention
of a large number of individuals or the isolation of particular environ-
mental conditions, as a trade-off between sample size and variability
among individuals.

The recorded traits are based on those described by Cornelissen
et al. [7], without limitation (Tab. II). A priority of recent research
has been leaf traits, including: specific leaf area, leaf area, laminar
thickness, foliar carbon, nitrogen and phosphorus contents, and pho-
tosynthetic traits. An intensive campaign of measurement is being
processed to enhance the database.

The botanical database is a straight adaptation of the checklist of
the plants of the Guianas [3], including, where possible, a reference
to the herbarium of Cayenne (IRD). Taxonomy is detailed down to
the variety or subspecies, even though the standard level of detail
is the species. Vernacular names are available as supplementary in-
formation. However, we caution the use of the database as a source
of cross-referencing between scientific and common names because
these links often vary between regions. The sites of field and exper-
imental studies are referenced and their main characteristics detailed
for each entry.

We chose to develop the database to maximize its versatility. No
data related to the studied species are excluded a priori. The geo-
graphic limit is that of the botanical database which includes the
plateau of the Guianas. The present content of the database is re-
stricted to forest trees, but data from mangroves, savannas or non lig-
neous vegetation will be added as future research programs provide
them.

3. USING THE DATABASE

All the published data are available through the Internet
on http://ecofog.cirad.fr/Mariwenn. Unpublished data may be
available in advance upon request of a password from the cor-
responding author. Future work will naturally be keeping data
compilation up to date and also completing the trait records
at plant level. We hope to gather individual data for most of
the traits of the 100 most abundant woody species in French
Guiana within two years.

Data can be obtained by species (all data available for a
given species) or by topic (all species available for a given
subject).

The web access is particularly easy to use but does not
allow complex queries. Direct access using SQL queries is
possible from the local network only, for technical and secu-
rity reasons. Scientific collaborations are thus the easiest way
to obtain complete access to the database, and interested re-
searchers are invited to contact the corresponding author.

3.1. Examples of intraspecific analyses

In its current state, the database allows analyses within
species for variation between environmental conditions, or be-
tween ontogenetic stages (see examples suggested in Tab. III).
Current collections for trait screening are following half-
sibling cohorts within species and will thus permit contrasts
to be made to analyze ‘genotype’ or genotype × environment
effects on trait values.
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Table I. Traits that have been measured at the species level that can be used in interspecific comparisons within this database or in concert with
other databases, across sites or biomes.

Trait References

Ecophysiological data

Nitrogen: Isotopic signature (δ15N) and leaf nitrogen concentration in various forest sites [35–38]

Carbon: δ13C values and leaf carbon concentration at several sites [4]

Photosynthesis-related ecophysiological parameters measured in glasshouse [8]

Biomechanics

Wood density at 12% moisture [5]

Wood durability, impregnability; durability against termites and fungi [14, 15]

Tension wood characteristics [41]

Soil-vegetation relations

Characterization of the edaphic preferences of species [6, 30, 45]

Architecture and phenology

Seedling morphology [2]

Architectural patterns of trees [18–20]

Vegetative phenology [26]

Reproductive phenology [9, 26, 42–44]

Reproduction

Seeds and fruit characteristics [2, 6, 12, 26, 42]

Pollen dispersal [9]

Forest dynamics

Pioneer species and soil seed bank [29]

Response groups of species for light [11]

Height groups: position of species in the vertical structure of the forest [6]

Horizontal spatial structure of tree species [6]

Table II. Traits describing species morphology and physiology that have been measured for individual plants for a given ontogenetic stage and
under particular controlled environmental conditions, thereby permitting intra-specific analyses of species’ plasticity across different environ-
mental gradients, or ontogenetic shifts in trait values.

Trait Unit Measurement

Relative growth rate (RGR) mg g−1 d−1 After Hunt [22]

Root-shoot ratio g g−1 Root biomass/shoot biomass

Specific leaf area cm2 g−1 leaf area/leaf biomass

Leaf blade surface area cm2 LICOR 3000 meter

SPAD chlorophyll estimation SPAD units Minolta SPAD-502 meter

Leaf thickness µm Mitutoyo caliper

Leaf dry matter content mg g−1 After Garnier et al. [13]

