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Abstract – Height data from six 3-year-old Eucalyptus globulus trials with cloned progenies were jointly analysed with a heterogeneous
variances model. Significant heterogeneity between trial sites was detected for additive genetic and environmental variances, corresponding to
coefficients of variation of 41% and 26%, respectively. Two additive genetic and four environmental variances were significantly different from
common estimates across all trials. Significant heterogeneity was also detected for heritability estimates, which ranged from 13.5% to 40.3%.
Genetic evaluations of parents and clones within full-sib families were obtained from the heterogeneous variances model, and from a simpler
model assuming variance homogeneity across trial sites and using either unadjusted data or data pre-adjusted by scale transformations. Changes
in predictions of breeding values, top ranking genotypes and selection responses were examined to assess the impact of ignoring heterogeneous
variances on the genetic evaluation. Clones were more sensitive than parents to the assumption of homogeneous variances in the evaluation
model. Nevertheless, ignoring variance heterogeneity decreased the response to clonal selection by only 2% relatively to the evaluation based
on the heterogeneous variances model. Pre-adjusting the data to constant phenotypic or environmental variances reduced the variance
heterogeneity. The latter scale transformation was somewhat more effective in increasing fairness of selection, and resulted in close to optimal
ranking and selection response. On the basis of the results of this study, Best Linear Unbiased Prediction was fairly robust to erroneously
assuming homogeneous variances in a genetic evaluation model. 

Eucalyptus globulus / heterogeneous variances / genetic evaluation / breeding values / selection

Résumé – Prise en compte de l’hétérogénéité inter-site des variances génétique et environnementale dans l’analyse d’essais
d’Eucalyptus globulus pour la croissance en hauteur. Des mesures de hauteur, collectées à 3 ans dans 6 tests de descendances clonées
d’Eucalyptus globulus, ont été analysées avec un modèle d’analyse de variance prenant en compte l’hétérogénéité des variances. Une
hétérogénéité significative a été mise en évidence entre sites pour les variances génétiques additives et environnementales (CV = 41 % et 26 %
respectivement). Deux variances génétiques additives et quatre variances environnementales se sont révélées significativement différentes des
variances estimées sur l’ensemble des sites. Une hétérogénéité significative a été aussi mise en évidence pour les héritabilités qui variaient de
13,5 à 40,3 %. Les valeurs génétiques des parents et des clones intra-familles de pleins-frères ont été estimées à partir d’un modèle d’analyse
de variance prenant en compte cette hétérogénéité de variances et à partir d’un modèle simple d’analyse de variance assumant l’homogénéité
des variances à travers sites, soit sur données non ajustées, soit sur données pré-ajustées par transformation scalaire. Les changements dans la
prédiction des valeurs génétiques des génotypes, de leur classement et des réponses à la sélection ont été examinés pour établir l’impact de la
non-prise en compte de ces variances hétérogènes sur l’estimation des paramètres génétiques. Les clones ont été plus sensibles que leurs parents
par rapport à cette hypothèse de variances homogènes. Néanmoins, ignorer cette hétérogénéité de variances ne décroît la réponse à la sélection
clonale que de 2 % par rapport à une évaluation tenant compte de cette hétérogénéité. L’ajustement préalable des données à une constante
phénotypique ou environnementale a réduit l’hétérogénéité des variances. La transformation à partir de la constante environnementale a été plus
efficace en améliorant le classement des génotypes et la réponse à la sélection. Sur base des résultats de cette étude, le modèle linéaire mixte
(BLUP) est apparu particulièrement robuste pour estimer les paramètres génétiques en assumant erronément l’homogénéité des variances. 
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1. INTRODUCTION

In recent years, there has been a considerable increase in the
application of best linear unbiased prediction (BLUP, [12]) to
evaluate genetic merit in forest tree breeding. Under the statis-
tical linear mixed model, the properties of minimum prediction
error variance and unbiasedness of the BLUP predictors of
genetic value will hold if the variances and covariances of all
the observations are properly specified and used in the evalu-
ations. In practice, the exact covariance structure is not known,
and the respective parameters need to be estimated. In addition,
when data sets are large, models used in genetic evaluation may
require as few fitted parameters as possible to allow computa-
tions to be feasible. Therefore, departures from the ideal model
may occur, leading to predictions that only approximate BLUP. 

One assumption often made in models of genetic evaluation
using BLUP is that genetic and residual variances are homo-
geneous across environments. In animal breeding, several studies
have shown that this assumption may not hold for production
and conformation traits [1, 2, 6, 26, 27, 31]. Also in tree breed-
ing, different progeny tests are likely to have heterogeneous
variances for growth traits, which may be due to different rel-
ative amounts of experimental error and/or scale effects asso-
ciated with different ages or rates of growth at a given age [32].
Hill [14] indicated that variance heterogeneity results in selec-
tion of a greater fraction of individuals from the more variable
environments. Therefore, when variance homogeneity is incor-
rectly assumed, there will be a tendency for overevaluating
superior individuals in environments with large variances. This
may reduce the response to selection when the heritability is
greater in the less variable environments [7]. Accounting for
heterogeneous variances may increase fairness of selection [1,
31], and improve predictions of breeding values by increasing
accuracy and reducing bias [21, 26].

