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Modeling lumber recovery in relation to selected tree characteristics
in jack pine using sawing simulator Optitek

Shu-Yin ZHANG*, Que-Ju TONG
Forintek Canada Corp., 319 rue Franquet, Sainte-Foy, Québec, Canada G1P 4R4

(Received 26 May 2004; accepted 31 August 2004)

Abstract — End uses and product recovery are important considerations in forest management decision-making. This study intended to develop
general tree-level lumber volume recovery models for jack pine. A sample of 154 jack pine trees collected from natural stands was scanned to
obtain 3-D stem geometry for sawing simulation under two sawmill layouts, a stud mill and a random mill with optimized bucking, using sawing
simulator Optitek. Three model forms were chosen to describe the quantitative relationship between simulated lumber volume recovery and
tree characteristics. It was found that lumber volume recovery of individual trees from both sawmills could be well estimated from DBH using
a second-order polynomial equation. Adding tree height into the model resulted in a small but significant improvement in the goodness of the
model. Adding tree taper into the model that already included DBH and tree height no longer improved the goodness significantly. The power
function form involving only DBH or both DBH and tree height as variables was also found to be suitable for the stud mill; exponential forms
were least suitable. The second-order polynomial model with DBH alone was the most suitable model when inventory records DBH only, while
the second-order polynomial model and the power model involving two variables (DBH and tree height) for the random mill and the stud mill,
respectively, were better when both DBH and tree height are available.

tree characteristics / sawing simulation / Optitek / lumber recovery / general model

Résumé — Modélisation du rendement en sciages en relation avec certaines caractéristiques du pin baumier en utilisant le logiciel de
simulation Optitek. L’utilisation finale et le rendement en produits sont des considérations importantes dans la prise de décision en
aménagement forestier. Cette étude vise a développer des modeles généraux de rendement en volume au niveau de I’arbre du pin baumier. Un
échantillon de 154 arbres de sapin baumier récoltés dans des peuplements naturels a été scanné pour obtenir la géométrie 3-D des tiges pour
effectuer la simulation selon deux configurations d’usine, soit une scierie de bois de colombage et une usine variable avec tronconnage optimisé
avec le simulateur de sciage Optitek. Trois formes de modeles ont été choisies pour décrire la relation quantitative entre le rendement en sciage
simulé et les caractéristiques de 1’arbre. Il semble que le rendement en sciage d’arbres individuels provenant des deux scieries peut étre bien
estimé a partir du DHP en utilisant une équation polynomiale de deuxiéme ordre. L’ajout de la hauteur de I’arbre aux résultats du modele est
une petite amélioration, mais tout de méme significative pour la validité du modele. Toutefois, I’ajout du défilement de 1’arbre a un modele
incluant déja le DHP et la hauteur de 1’arbre n’améliore pas significativement la validité. Les équations de fonction puissance impliquant
seulement le DHP ou le DHP et la hauteur de 1’arbre comme variables se sont avérées appropriées pour 1’usine de colombage, alors que les
équations exponentielles I’étaient moins. Le modele polynomial de deuxieme ordre (modele 2) avec DHP seulement est le modele le plus
approprié lorsque I’inventaire enregistre seulement le DHP, alors que le modele polynomial de second ordre et le modele fonction puissance
impliquant 2 variables (DHP et hauteur de I’arbre pour 1’usine variable et 1’usine de colombage, respectivement, sont meilleurs lorsque le DHP
et la hauteur de I’arbre sont disponibles.

caractéristiques de ’arbre / simulation du sciage / Optitek / rendement en sciages / modele général

1. INTRODUCTION This means that a volume-oriented forest management strategy
does not necessarily lead to maximum product recovery and

Forest management in eastern Canada has long been focused best return, as several recent studies [22, 23] have reported. As
on maximum stand yield (wood volume). It is known to both  the forest industry in eastern Canada has been moving toward
forest managers and sawmills that each cubic meter of wood  both intensive forest management and value-added products in
does not produce the same yield in terms of product recovery.  recent years, it is becoming important that end uses and product
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Table I. Summary statistics of the 154 sample trees collected from a naturally regenerated jack pine precommercial thinning trial located in

Miramichi, New Brunswick, Canada.

DBH* Total Length below Taper Stem volume up Merchantable

(cm) height (m) live crown (m) (cm/m) to 7 cm (m3) volume (m3)
Mean 16.4 153 10.1 1.0 0.1515 0.1367
S.D. 39 1.71 1.1 0.2 0.0808 0.0878
Max. 23.8 18.62 13.04 1.65 0.38117 0.37491
Min. 9.2 9.25 7.5 0.5 0.02879 0.00133

* QOutside bark DBH.

recovery be taken into consideration during forest management
decision-making. To this end, it is necessary to develop tree-
level models to predict product recovery based on tree charac-
teristics collected for forest inventory.