Leaf mass ratio g g−1 Leaf area/total biomass

Net assimilation rate (Amax) µmol CO2 cm−2 s−1 CIRAS-1 System

Dark respiration rate (Rd) µmol CO2 cm−2 s−1 CIRAS-1 System

Stomatal conductance (Gs) µmol CO2 cm−2 s−1 CIRAS-1 System

Foliar [d13C] %� Mass spectrometer [4]

Foliar [N] % CHN autoanalyzer

Foliar [P] % HF digest; colorimetry

Water use efficiency (WUE) µmol H2O mol−1 CO2 Amax/Gs

Nitrogen efficiency index (NUE) µg g−1 d−1 Foliar [N]/RGR

Phosphorus efficiency index (PUE) µg g−1 d−1 Foliar [P]/RGR
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Table III. Examples of intra-specific calculations of species’ plasticity or performance response ratios, across different environmental gradients,
that can be performed using the MARIWENN database.

Calculated index Unit Calculation

Response ratio - Light % RGRhilite/RGRlolite

Response ratio - Soil moisture % RGRhiSM/RGRloSM

Response ratio - Soil nutrients % RGRhiSN/RGRloSN

Plasticity in SLA % range of SLA/SLAmax

Plasticity in WUE % range of WUE/WUEmax

Plasticity in NUE % range of NUE/NUEmax

Plasticity in root-shoot allocation g g−1 range of RS/RSmax

Plasticity in leaf area ratio cm2 g−1 range of LAR/LARmax

A

B

Figure 1. Examples of intra-specific analyses that can be conducted
using the MARIWENN database. (A) Do species with particular
mean values of a given trait exhibit greater breadth in trait values
across a range of environmental conditions? In this example, we test
whether species with low root-shoot ratio (R-S) have a larger range
in R-S (relativized to maximum value; see Tab. II), across a light gra-
dient varying from 2–20% of full sun. Data from C. Baraloto, unpub-
lished. (B) Do species maintain trait values throughout developmen-
tal stages and/or size classes? In this example, we test whether mean
values for SLA of sun leaves for 25 species change between juveniles
and adult trees. Data from C. Baraloto and D. Bonal, unpublished.

Figure 1 illustrates two types of analyses that can be con-
ducted using queries of the current database. The first exam-
ple examines, for a given ontogenetic stage, if species-level
trait breadth differs among species. In this case, the example
addresses a species-level scenario for the hypothesis of Taylor
and Aarssen [46] or Lortie and Aarssen [25] who suggest that
a greater breadth of traits related to fitness should be exhib-
ited by generalist species because they are exposed to selec-
tion under heterogeneous environments. If it is assumed that
among tropical tree seedlings, the more specialized ecologi-
cal guild is the light-demanding species, who generally have
low root-shoot ratios [32], then we would predict a negative
relationship between trait breadth and trait value in this case.
However, no significant relationship was found for the species
in the MARIWENN database (Fig. 1A).

The second example tests whether trait values, at a given
environmental level (in this case leaves exposed to full sun)
differ between developmental stages. Figure 1B shows a sig-
nificant relationship between adult and juvenile specific leaf
area (SLA). Nonetheless, a large degree of variation exists
around this relationship, and many species pairs switch rela-
tive positions between stages. Moreover, as with the study of
Thomas and Winner [47] or that of Roggy et al. [39], adult
leaves have consistently lower SLA (or higher LMA).

3.2. Using these results to refine interspecific analyses

Each of the above examples shows how the intra-specific
analyses can respond to particular research questions. In addi-
tion, we suggest that these types of analyses should serve as
precursors to species-level analyses. When we find significant
effects of environment or stage on mean trait values, this sug-
gests that these factors need to be considered when conducting
analyses among species. In the first example, (Fig. 1A), it is
clear that the magnitude of shifts in root-shoot ratio between
light environments differs among species (although not pre-
dictably based on a given trait value). This suggests that the re-
sults of multivariate analyses among species would be strongly
dependent on the environmental conditions under which plants
were grown for trait screening. Such variation may occur at
what we have called the detailed environment, as in our ex-
ample, or at what we have called the general environment.
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For example, growing species in pots may influence the val-
ues of traits such as specific root length or root-shoot ratio (K.
Kitajima, pers. comm.). The second example (Fig. 1B) indi-
cates that for the 25 tropical tree species, multivariate analyses
of foliar trait associations including specific leaf area (SLA,
or its inverse, LMA), such as those conducted by Wright
et al. [52], should control for the developmental stage of the
plants measured in the database because species’ values may
shift rankings between stages.
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