If reliable estimates of variances and covariances are avail-
able, the heterogeneity of variances across environments may
be accounted for by using a multivariate model where the per-
formance in each environment is considered as a separate trait
[8, 13]. However, computational demands and/or lack of appro-
priate parameter estimates may require the use of simpler models

and, in this context, several adjustment methods based on scale
transformations have been suggested to correct for variance
heterogeneity. For example, assuming that genetic correlations
across environments are close to one, the multivariate model
mentioned above can be simplified to a univariate approach by
adjusting the data to a common genetic scale, and heterogene-
ous residual variances and heritabilities are accounted for in the
mixed model equations [1, 3, 8, 13]. A simpler procedure is to
assume homogeneous genetic and residual variances after data
adjustments using approximations based on phenotypic vari-
ances (e.g. [2, 14, 27–30]), although it may not accommodate
differences in heritability across environments. Scaling the data
to a constant residual variance has also been applied to deal with
variance heterogeneity [5, 15]. 

The objectives of this study were (1) to detect heterogeneity
of additive genetic and environmental variances for 3-year-old
height growth measured across six trial sites of Eucalyptus
globulus ssp. globulus (hereafter referred to as E. globulus), and
(2) to evaluate the impact of ignoring variance heterogeneity
on the genetic evaluation. In the latter context, a model account-
ing for variance heterogeneity was compared with simpler anal-
yses assuming constant variances and using either unadjusted
data or observations pre-adjusted by scale transformations. 

2. MATERIALS AND METHODS

2.1. Plant material and field trials

This study used 3-year-old height data from six E. globulus trials
with clonally replicated progenies derived from controlled crosses. All
base parents used in the crossings were from plus trees selected in com-
mercial plantations in Portugal, and belong to the commonly referred
Portuguese land race. The selection criteria were overall good growth
and form, compared with immediate neighbour trees. Controlled
crosses were carried out between 1992 and 1997 in the seed orchards
of RAIZ (a Portuguese forest and paper research institute). Limitations
in successfully completing the crosses led to a sparse diallel mating
scheme. No reciprocals or selfs were attempted. 

Table I provides general information about the field trials examined
in this study. The trial sites correspond to contrasting growing conditions
in Portugal. All trials used randomized block designs, and the number

Table I. Details of the examined Eucalyptus globulus field trials.

Details Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

Location and environment

Locality Alcácer do Sal Penalva do Castelo Odemira Castelo de Paiva Azambuja Ponte do Lima

Latitude (North) 38° 22’ 40° 42’ 37o 25’ 41° 00’ 39° 06’ 41° 45’

Longitude (West) 08° 20’ 07° 39’ 08° 39’ 08° 23’ 08° 49’ 08° 29’

Altitude (m) 50 550 300 150 70 400

Mean annual rainfall (mm) 600 1400 1000 1400 600 2200

Mean annual temperature (°C) 15 12.5 15 12.5 16.5 12.5

Field layout

Number of replicates 7 8 10 10 10 10

Spacing (m × m) 3.0 × 3.0 3.5 × 2.0 5.0 × 2.0 4.0 × 1.9 3.5 × 1.8 5.5 × 1.8
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of replicates was 10 for most trials. Each full-sib family was normally
represented in each replicate and, in order to provide a more efficient
sampling, the clones within full-sib families were randomly allocated
to single-tree non-contiguous plots within replicates. Details about the
production of planting stock are described in Costa e Silva et al. [4].

The data comprised 45 parents, 92 full-sib families and 466 clones
within full-sib families. The average numbers of crosses per parent and
clones per full-sib family were 4 and 5, respectively. In terms of con-
nectedness amongst trials, the number of common parents, full-sib
families and clones varied between 26 and 37, 22 and 47, and 17 and
139, respectively. The distribution of parents across trials (No. parents/
No. trials) was 26/6, 5/5, 1/4, 5/3, 4/2 and 4/1. For clones, the repre-
sentation across trials (No. clones/No. trials) was 0/6, 29/5, 34/4, 76/
3, 106/2 and 221/1. 

2.2. Base model

The following general linear mixed model was fitted to the data
combined across the six trials:

 y = Xb + Z1a + Z2f + Z3c + e (1)

where y is a vector of observations on height growth, b is a vector of
fixed effects (i.e. overall mean, trials and replicates within trials), a is
a vector of random genetic effects of individual genotypes (i.e. parent
trees and cloned progenies), f is a vector of random full-sib family
effects, c is a vector of random effects of clones within full-sib fami-
lies, and e is a vector of random residual terms. X, Z1, Z2 and Z3 are
known incidence matrices relating the observations in y to effects in
b, a, f and c, respectively. The random effects in the model were
assumed to follow a multivariate normal distribution with means and
variances defined by: 