It is well known that lumber recovery is closely related to
some tree characteristics [9, 13]. For decades, many studies [8,
11, 14, 17-19, 25] have evaluated lumber recovery in relation
to log characteristics such as log size, geometry and quality.
Limited studies have assessed the effect of various tree
characteristics on lumber recovery, including lumber volume
[13], grade yield [1, 5] and product value [3, 9, 21, 24]. Most
studies, however, were based on the product recovery from a
specific sawmill. As a result, the models developed were only
applicable to the specific layouts and conditions of the sawmills
where the lumber conversions were carried out. The development
of advanced sawing simulation packages in recent years (e.g.
Optitek), however, has allowed researchers to define “standard
sawmills” and thus simulate product recovery from these
standard sawmills to develop general tree-level models.

The present study intended to develop general models to
predict lumber recovery from individual trees using selected
tree characteristics that are easy to measure and are usually
collected for forest inventory. Jack pine (Pinus banksiana
Lamb.), one of the most important commercial and reforestation
species in Eastern Canada, was selected for this study. This
species is highly valued for lumber and pulp production, and
also holds great potential for intensive silviculture [10].
Optitek, a powerful sawing simulation package developed by
Forintek Canada Corp. [6], was used to simulate lumber recovery.
The sawing simulator has been validated and has been used
intensively across Canada since 1994. It can be employed to
simulate various operations in a softwood conversion mill,
from bucking to optimized log breakdown, curved sawing, and
optimized edging and trimming. Two state-of-the-art sawmills,
a stud mill and an optimized random mill, were defined for
eastern Canadato “process” the stems. A stud mill is a softwood
sawmill which saws 8 ft logs into studs, while a random mill
(also called random length dimension mill) processes 8—16 ft
logs. Lumber recoveries from each type of sawmill in relation
to key tree characteristics of diameter at breast height (DBH)
and total tree height were examined to develop general tree-
level lumber recovery models for jack pine. Based on the
general models, product recovery from jack pine trees and
stands could be estimated from forest inventory data. Thus,
forest management decisions could be made in the context of
product recovery to achieve specific objectives (e.g., maximum

product yield, quality and value). A better understanding of the
relationship between tree characteristics and lumber volume
recovery will also help the sawmill industry to better plan for
wood supply.

2. MATERIALS AND METHODS

2.1. Sample selection

A jack pine precommercial thinning (PCT) trial located at 47° 01°
59°° N, 65°01° 00> W on lower Miramichi, New Brunswick, Canada
provided the sample trees for this study. The stands naturally regen-
erated from a fire in 1941. In 1966, when the stands were 25-years old,
PCT was carried out and plots of different thinning intensities (spac-
ings) were established by the New Brunswick Department of Natural
Resources and Energy. In 2001, sample trees were collected from plots
of 4 spacings (control, 4 x 4, 5 x 5, 7 x 7 ft). From each spacing,
6 sample trees per DBH class were randomly selected to cover each
merchantable DBH class at 2-cm intervals (e.g. 10, 12, 14, ...). Trees
smaller than 10 cm DBH class were not considered in this study
because the minimum saw log diameter is 9 cm (able to produce a 2 by
3 stud). There were, however, an insufficient number of trees available
in the largest DBH classes in each plot to reach the targeted 6 trees
per DBH class. In total, 154 sample trees including 39 from the control,
39 from 4 x 4,40 from 5 x 5, and 36 from 7 x 7 spacing were collected.
Table I presents the summary statistics for the 154 sample trees. The
average tree DBH (outside bark) of 16.4 cm indicates that trees col-
lected for this study were quite small.

2.2. Tree measurements

For each sample tree, the following tree characteristics were meas-
ured: outside bark DBH, total tree length, tree length up to a 7-cm
diameter top, crown width in two opposite directions (North-South and
East-West), crown length, clear log length, and diameters of the 5 larg-
est branches on the trunk. Delimbed and debarked trees were scanned
with a portable scanner to collect stem geometric data (true stem
shape) at intervals of 10 cm along the stem. Geometric data included
coordinates of cross-sections in 3-D space and diameters at both X and
Y axes. The data were compatible with Optitek and were used for
bucking and sawing simulations. The data were also used to determine
stem taper, total stem volume and merchantable stem volume for each
stem.

2.3. Sawing simulation

Data from the 154 scanned sample trees served as input for the
Optitek sawmill simulations. Optitek is a sawing simulator developed
by Forintek to “saw” a “real” shape log in different sawmill layouts

Article published by EDP Sciences and available at http://www.edpsciences.org/forest or http://dx.doi.org/10.1051/forest:2005013



http://www.edpsciences.org/forest
http://dx.doi.org/10.1051/forest:2005013

Modeling lumber recovery

221

Table II. Summary of the simulated lumber recovery for 154 sample trees from the stud mill and the optimized random mill using sawing
simulator Optitek. Trees were sawn to produce a predefined product combination for various dimensions and grades with the highest lumber

volume recovery.