(2)

where 0 is a null matrix, G is the (co)variance matrix of genetic effects
for individual genotypes, I1 and I2 are identity matrices (with orders
ft and ct, respectively, where f, c and t are the numbers of full-sib fam-
ilies, clones and trials) and R is the residual variance matrix. For a
model assuming variance heterogeneity across sites for effects in a and
e (hereafter referred to as the base model or BM), G = (D J D) ⊗
A and R =  Ri =  , where D is a diagonal matrix
with elements equal to the square root of  at trial i (i.e. , with i
= 1…6), J is a square matrix with all elements equal to 1, A is the
numerator relationship matrix [13],  is an identity matrix (with order
equal to ni, the number of trees at trial i), ⊗ is the Kronecker product
and ⊕ is the direct sum operation. Observations on different ramets
of a given clone were treated as repeated measurements on a single
genotype, and thus A describes the additive genetic relationships
among individual genotypes rather than among individual trees. ,

,  and  denote variance parameters, namely the genetic variance
between individual genotypes, the variance between full-sib families,
the variance among clones within full-sib families and the residual var-
iance, respectively. Restricted maximum likelihood (REML, [23])
estimates of variance components and their standard errors were
obtained by using the average information REML algorithm [9],
implemented in the ASREML program [10]. The standard errors of
the estimated parameters were calculated by the square root of the
respective sampling variances, obtained from the inverse of the aver-
age information matrix. Using the estimated components of variance,
approximations of additive genetic, dominance, epistatic and environ-
mental variances may be obtained by , ,  and ,

respectively [4]. This derivation assumes that non-random environ-
mental effects common to the ramets of a given clone (i.e. “C effects”,
[17]) are negligible, and that low-order interloci interactions represent
a small portion of the total epistasis. Besides considering heterogene-
ous variances for effects in a and e, the definition of BM assumes that: 

(i) the correlations across sites for effects in a are homogeneous and
equal to 1; 

(ii) the effects in f are uncorrelated across sites and have a constant
variance;

(iii) the effects in c are uncorrelated across sites and have a constant
variance.

Previous bivariate analyses conducted for all pairs of trials, and
accounting for variance heterogeneity across sites for effects in a, f,
c and e, provided generally high correlations (i.e. range from 0.75 to
0.99, with an average of 0.95) between sites for effects in a. Moreover,
combining the data over all trials and fitting heterogeneous variances
for all effects, the REML log-likelihood (LogL) for a model constrain-
ing the across-site correlations for effects in a to be equal to 1 did not
differ substantially (i.e. 3.63) from the LogL obtained under an
extended model considering the genetic expression at different sites
as different traits. These results suggested that, for the given genetic
material, age and sampled sites, the level of genotype by environment
(G × E) interaction may be low. Therefore, the assumption (i) seemed
to be plausible. 

All of the models mentioned above to assess the importance of G ×
E interaction applied a diagonal matrix to fit the effects in f and c,
which allows for variance heterogeneity while ignoring the covari-
ances between sites for these effects. Previous single-site analyses,
however, indicated very small and statistically non-significant vari-
ances for effects in f and c. This suggested that across-site correlations
for these effects would not be meaningful to estimate, and thus could
be ignored. In addition, extending BM to incorporate heterogeneous
variances for effects in f or c led to small improvements (i.e. 0.3 or
1.7, respectively) in LogL. Therefore, for the given genetic material
and age, assumptions (ii) and (iii) seemed to be reasonable as a parsi-
monious solution to BM.

Given the components of variance estimated under BM, approxi-
mated estimates of heritability at each trial ( ) were then obtained
as follows:

(3)

where  and  pertain to estimates at trial i, and  and  to pooled
estimates. The sum of the variance components in the denominator of
equation (3) estimates the phenotypic variance at trial i . The
standard errors of  were obtained by the square root of the respective
sampling variances, and these were calculated from the sampling
(co)variances of the components in the denominator of equation (3).
The standard errors of  were calculated according to the general
expression for the variance of a ratio, based on an approximation using
a first-order Taylor series expansion [19]. 

2.3. Testing the homogeneity of variances across sites

The homogeneity of  and  was tested via likelihood ratio (LR)
tests. The test statistic (D) was calculated by twice the difference
between the LogL of BM, allowing for heterogeneous variances, and
the LogL of a restricted model, which concerns the null hypothesis
(H0) to be tested. The magnitude of this difference indicates the
strength of evidence against H0. Under H0, the distribution of D
asymptotically approximates that of a χ2, with degrees of freedom (df)
given by the difference between the number of parameters estimated
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under the BM and restricted models. The following LR tests were car-
ried out sequentially: 

(a) Overall test for homogeneity of both  and  – the LogL under
H0 is obtained by restricting both  and  to be homogeneous across
sites; if the LR test is significant, then we may proceed with (b) and (c);

(b) Overall test for homogeneity of  – the LogL under H0 is
obtained by restricting  to be equal while accounting for heteroge-
neous ; if the LR test is significant, then we may proceed with (d);

(c) Overall test for homogeneity of  - the LogL under H0 is
obtained by restricting  to be equal while accounting for heteroge-
neous ; if the LR test is significant, then we may proceed with (e);

(d) Test an individual  for deviation from the common additive
genetic variance estimated in (b) – the LogL under H0 is obtained by
restricting the given  estimate to remain fixed at the common value; 

(e) Test an individual  for deviation from the common residual
variance estimated in (c) – the LogL under H0 is obtained by restricting
the given  estimate to remain fixed at the common value.