Product Length range Number Lumber volume Lumber value**
dimension (ft) of pieces (fbm*) (CND $)

Random mill 1x3 4-16 187 397.25

1x4 4-16 192 636

1x6 8-16 0 0

2x3 4-16 264 1297.5

2x4 4-16 460 3543.33

2x%x6 4-16 110 1452

2x8 8-16 0 0
Total 1213 7326.08 2589.04
Stud mill 1x3 4-8 151 301.5

1x4 4-8 322 843

1x6 8 0 0

2x3 4-8 276 1077.5

2x4 4-8 597 3131.33

2x6 4-8 55 422

2x8 8 0 0
Total 1401 5775.33 1783.38

* fbm is the short form of lumber volume unit “foot board measure” (also called “board foot”), equal to the amount of timber equivalent to a piece

127 x 12”7 x 17,

** Lumber values were calculated based on 5-year (1998-2003) average market prices for green lumber as sold on the Toronto market [15] for specific

dimensions and grades.

and product combinations. In this study, two state-of-the-art sawmills,
a stud mill and an optimized random mill, were defined for eastern
Canada to separately “saw” the 154 sample trees. In the stud mill, the
stems were first bucked into logs of 2.44 m (8 ft) in length, and then
logs were sent to the mill to be “cut” into lumber with optimized lum-
ber volume recovery. In the random mill, the stems were first optimally
bucked, and the optimized bucking solution was treated as the input
of the sawmill where the logs were converted into lumber with the
highest volume recovery. Consequently, products from the stud mill
were primarily 2.44 m (8 ft) long studs, while products from the ran-
dom mill ranged from 1.22 to 4.88 m (4 to 16 ft) in length. Lumber
dimensions and grades were defined in a grade file for both sawmills.

2.4. Simulation results

Following proper sawmill equipment configuration, log data loading,
and definition of product dimensions and grades, the process program
was executed. Each tree was sawn into pre-defined product combina-
tions. Then, Optitek generated a simulation report. In the report, prod-
uct volume and value yields for each tree for both primary products (e.g.
lumber) and by-products (e.g. chips) were given in the sections of vol-
ume and value performances. Bucking solutions and product summa-
ries were also listed. Table II summarizes the lumber recovery and
value returns from the 154 sample trees.

2.5. Lumber conversion

Actual lumber conversion for the 154 sample trees was carried out
at a modern stud sawmill that parallels the typical stud mill defined
for Optitek simulation. Each sample tree was bucked into 8-foot-long
logs. The logs were sawn at a much slower speed than usual so that
each piece of lumber and board from each log could be tracked. Lum-

ber volume recovered from each sample tree was used to validate the
models developed from the simulated sawing results.

3. MODEL DEVELOPMENT

To develop empirical models, it is necessary to select proper
variables and model forms and to use good parameter estima-
tion procedures and model validation techniques [7]. This study
assumed that lumber volume recovery from an individual tree
is a function of tree size (DBH and tree height) and tree geom-
etry (taper), namely:

V=f(D,H,T) ey

where Vrepresents lumber volume (fbm) from a tree, D denotes
inside bark DBH (cm), H is total tree height (m), and 7 denotes
stem taper (%) calculated based on tree height up to the 7-cm
diameter top.

Equation (1) can be extended to many forms. The plots of
volume recovery against both DBH and total tree height
(Fig. 1) suggest a non-linear relationship between lumber vol-
ume recovery and tree characteristics. This study considered
three types of model forms: multiple polynomial function,
exponential function and power function. Full third-order mod-
els with one, two and three variables were chosen for multiple
polynomial models, respectively. Table III lists the different
model forms examined with different variables. Models 2—4
considered the relationship of lumber volume recovery with
DBH only, as many studies have reported that log diameter
(DBH) contributes more to lumber volume recovery than other
parameters such as tree height [24]. In Models 5-7, tree height
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Figure 1. Observed (simulated using sawing simulator Optitek) lumber volume recovery in relation to DBH and tree height (in the case of the

random mill) in jack pine.

Table II1. Model forms for estimating lumber volume recovery using tree characteristics. Three variable combinations and three model forms
were considered. The three combinations include (1) DBH only (Model 2—4); (2) DBH and total tree height (Models 5-7); and (3) DBH, total
tree height and taper (Models 8—10). The three model forms include third-order multiple polynomial function, exponential function and power

function.

Model number

Model form

2 V= a0+a1D+a2D2+a3D3
a

3 V = ay(D)"

4 V = exp(ay+a,D)

3

5 V =
i=1
a a
6 V=ayD) (H)"
7 V = exp(ag+a;D+a,H)

2

2

ay+ ¥ (@D +b)+ Y Y (dyD'HY), wherej + k<3

j=1 k=1

i

s .
V=ag+ Y (@D +bH +c,T)+ Y Y Y(d D'HT
G

where one of j, [, k is zero, and the sum of the rest two of j, /, k is not more than 3.

8 i=1
? V= ay(D)" () ()"
10 V = exp(ag+aD+a,H+ayT)

where a;,i=0,1,2,3,b;,i=1,2,3,¢;,i=1,2,3, d,;,-k, i=0,1,2, j=0,1,2,k=0, 1, 2, are the coefficients of corresponding terms to be estimated. D,

H and T denote DBH, total tree height and overall tree taper, respectively.

was added as a variable, and the interaction between the two
variables was also considered in Model 5. Models 8-10
included stem taper as an additional variable. In Model 8, inter-
actions among the three variables were considered as well. The
purpose of adding variables one by one to the models was to
examine the accuracy of those models with fewer tree variables
involved and to see what is the least number or simplest com-
bination of tree variables that can be used to precisely describe

the relationship between lumber recovery and tree characteris-
tics. This approach also allows for quantifying the contribution
of added variable(s) to the goodness of the models.

In order to yield a proper interpretation of the data and to
make the scales of the dependent and independent variables
comparable [20], the polynomial Models 2, 5 and 8 were for-
mulated in terms of deviation from the mean for each variable
instead of directly using the original variable. The estimated
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Table IV. Stepwise selection results for third-order multiple polynomial regression models describing the relationship of volume recovery to
different combinations of tree characteristics. All parameters were significant at the 0.05 significance level.

Sawmill type Model number

Fitted regression model*

Optimized random mill

Stud mill

[o 2NNV, T \S T S HNV B ]

V=-19.319 + 1.127 D + 0.21 D?
V=43.517-0.105 D + 0.214 D2 - 9.163 H + 0.401 H?

V=15764-1354 D +0.114 D> -2.881 H + 0.339 DH — 10.601 T
V=25572-5857D + 0.42 D?

V=65.859-6.716 D + 0.423 D? - 5.858 H + 0.259 H?
V=11.935-8.189 D + 0.617 D2 + 1.027 H + 39.677 T - 3.435 DT

* D, H and T denote inside bark DBH, total tree height and overall tree taper, respectively.

results were then transformed into the original variable. A step-
wise selection process was applied to select the parameters that
significantly affect the output. All 9 model forms were used to
fit the entire data set using least square regression (LS) without
data splitting to ensure prediction accuracy of the fitted models.
The models were evaluated based on the calculated adjusted
coefficient of determination (R2), the root mean square error
(RMSE) and the significance. The predicted error sums of
squares (PRESSs) of the 9 fitted equations were also evaluated
in addition to the R? and RMSE. The PRESS was calculated
by omitting the observed value for that observation, and thus
served as an indicator of the goodness of a model. The PRESS
statistic can be used to examine the stability of the parameters
estimated as well. In addition, another statistic, maximum var-
iance inflation factor (MVIF), was employed to evaluate the
goodness of fit of a model. The variance inflation factor (VIF)
is a common way to detect multicollinearity, which is a symp-
tom of variance inflation. In a regression model, we aim to
explain a high proportion of the variance (i.e. to produce a high
RZ). The higher the level of variance explained, the better the
model is. If collinearity exists, however, it is probable that the
variance, standard error and parameter estimates will all be
inflated. In other words, the high variance explained would not
be a result of good independent predictors, but of a mis-speci-
fied model that carries mutually dependent and thus redundant
predictors. A general rule is that the VIF should not exceed 10
[2]. The MVIF and PRESS are useful for examining if there is
multicollinearity between independent variables in models and
for choosing among different regression models for predictive
purposes.

This paper examined three model forms that described the
quantitative relationships between tree characteristics and lum-
ber volume recovery. Based on selected statistical criteria, the
quantification of these relationships will ensure that the candi-
date models developed are able to accurately and reliably fore-
cast product volume from measured tree characteristics.

4. RESULTS AND DISCUSSION

Following stepwise selection, only the significant parame-
ters in the three polynomial model forms are presented in
Table IV. All parameters left in the models were significant at
the 0.05 level. The stepwise selection results suggest that even

for the same model forms, the effects of tree characteristics on
lumber recovery may be different depending on sawmill type.
For example, for Model 8, the fitted regression model for the
optimized random mill was a second-degree polynomial equa-
tion including three variables with a pure quadratic term of
DBH, three linear terms and an interaction term between DBH
and tree height, while in the case of the stud mill the polynomial
model (Model 8) took the same form but the interaction term
was between DBH and tree taper. This suggests that these three
variables are somewhat dependent, and that the effect of one
variable on lumber volume recovery per tree may depend on
the others.