In addition, the homogeneity of heritability across sites was also
tested. This was carried out by following a procedure similar to (d),
but using standardized data (to a constant phenotypic standard devia-
tion of unity for each trial) instead of raw data, so that the estimated

 become equal to .

2.4. Genetic evaluation from different models 

In order to assess the possible impact of variance heterogeneity on
genetic evaluation, predictions of breeding values and selection out-
comes were obtained from BM and from analyses assuming constant
additive genetic and environmental variances (i.e. G = A  and R =
I ). The aim was to determine whether the genetic evaluation based
on a theoretically more correct model (i.e. BM) is substantially dif-
ferent from a simpler model assuming homogeneous variance. The
simplified model used either unadjusted observations (hereafter
referred to as evaluation E1), or data pre-adjusted by scale transfor-
mations (hereafter referred to as evaluations E2 or E3). The data
adjustments applied to reduce the heterogeneity of variances were the
scaling of the observations to constant phenotypic (E2) or environ-
mental (E3) variances, using the following expression:

yij(adj.) = (yij – ) + (4)

where yij(adj.) is the adjusted observation of ramet j at trial i, yij is the
original observation of ramet j at trial i,  is the height mean at trial i,

 is the estimated (phenotypic or environmental) standard deviation
for the population, and  is the estimated (phenotypic or environmental)
standard deviation at trial i.  was calculated from the average of
the  or  estimates across trials.

BLUPs of additive genetic values (i.e. predicted breeding values,
PBV) for parents and cloned progeny were obtained from the base and
simpler models, by solving the respective mixed model equations.
Under BM, the PBVs were scaled to a common additive genetic var-
iance by multiplying a PBV in trial i by the ratio / , where

 is the estimated additive genetic standard deviation for the pop-
ulation. For parents and clones represented at more than one trial, the
(scaled) PBVs were then pooled.  was obtained from the average
of the  estimates, considering that the trials are all measured at the
same age, assuming no G × E interaction and that no site is more rep-
resentative of the plantation zone than any other. For complete and bal-
anced data, this approach to yield evaluations for parents and clones
from BM is equivalent to obtaining PBVs by using data adjusted to
the same genetic scale and under an univariate model with heteroge-
neous residual variances and heritabilities accounted for in the mixed
model equations (e.g. [1, 3, 8, 13]).

Differences between predictions of breeding values from BM and
E1, E2 or E3 were calculated for each genotype. The extent of possible
bias in PBVs, caused by assuming variance homogeneity, was
assessed by the average, maximum and minimum of the differences
BM – E1, BM – E2 and BM – E3, between evaluations.

Parents and their cloned offspring were ranked on PBVs from BM
and simpler models, and the best individuals (i.e. 25% of all parents
and 5% of all cloned offspring) were compared to evaluate the impact
on selection of assuming variance homogeneity. Ranks of top individ-
uals from BM were compared with ranks from the other evaluations
(i.e. E1, E2 and E3) by the number of individuals in common, as well
as the average and maximum rank change. The relative reduction in
genetic gain due to ignoring variance heterogeneity was estimated by
∆G = 100(GS – GB)/GB, where GB and GS are expected genetic
responses to selection under the base and simpler models, respectively.
GB and GS were calculated as averages of PBVs for the individuals
selected by each model, but using the predicted values from BM (i.e.
the analysis assumed to be the most correct). As such, expected gains
are obtained on the same scale, and differences between genetic
responses reflect changes in the individuals selected.

3. RESULTS

Results from the overall LR tests are shown in Table II for
unadjusted data and observations pre-adjusted by scale trans-
formations. Tables III and IV present site parameter estimates
obtained under BM and LR tests carried out at each individual
trial for unadjusted and adjusted data, respectively. Table V
presents a comparison of PBVs and selections from BM with
PBVs and selections from the E1, E2 and E3 evaluations. 

The height means varied between 7 m and 10 m across the
trial sites (Tab. III). This range of mean values is comparable
to that found in other progeny trials of E. globulus at a similar
age (e.g. [16], for a large number of open-pollinated families
tested across 5 sites in Tasmania). 

As indicated by the model comparisons in Table II for unad-
justed data, the overall LR tests of homogeneity detected sig-
nificant differences (P < 0.001) among trials in   and . The

 and  values ranged from 0.17 to 0.48 and from 0.66 to
1.49 (Tab. III), and had estimated across-site coefficients of
variation (CV) of 41% and 26%, respectively. However, results
from the overall LR tests (i.e. D = 146.88 versus D = 23.62,
Tab. II) suggested that the heterogeneity of variances was most
marked for . Accordingly, LR tests carried out for each trial
(Tab. III) indicated that two  and four  estimates were sig-
nificantly different (P ≤ 0.05) from common values (i.e. 0.26
and 1.09, respectively) across sites. When judged in relation to
the magnitude of the estimates, the standard errors for  were
larger than those for  (Tab. III), which may have reduced the
ability to distinguish between different  estimates. Never-
theless, one-tailed LR tests [25] indicated that the  values
were significantly different (P ≤ 0.05) from zero for all trials
(not shown). The pooled  and  were low (i.e. 0.02 and 0.03,
respectively) compared with  and .  ranged from 1.19
to 1.81 (Tab. III), and had an estimated CV of 18%. 

The  values ranged from 0.135 to 0.403 (Tab. III), and had
an estimated CV of 49%. The range of  in this study approached
that reported by Lopez et al. [18] in a review of genetic parameters
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calculated for height at ages 3 and 4 years in E. globulus.
However, as shown in Table III, in only one case was the her-
itability significantly different (P < 0.001) from a common esti-
mate (i.e. 0.19). This result reflected the rather high heritability
(i.e. 0.403) at trial 1 versus a group of trials with modest dif-
ferences in  (Tab. III), suggesting that the heritability estimates
within the range from 0.135 to 0.206 may not be significantly

different from each other. The estimated standard errors of the
 were not extremely large relative to the parameter estimates

themselves (Tab. III). Nevertheless, for the narrow range from
0.135 to 0.206, more parents and progeny per parent would
have been required to increase the statistical power of the LR
tests and, thereby, the chances to detect true differences for the

 estimates. 

Table II. Overall likelihood ratio tests for detecting variance heterogeneity in additive genetic ( ) and environmental ( ) variance estimates,
obtained for 3-year-old height growth measured across six Eucalyptus globulus trials (i = 1, …, 6). The analyses used unadjusted data (E1), or
observations pre-adjusted by scaling to common phenotypic (E2) or environmental variances (E3). The tested null hypotheses (H0), inherent to
the restricted models, were: (1)  and  are both homogeneous over trial sites; (2)  is homogeneous over trial sites; (3)  is homoge-
neous over trial sites. Under H0, the distribution of the test statistic (D) asymptotically approximates that of a χ2, with degrees of freedom (df)
given by the difference between the number of parameters estimated under the base model and restricted models.   

Base model Restricted models

(1) (2) (3)

E1

       LogL –3608.93b –3691.95 –3620.74 –3682.37

        Da

(df, P-value)
166.04

(10 df, P < 0.001)
23.62

(5 df, P < 0.001)
146.88

(5 df, P < 0.001) 

E2

       LogL –3626.34b 3656.81 nt nt

        Da

(df, P-value)
60.94

(10 df, P < 0.001)
nt nt

E3 

       LogL –3613.05c nt –3640.64 nt

        Da

(df, P-value)
nt 55.18

(5 df, P < 0.001)
nt

nt: not tested.
a  D = 2(LBM - LRM), where LBM and LRM refer to the log-likelihoods (LogL) for the base and restricted models, respectively.
b Model allowing for variance heterogeneity in both  and .
c Model allowing for variance heterogeneity in .

Table III. Individual trial estimates of means, additive genetic ( ), environmental ( ) and phenotypic ( ) variances, and heritabilities ( ),
for 3-year-old height growth measured across six Eucalyptus globulus trials (i = 1, …, 6). For each trial, D1, D2 or D3 are calculated test statis-
tics from likelihood ratio tests, carried out for detecting whether an individual ,  or  significantly (P ≤ 0.05) deviates from a common
estimate over all trials. Under H0, the distribution of D1, D2 or D3 asymptotically approximates that of a χ2, with one degree of freedom. The
approximate standard errors for the estimated parameters are given in parenthesis. 

Trial i Mean (m) a D1 D2 D3

1 9.9 0.48
(0.08)

9.66
(P = 0.002)

0.66
(0.03)

80.9
(P < 0.001)

1.19
(0.09)

0.403
(0.05)

15.04
(P < 0.001)

2 8.0 0.17
(0.04)

3.74
(P = 0.05)

1.04
(0.05)

0.96
(P > 0.05)

1.26
(0.06)

0.135
(0.03)

2.36
(P > 0.05)

3 7.1 0.34
(0.07)

1.30
(P > 0.05)

1.26
(0.06)

9.1
(P = 0.003)

1.65
(0.09)

0.206
(0.04)

0.08
(P > 0.05)

4 8.3 0.18
(0.05)

2.54
(P > 0.05)

0.97
(0.05)

4.86
(P = 0.028)

1.20
(0.07)

0.150
(0.04)

0.96
(P > 0.05)

5 8.5 0.27
(0.07)

0.0
(P > 0.05)

1.49
(0.07)

49.46
(P < 0.001)

1.81
(0.09)

0.149
(0.03)

1.34
(P > 0.05)

6 8.5 0.25
(0.05)

0.06
(P > 0.05)

1.05
(0.04)

1.02
(P > 0.05)

1.35
(0.06)

0.185
(0.03)

0.02
(P > 0.05)

a Additive genetic variance estimates were all significantly (P ≤ 0.05) different from zero. 
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As shown in Table III, the phenotypic variances increased
with , and  tended to be positively associated with .
Trial 1 had the highest levels for the additive genetic variance
and heritability, and the lowest levels for environmental and
phenotypic variances. 