The regression results between lumber recovery and tree
characteristics for the 9 model forms are listed in Table V. For
all model forms for both sawmill types, R? values were greater
than 0.90, indicating that at least 90% of the total variation in
the tree lumber volume recovery could be explained by tree
characteristics contained within the models. For both sawmills,
Model 8 had the highest R2 value of 0.97, while Model 4 had
the lowest RZ of 0.910 and 0.934 for the stud and optimized ran-
dom sawmills, respectively. As shown in Table V, the expo-
nential function models (Models 4, 7 and 10) in both mills had
the lowest R? values, whereas the polynomial model forms
(Models 2, 5 and 8) had the highest R2 values. However, the
differences in R? values between the polynomial models and
the power models with different variables involved were small
and could be of little practical importance. This suggests that
power models perform as well as polynomial models if consid-
ering RZ value alone. The PRESSs of the 9 models ranged from
3157.3 to 10269 for the stud mill and from 3572.4 to 20150 for
the random mill. The smallest and largest PRESSs were for
Models 8 and 4, respectively, for both mills. RMSEs ranged
from 4.713 to 11.230 for the random mill and from 4.396 to
8.020 for the stud mill. MVIFs ranged from 1.0 to 3.48 for mod-
els with two variables, indicating that multicollinearity was not
present; for models with three variables, the MVIFs were over
9.0, suggesting severe collinearity among variables in the mod-
els. All parameters in each model were statistically significant
at the 0.05 level with an exception being tree taper in Model
10 for both mills and Model 9 for the random mill. This suggests
over-parameterization for these exponential and power models
[4]. In other words, adding stem taper into models which
already included both DBH and tree height as variables would
not significantly improve the goodness of the models because

Article published by EDP Sciences and available at http://www.edpsciences.org/forest or http://dx.doi.org/10.1051/forest:2005013



http://www.edpsciences.org/forest
http://dx.doi.org/10.1051/forest:2005013

224 S.-Y. Zhang, Q.-J. Tong

Table V. Parameter estimates and statistical criteria for the 9 models using least square regression. Two types of sawmills were considered.
Four criteria were used to evaluate models.

Type of  Model Parameters! Criteria

sawmill o aylbylc, 2 arlby ayld, R2  RMSE PRESS MVIF

2 19319 1.127 021 0958 5592 49377 10

30019 (0.00993  2.851 (0.00%%) 0954  7.183  8079.1 10

= 40721 (0.00%%)  0.195 (0.00%%) 0910 11230 20150 1.0
£ 5 43517 ~0.105/-9.163 0.214/0.401 0967 4773 36458  3.48
g 6 0.003 (0.00%%)  2.467 (0.00%%) 0.998 (0.00%*) 0962 6235 61231  3.14
E 7 —0253(0.1308)  0.154 (0.00%%) 0.103 (0.00%%) 0929 9943 15861  3.06
g 8 15764 ~1.354/-2.881/-10.601  0.114/0 0/0.339 (DH) 0970 4713 35724 1105
© 9 0.003(0.00%%)  2.637 (0.00%%) 0.880 (0.00%)  —0.146 (0.182) 0962 6244 61454  10.79
10 —0319(0.101)  0.147 (0.00%%) 0.109 (0.00%%)  0.103 (0.502) 0928 9870 15646  9.93

2 25572 5.857 0.42 0961 4988 39786 1.0

30006 (0.004)  3.170 (0.00%%) 0960 5049 39859 1.0

4 0.069 (0.347) 0.219 (0.00%%) 0934 8020 10269 1.0

= 5 65.859 ~6.716/-5.858 0.4233/0.259 0967 4614 32474 348
E 6 0.002(0.00%%)  2.855 (0.00%%) 0.817 (0.00%%) 0964 4687 34458  3.14
Z 70761 (0.00%%)  0.184 (0.00%%) 0.088 (0.00%%) 0944 7392 87461  3.06
8 11.935 _8.189/1.027/39.677  0.617/0 0/-3.435 (DT) 0970 4396 31573  11.05

9 0.001 (0.00%%)  3.126 (0.00%%) 0.629 (0.00%%)  —0.232(0.047%) 0965 4529 32198  10.79

10 —0.753 (0.00%%)  0.185 (0.00%%) 0.087 (0.00%%)  —0.012 (0.934) 0944 7424 88295  9.92

! Estimated polynomial model forms 2, 5 and 8 for both random mill and stud mill are presented in Table IV.