Significant variance heterogeneity was still detected after
scaling the data to constant phenotypic or environmental vari-
ances, as indicated by results from the overall LR tests shown
in Table II (i.e. D = 60.94 and D = 55.18, P < 0.001). Never-
theless, the heterogeneity of  was substantially reduced after
the scale transformation to a constant phenotypic variance, as
in only one case was  significantly different (P < 0.001) from
a common estimate (Tab. IV). For , however, the data adjust-
ment methods were less effective in reducing the heterogeneity
of variances, although only one estimate remained significantly
different (P < 0.001) from a common value (Tab. IV). Com-
paring Tables III and IV, the largest changes in  and  fol-
lowing the data adjustments were observed in trials 1 (i.e. +0.10
and +0.32) and 5 (i.e. –0.33), respectively.

Table V indicates that the analysis assuming homogeneous
variances and using unadjusted data (i.e. E1) has, on average,
overestimated the PBVs when compared with predictions from
BM. Although the average difference between PBVs was small
(i.e. 8 mm), ignoring variance heterogeneity has overpredicted
the breeding values from BM up to 297 mm. Scaling the data
to a constant environmental variance (i.e. E3) reduced some-
what the range of differences between PBVs and decreased the
average bias to 4 mm (i.e. an improvement of 50% relatively
to E1). Compared with E3, the scale transformation to an equal
phenotypic variance (i.e. E2) was less effective in reducing
both the average and range of differences between PBVs.

Ignoring the heterogeneity of variances had only a small
effect on the ranks of top parents: as indicated in Table V, the

lists of the best 11 parents from BM and E1 had 10 in common,
and the average and maximum PBV rank change between the
two evaluations were only 0.5 and 3, respectively. Compared
with E1, the data adjustments under E2 and E3 did not cause
major differences among the ranks of top parents. The evalua-
tion of top clones, however, was more sensitive to variance het-
erogeneity, although the lists of the best 23 clones from BM and
E1 had 19 in common, and the average and maximum PBV rank
change between the two evaluations were modest (Tab. V).
Scaling the data reduced somewhat the impact of ignoring var-
iance heterogeneity on the clonal evaluation, with E3 resulting
in a better agreement with the ranks of top clones from BM. 

In terms of selection response, ignoring the heterogeneity of
variances in E1 is expected to decrease the genetic progress
from clonal selection by only 2.1% relatively to BM (Tab. V).
Yet, the relative decrease in genetic progress under E1 is
expected to be three times larger than that for E3 (i.e. 2.1% ver-
sus 0.7%). For parental selection, ignoring variance heteroge-
neity under E1 led to a smaller reduction in genetic response
when compared with the cloned progeny evaluations (i.e. 1.1%
versus 2.1%), and correction for heterogeneity under E2 and E3
did not change further the relative genetic response.

4. DISCUSSION

4.1. Impact of ignoring heterogeneous variances 
on the genetic evaluation 

When the covariance structure is correctly specified, the
BLUP analysis accounts for variance heterogeneity by properly
weighting and scaling the data. Failure to account for variance
heterogeneity from different environments may result in an
incorrect model fitted to the data. This may lead to inaccurate

Table IV. Effects of scale transformations on site estimates of additive genetic ( ) and environmental ( ) variances, obtained for 3-year-old
height growth measured across six Eucalyptus globulus trials (i = 1 … 6). The data were pre-adjusted by scaling to constant phenotypic or
environmental variances. For each trial, D1 or D2 are calculated test statistics from likelihood ratio tests, carried out for detecting whether an
individual  or  significantly (P ≤ 0.05) deviates from a common estimate over all trials. Under H0, the distribution of D1 or D2 asympto-
tically approximates that of a χ2, with one degree of freedom. 

Trial i Scaling to constant 
phenotypic variance

Scaling to constant 
environmental variance

D1 D2 D1

1 0.58 15.46
(P < 0.001)

0.78 34.74
(P < 0.001)

1.41 0.80 33.88
(P < 0.001)

1.92

2 0.19 2.26
(P > 0.05)

1.17 3.18
(P > 0.05)

1.41 0.17 3.30
(P > 0.05)

1.29

3 0.28 0.06
(P > 0.05)

1.08 0.0
(P > 0.05)

1.41 0.28 0.08
(P > 0.05)

1.40

4 0.21 0.96
(P > 0.05)

1.15 1.30
(P > 0.05)

1.41 0.19 1.48
(P > 0.05)

1.31

5 0.20 1.22
(P > 0.05)

1.16 2.64
(P > 0.05)

1.41 0.19 1.92
(P > 0.05)

1.31

6 0.26 0.0
(P > 0.05)

1.10 0.18
(P > 0.05)

1.41 0.25 0.02
(P > 0.05)

1.37
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and biased predictions of genetic values, and thus may affect
selection decisions and estimates of genetic progress. Never-
theless, the assumption of variance homogeneity may be required
for practical reasons in a model used for genetic evaluation. In
this sense, it may be useful to assess whether the efficiency of
selection based on simplified models assuming variance homo-
geneity is substantially altered when compared with a (more
appropriate) heterogeneous variances model.