2 Slashes between values for Models 5 and 8 separate coefficients for the same order variables.

3 Figures in parentheses represent probability levels (* denotes significance at p < 0.05 and ** denotes significance at p < 0.01). Letters in parentheses
represent variables. The coefficient of these variables are presented to the right. For example, the coefficient for variable (DH) in Model 8 for the opti-
mized random mill was 0.339. All parameters for Models 2, 5 and 8 were significant at p < 0.05.

stem taper in jack pine has been reported to be very closely
related to DBH and tree height [16].

It must be noted that the developed models in this study
apply to jack pine trees of a DBH up to 24 cm. As shown in
Tables IV and V, the variables in either fitted polynomial or
power models were between second or fourth power. This sug-
gests that the predicted lumber recovery using these models
increase dramatically with increasing tree size. Therefore, fur-
ther research is needed to consider larger tree sizes. It should
also be noted that the models were developed based on the tree
diameter at exact breast height, namely, diameter at tree height
of 1.3 m from the ground. Therefore, any inaccurate DBH data
may result in inaccurate prediction of tree lumber volume
recovery.

4.1. Lumber recovery in relation to DBH

Diameter is the most commonly measured tree parameter
because it is a very important tree characteristic and the easiest
to measure. If amodel is developed to accurately predict lumber
recovery using DBH only, product recovery could be estimated
based on any DBH data inventory. Models 2—4 were the 3 forms

describing the relationship of lumber recovery with DBH for
individual trees. As shown in Table V, DBH alone was able to
explain 90.9-95.8% and 93.5-96.1% of the variation in lumber
volume recovery from the optimized random mill and stud mill,
respectively.

4.1.1. Scenario 1 optimized random mill

As shown in Table V, the R? value of the fitted second-
degree polynomial model (Model 2) was as high as 0.958, while
the power model (Model 3) and the exponential model
(Model 4) had R? values of 0.954 and 0.91, respectively. This
indicates that the exponential model was less suitable for
describing the relationship of interest. Moreover, the fitted
exponential equation also had a much higher RMSE and
PRESS than did Model 2. Model 3 performed better than
Model 4 in terms of R2, RMSE and PRESS. However, in spite
of having a R2 value similar to that of Model 2, Model 3 was
not as good as Model 2 in terms of RMSE and PRESS. Using
R? as a criterion for discriminating competitive models can
be very hazardous [12]. Besides criteria like R? and PRESS,
the plots of the predicted residuals should be examined as well.
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Figure 2. Plots of residuals against fitted lumber volume recovery in the case of the random mill in jack pine. (a) Model 2 (second-order poly-
nomial model with one variable “DBH”); (b) Model 3 (power model with one variable “DBH”).
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Figure 3. Plots of residuals against fitted lumber volume recovery in the case of the stud mill in jack pine. (a) Model 2 (second-order polynomial
model with one variable “DBH”); (b) Model 3 (power model with one variable “DBH”).

Figure 2 illustrates the predicted residuals against the fitted
lumber recovery for the random mill for Models 2 and 3.
Model 2 had a more evenly distributed residual plot over the
fitted lumber volume than did Model 3. The residuals were
evenly and symmetrically spread on both sides of the zero line
for Model 2, while Model 3 showed a systematic residual dis-
tribution pattern to some extent. Therefore, Model 2 was the
most reliable in predicting lumber recovery from the optimized
random mill when only DBH was considered as a variable. The
predicted residual plot for Model 2 appeared to have a wider
residual range in the right side than in the left side. Figure 1
presents the plots of the measured DBH and tree height against
the observed lumber volume recovery form the random mill.
Lumber volume recoveries from trees of small DBH classes
varied within a relatively narrow range, while the volume
recoveries from trees of large DBH classes were scattered in a
wider range. A similar trend was noticed for lumber volume
recovery against tree height. This indicates that lumber volume
recovery from a larger tree was more variable than from a
smaller tree. As a result, predicting lumber recovery for larger
trees tended to be less accurate.

4.1.2. Scenario 2 stud mill

In the case of the stud mill, Model 2 also had the highest
R2 value, followed by Model 3, whereas Model 4 had the lowest

R2 value (Tab. V). However, the difference in R? values between
Models 2 and 3 was very small and was likely inconsequential,
particularly because differences in RMSE and PRESS between
Models 2 and 3 were also very small. The predicted residual
plots (Fig. 3) against the fitted lumber recovery also illustrated
that Models 2 and 3 had almost identical residual distribution
patterns and that the residuals were evenly distributed over the
range of fitted lumber volumes. Despite having a R? value of
as high as 0.93, Model 4 had much higher RMSE and PRESS
compared to Models 2 and 3 (Tab. V), suggesting less accurate
prediction by the exponential model. Therefore, statistically
Models 2 and 3 were both adequate in estimating jack pine lum-
ber volume recovery from the stud mill using DBH only.

4.2. Lumber recovery in relation to DBH and tree height

Tree height is another important tree characteristic affecting
lumber recovery. It depends on site index and is often recorded
for forest inventory, although not as easily as DBH. Models 5-7
in Tables IV and V described lumber volume recovery in rela-
tion to both DBH and tree height.

4.2.1. Scenario 1 Optimized random mill

The estimated polynomial equation (Model 5) with the two
variables of DBH and total tree height is presented in Table IV.
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Figure 4. Plot of residuals against fitted lumber volume for Model 5
(second-order polynomial model with two variables “DBH and tree
height”) in the case of the optimized random mill in jack pine.

Estimated parameters for the pure quadratic terms of DBH and
tree height were highly significant, while the parameters for the
third order terms and for the cross product of DBH and tree
height were not statistically significant at the 0.05 level. This
implies that tree height and DBH both have a quadratic effect
on lumber volume recovery from the random mill. Model 5 had
a R? value of 0.97, higher than those of both Models 6 and 7,
and its RMSE and PRESS were considerably lower. The expo-
nential model (Model 7) may not be considered appropriate due
to its prominent RMSE and PRESS even though its R? value
was high at 0.929. Similarly to Model 3 for the random mill,
the power model (Model 6) had a fairly comparable R? value
and appreciably higher RMSE and PRESS than the polynomial
model (Model 5), indicating less suitability as a predictor. As
shown in Figure 4, the plot of residuals against fitted lumber
volume recovery for Model 5 showed that the residuals were
randomly scattered on both sides of the zero line. Therefore,
Model 5 was adequate for predicting jack pine lumber volume
recovery from the random mill using DBH and total tree height.
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4.2.2. Scenario 2 stud mill

In the case of the stud mill, Model 5 also had the highest
R2 value and lowest RMSE and PRESS, followed by Model 6,
whereas Model 7 had the lowest R? value and greatest RMSE
and PRESS (Tab. V). Again, as seen with Models 2 and 3 for
the stud mill, the difference between Models 5 and 6 was quite
small for all three criteria. The exponential model had a high
R2 of 0.944, however, it was less suitable than Models 5 and 6
due to its much higher RMSE and PRESS. Therefore, Models
5 and 6 were considered statistically adequate for predicting
lumber volume recovery from the stud mill using two tree char-
acteristics (DBH and tree height). For the fitted Model 5 for the
stud mill, there were 5 terms including the intercept and two
quadratic terms in the model. Thus, Model 6 may be preferable
from a practical viewpoint because it was simpler than
Model 5. Figure 5 illustrates the difference between the
observed and the fitted lumber volumes for Models 5 and 6.
Overall, Model 6 seemed to perform as well as Model 5. The
two models were able to accurately predict lumber recovery
from small trees (e.g. less than 90 fbm/tree). However, both
models less accurately estimated lumber volume recovery from
big trees (e.g. over 90 fbm/tree). Figure 6 depicts the curve per-
formances of the two models relating tree lumber volume
recovery to its DBH. The curves present the effect of tree DBH
on lumber volume recovery while holding tree height at an
average level of 15.3 m. Again, Figure 6 showed that Model 6
appeared to be as good as Model 5. Model 6 could accurately
predict the lumber recovery for small trees (up to 18 cm at
DBH), whereas Model 5 showed an overestimation for trees
under 12 cm at DBH, and both models underestimated the lum-
ber volume recovery from big trees (e.g., over 20 cm at DBH).

4.3. Lumber recovery in relation to DBH, tree height
and tree taper

Models 8-10 in Table V described lumber volume recovery
in relation to three tree characteristics including stem taper.
Derived from multiple polynomial functions, Model 8 included
both pure quadratic terms and interactive terms. Parameters for
the third order terms were not significant at 0.05 probability
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Figure 5. Observed (simulated using sawing simulator Optitek) lumber volume against predicted lumber volume in the case of the stud mill in
jack pine. (a) Model 5 (second-order polynomial model with two variables “DBH and tree height”); (b) Model 6 (power model with two variables

“DBH and tree height”).
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Figure 6. Predicted lumber volume recovery of jack pine for the stud mill in relation to DBH while holding tree height at an average level of
15.3 m. (a) Model 5 (second-order polynomial model with two variables “DBH and tree height”); (b) Model 6 (power model with two variables

“DBH and tree height”).

Table VI. ANOVA analysis results for testing the fitness of candidate models for the stud mill using data from a real stud sawmill.