In this study, the across-site heterogeneity of additive genetic
and environmental variance estimates was statistically signif-
icant. Therefore, correction for heterogeneous variances may
be needed if a method assuming variance homogeneity is applied
for breeding value evaluation. There was not a clear relation-
ship between the trial means and the estimated variances
(Tab. III), and thus the heterogeneity of variances can not sim-
ply be explained by a scale effect.  may vary amongst trials
because of real differences in microsite environmental effects
and/or differing efficiency of the trial experimental designs to
account for within-site environmental heterogeneity. The

effect of sampling variability may be one possible cause for the
heterogeneous , as the trials differed in parental samples
from the same base population and the number of tested parents
was limited. Related to this possibility, heterogeneous  may
also reflect different changes in additive genetic variance due
to differences between parental samples in gametic disequilib-
rium generated by plus-tree selection for growth. 

Using untransformed data, the model assuming variance
homogeneity for  and  tended to overestimate the PBVs
compared with the BM model (see maximum difference
between BM and E1, Tab. V), although the estimated bias was
not large. The biases in the genetic evaluation from assuming
homogeneous variances had a little effect on the parental rank-
ing. The majority of the parents were well represented across
trials, and thus progeny in small variance sites may offset prog-
eny in large variance sites. Yet the progeny of some parents
were poorly distributed over different trials, and thus variance
heterogeneity could potentially have had a greater impact on
the parental evaluation. The offspring evaluation, however,
was more sensitive (i.e. larger changes in ranking) than parental
evaluation to violations of the assumed variance homogeneity.
This is probably due to the fact that the distribution of cloned
progenies across trials was highly unbalanced, with nearly 50%
of the clones being tested in one site only. A clone with all of
its measurements in a single trial is likely to be unfairly assessed
if homogeneous variances are incorrectly assumed, which may
reduce the efficiency of selection.

As shown in Table V, four top ranking clones selected under
E1 were not present in the list of selected clones from BM. The
first three of these clones are poorly distributed across trials (i.e.
with a representation at one or two sites) and are all tested at
trial 5, where  had the greatest value. This suggests that
assuming homogeneous variances favoured the selection of
clones tested in the most variable environment. In this case, the
most variable site is also one of the least accurate for evalua-
tions (i.e. with the greatest  and a rather low , Tab. III),
which may have contributed to reduce the expected genetic
gain from clonal selection relative to the BM evaluation. How-
ever, although the ranks of the individual clones did change,
most of the top ranking clones selected in BM were also
selected in E1, and thus ignoring variance heterogeneity did not
reduce substantially (i.e. 2%) the selection response relative to
BM. The effects of ignoring variance heterogeneity on selec-
tion response depend on the differences in  among environ-
ments and their relation to  [14, 28]. In this sense, the greatest
reduction in gain from selection results when differences in her-
itability values across environments are strongly negatively
correlated with changes in phenotypic variances [7]. Although
the relationship between  and  seemed to be weak in the
present study, there was still a possibility for a potential reduc-
tion in selection response due to erroneously assuming variance
homogeneity, as there were sites with high  and low  (e.g.
trial 1) and sites with low  and high (e.g. trial 5). Never-
theless, using a parameter set where the heritabilities decreased
with increased phenotypic variances, Garrick and Van Vleck
[7] reported a reduction in the rate of selection response of only
3% when variance heterogeneity was ignored in the genetic
evaluation. Meuwissen and Van der Werf [20] also reported
that ignoring heterogeneous variances between environments
did not cause substantial losses in genetic gain.

Table V. Comparison of breeding value predictions and selections
from the model allowing for heterogeneous  and  (i.e. base
model, BM) with breeding value predictions and selections from the
model assuming homogeneous  and . The latter model used
unadjusted data (E1), or observations pre-adjusted by scaling to
constant phenotypic (E2) or environmental (E3) variances. Differen-
ces (i.e. BM-E1, BM-E2 and BM-E3) between predictions of bree-
ding values from alternative genetic evaluations were calculated for
each individual, and the average, maximum and minimum of these
differences are presented. Selections from alternative genetic evalua-
tions were compared for top ranking parents (approx. 25% selected)
and clones (5% selected). ∆G is the estimated relative reduction in
genetic response due to ignoring variance heterogeneity in the gene-
tic evaluations E1, E2 and E3.

BM vs. E1 BM vs. E2 BM vs. E3

Breeding value predictions

Average difference (m) –0.008 –0.007 –0.004

Maximum difference (m) –0.297 –0.282 –0.241

Minimum difference (m) 0.188 0.203 0.156

Selection

Parents (No. selected = 11)

No. in common 10 10 10

Average rank change 0.5 0.7 0.8

Maximum rank change 3 3 5

∆G (%) –1.1 –1.3 –1.3

Clones (No. selected = 23)

No. in common 19 21 22

Average rank change 3.4 2.6 2.4

Maximum rank change 18 12 7

∆G (%) –2.1 –1.2 –0.7
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It could be argued that offspring selection based on net PBVs
(e.g. Tab. V) may be less sensitive to ignoring variance heter-
ogeneity than within-family selection. This is because the influ-
ence of parental PBVs on net offspring PBVs could dampen any
changes in them compared with within-family breeding values
(which are based on the part of the net offspring PBVs that is
independent of the parental PBVs). However, in our data, the
reduction in genetic response from ignoring variance hetero-
geneity was similar for offspring selections based on net PBVs
and within-family breeding values. Predictions of within-fam-
ily breeding values for cloned offspring are expected to be more
accurate than for uncloned offspring, and thus the stabilizing
effect of the parental breeding value contribution is likely to be
diminished. 