Max. (fbm) Min. (fbm) Mean (fbm) StDev T Stat. p value
Sawmill 99.58 3 38.77 22.18
Model 2 105.34 6.22 37.707 24.71 0.5933 0.5539
Model 3 108.88 6.39 37.701 24.79 0.6240 0.5536
Model 5 112.26 5.35 37.703 25.65 0.5383 0.5911
Model 6 115.66 5.29 37.671 25.43 0.6192 0.5367

level following stepwise selection for both mills; for the ran-
dom mill, the effect of tree DBH on lumber volume recovery
was dependent on the total tree height, while for the stud mill
the DBH effect depended on tree taper, and vice versa. Com-
pared with Model 5, Model 8 (including the additional variable
of tree taper) did not seem to provide an appreciable improve-
ment in either R? value or RMSE and PRESS. In contrast, with
the additional variable tree taper, the MVIF increased from 3.48
to 11.05 for both mills, which implies the presence of severe
multicollinearity among the three variables in Model 8. A sim-
ilar trend was observed in Model 9 for the stud mill. It therefore
made sense to omit the variable tree taper from the model spec-
ification even though the variable appeared statistically signif-
icant. On the other hand, the significance levels of the param-
eters estimated for tree taper in Models 9 and 10 were 0.182
and 0.502, respectively, in the case of the random mill, and
0.047 and 0.934, respectively, in the case of the stud mill. This
indicates that, statistically, tree taper should be excluded from
the models as its impact on lumber volume recovery was not
significant except for Model 9 for the stud mill, where tree taper
could be omitted due to the high variation inflation as stated
above. This seemed to be inconsistent with the common sense
viewpoint that stem taper has a negative impact on tree product
recovery. It is well known that tree taper depends on DBH and
tree height. As a matter of fact, a taper equation developed by
Sharma and Zhang [16] for jack pine using only DBH and total
tree height is able to accurately estimate diameter profile,
explaining over 95% of the variation. Therefore, it was not sur-
prising that adding tree taper to Models 9 and 10, which already

included both DBH and tree height, would not significantly
improve the goodness of fit of the models. Overall, the three
model forms with three variables including tree taper did not
seem suitable for predicting the lumber volume recovery from
the both sawmills.

4.4. Model validation

As discussed above, Models 2 and 5 for the random mill and
Models 2, 3, 5 and 6 for the stud mill were considered to better
describe lumber volume recovery in relation to the selected tree
characteristics. Actual lumber volume recovery data of the
154 sample trees sawn in a real stud sawmill were used to fur-
ther validate the 4 models for the stud mill. The summary sta-
tistics and paired T-test results for means for sawmill data and
predicted data using the 4 models are presented in Table VI.
The significance levels (p values) for the differences between
lumber volume recoveries from the real stud sawmill and from
the 4 models were 0.554, 0.554, 0.591 and 0.537 for Model 2,
3, 5 and 6, respectively. This suggests that there are no statis-
tically significant differences between the predicted lumber
volume recovery and the actual volume recovery from the real
stud sawmill, thus all 4 models are able to accurately predict
lumber volume recovery. It appeared that all 4 models some-
what overestimated the real lumber recovery from the largest
trees. This may happen as the largest trees usually come from
wider spacings where more jack pine trees contain severe stem
deformations. Overall, all 4 models slightly under-predicted
lumber volume recovery. This might be due to the fact that the
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actual size of green lumber produced in the real stud sawmill
was slightly smaller than that configured for the stud sawmill
in the sawing simulator Optitek.

5. CONCLUSION

Using statistical methods, three model forms and their exten-
sions with different variables involved in two types of sawmills
were studied for their ability to predict lumber volume recovery
from basic tree characteristics. The results demonstrated that
the polynomial function form was the most suitable for predict-
ing lumber volume recovery from the random mill, followed
by the power function, while for the stud mill the power and
polynomial function forms were both good for describing lum-
ber volume recovery from tree characteristics. The results also
indicate that the exponential functions were the least suitable.
For both sawmills, a second-order polynomial function with
one variable, DBH, was able to explain as much as 95.83% of
the total variation for the optimized random mill and 96.1% for
the stud mill. Adding tree height to the model led to a small but
significant increase in the percentage of the variation explained.
The power function form for the stud mill performed as well
as the polynomial function form. The power function may be
preferable for predicting lumber volume recovery from the stud
mill using DBH and tree height, as it was simpler. The study
also indicates that adding tree taper to a model including DBH
and tree height did not improve the goodness of fit of the model
as tree taper in jack pine can be well described by DBH and total
tree height. The second-order polynomial model (Model 2)
with DBH alone could be used to accurately predict lumber vol-
ume recovery from both stud and random mills when inventory
records DBH only, while the second-order polynomial model
(Model 5) and the power model (Model 6) involving two var-
iables (DBH and tree height) were better for the random mill
and the stud mill, respectively, when both DBH and tree height
are recorded for forest inventory.
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