4.2.  Effects of data adjustments to reduce 
the heterogeneity of variances

Although it was mainly due to a single estimate (i.e. 0.403
at trial 1), the heterogeneity in  values was significant and,
as expected, was robust to the scale transformations used in this
study. Consequently, the applied data adjustments could not
remove all of the heterogeneity of variance, as this would
require constant heritabilities across trials. Moreover, scaling
the data to common phenotypic or environmental variances,
while incorrectly assuming constant heritabilities, may not
improve the selection efficiency compared with an evaluation
where the heterogeneity of variances is ignored. This may occur
when the heritability is higher in the more variable environ-
ments, in which case observations from low heritability envi-
ronments will have more weight after scaling the data. In such
a situation, a method of data adjustment accounting for heter-
ogeneity in both variances and heritabilities may be appropriate
[6]. Nevertheless, the heterogeneity in  values was associated
with the heterogeneity of , but did not appear to be closely
correlated with differing  and  across trials (Tab. III).
Thus, the possible reduction in accuracy of the evaluations,
from ignoring different  when scaling the data, is likely to
be unimportant in the present study. In fact, trials with higher

 were given more weight in the evaluation E3, which used
data scaled to a constant environmental variance. This is
because, following the data adjustment under E3, the magni-
tude of  tended to become directly related to the  estimates
(Tab. IV) and, thereby, also to the  values. 

The correction for variance heterogeneity decreased only
partly the estimated biases in the PBVs, with the improvement
being better after scaling to a constant environmental variance.
Adjusting for variance heterogeneity had practically no effect
on parental selection. However, the rankings of offspring
clones were improved by consideration of variance heteroge-
neity, suggesting that some biases in the offspring evaluation
could be corrected by the applied scale transformations. In par-
ticular, scaling the data to a constant environmental variance
reduced the evaluations for top clones in the most variable site
(i.e. trial 5), and resulted in close to optimal clonal ranking and
selection response. The three top clones mentioned previously,
and selected under E1, were not present in the list of selected
clones from E3, as they were replaced by genotypes that are
fairly well distributed across trials (i.e. at least in four sites) and
are all tested at trial 1, where  had the greatest value. 

4.3. Final considerations

A full multivariate approach, where the performance in each
environment is considered a separate trait, would be theoreti-
cally the best base model. However, as estimated correlations
between trials were generally high for effects in a, the losses
in accuracy due to assuming unit across-site genetic correla-
tions in the base model are expected to be small. Garrick and
Van Vleck [7] found a negligible effect on the efficiency of
selection from assuming a unit genetic correlation across envi-
ronments when in reality a small G × E interaction was present
(as given by genetic correlations ranging from 0.86 to 0.97).

The applied base model allowed heterogeneous additive
genetic variances to be more easily incorporated than in Griffing’s
model [11] for diallel mating designs, and extended to include
cloned progenies [22, 24]. This is because, in Griffing’s model,
the variance due to general combining ability of the parents and
the variance due to differences among clones within full-sib
families both contain portions of the additive genetic variance.
In addition, by using cloned progenies, the residual variance in
the base model may be heterogeneous because of environmen-
tal effects, and not because of unaccounted for non-additive
genetic variance (as by using seedling progenies). The base
model also incorporated information (such as genetic relation-
ships among genotypes) across trials, which may have contributed
to increase the accuracy of variance components and heritabil-
ities estimated for each site. Nevertheless, the validity of the
applied base model for providing correct predictions of breeding
values (and thus be used as a basis for determining the optimal
genetic response to selection) is dependent on how well the esti-
mated parameters approximate the true (co)variance structure.

5. CONCLUSION

The present study indicated that ignoring variance hetero-
geneity in the genetic evaluation may favour the selection of
superior genotypes in the more variable sites, particularly if the
individuals in question are poorly represented over different
environments. In this context, clones within full-sib families
were more sensitive than parents to the assumption of homo-
geneous variances in an evaluation model. As the more variable
site in this study had also a low heritability, assuming homo-
geneous variances reduced the expected genetic gain from
clonal selection relative to an evaluation accounting for heter-
ogeneity of variances. However, this reduction in selection
response was not substantial, which suggests that the BLUP
method was reasonably robust to violations of assumptions
regarding the homogeneity of variances across sites. 

Adjusting the data to constant phenotypic or environmental
variances removed some of the variance heterogeneity. Under
the relationships among the parameters estimated in this study,
scaling the data to a constant environmental variance was
somewhat more effective in increasing fairness of selection,
and resulted in close to optimal ranking and selection response.

While our data is representative of the range of tree sizes that
have been found in other progeny trials of this species at a sim-
ilar age [16], our conclusions may not apply if a wider range
of variances exists due to different ages or productivities at a
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given age. In addition, our results were obtained from a series
of sites which exhibited a low genotype by environment inter-
action and largely the same genetic material.
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