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Abstract – This paper is the second part of a comprehensive approach that allows the elastic and shrinkage properties of oak to be determined
from the properties of the anatomical tissues and the spatial distribution of those tissues, obtained by a high resolution digital X-ray imaging
device. The computation of the macroscopic properties employs a 2-D numerical tool, called MorphoPore, that utilises periodic homogenisation
over the representative volume. The paper starts with the derivation of the mechanical formulation and analyses the effect of mesh refinement
on the overall solution quality. Thereafter, a first example is presented that depicts the effect of fibre proportion and fibre zone shape on the
macroscopic properties using a virtual anatomical pattern and a second example uses finite element meshes built from actual patterns coming
from two positions of the same tree, just before and just after thinning the forest stand.  The approach presented in this research allows the
increase of rigidity and shrinkage coefficients due to the increase of the annual ring width to be quantified. Finally, two localisation problems
are proposed in which the micro-stress fields are computed from the macroscopic loading. The first case assumes that no macroscopic stress
field exists (free shrinkage configuration), whereas the second assumes that the macroscopic displacement is constrained along one direction
(drying configuration).

wood / homogenisation / modelling / numerical computation

Résumé – Utilisation de l’imagerie X pour la prédiction du bois de chêne : représentation, homogénéisation et localisation. Partie II :
Calcul des propriétés macroscopiques et des champs de micro-contraintes. Cet article est la deuxième partie d'une approche complète qui
permet de prédire les propriétés élastiques et de retrait du chêne à partir des propriétés des tissus qui le composent et de leur distribution spatiale
décrite par un système d'imagerie X de haute résolution spatiale. Le calcul des propriétés macroscopique est effectué par homogénéisation de
milieux périodiques sur un volume élémentaire représentatif à partir d'un code numérique 2-D, appelé MorphoPore. Ce papier commence
par la présentation de la formulation mécanique. Viennent ensuite quelques considérations sur l'effet du raffinement du maillage numérique.
À l'aide de plans ligneux virtuels, le premier exemple d'application montre l'effet de la proportion des fibres et de la forme de zone de fibres sur
les propriétés macroscopiques. Le deuxième exemple utilise deux plans ligneux réels, provenant du même arbre. La seconde zone produite juste
après éclaircie, a un accroissement annuel très important. Notre approche permet de quantifier l'augmentation des rigidités et des coefficients
de retrait. Enfin, deux exemples de localisation sont proposés. Cette démarche permet le calcul des champs de micro-contraintes à partir du
chargement macroscopique de la structure. Le premier cas considère l'absence de contrainte macroscopique (retrait libre) tandis que le deuxième
considère que le déplacement est bloqué selon une direction (zone externe d'une planche durant le séchage).

bois / homogénéisation / modélisation / calcul numérique 

1. INTRODUCTION

Wood is a composite material that possesses numerous
interesting properties: low density, high longitudinal strength,
high impact strength, low thermal conductivity, low thermal
effusivity, low energy input, aesthetic quality, etc. However,
in spite of these qualities, the development of wood as a build-
ing material is constrained for two major reasons: wood is

highly variable and most wood species have a low natural
durability. This two-part paper proposes a new approach that
could enable the timber industry, in the near future, to take a
better advantage of wood variability.

The explanation of wood properties and its variability from
the anatomical structure is already well documented in the lit-
erature. Some well-known works or reviews, including those
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of Barkas, Boutelje and Kelsey for example, are several dec-
ades old [6, 8, 19]. These works present careful observations,
measurements and statistical analysis and remain absolutely
necessary in wood science before any modelling can take
place [3, 4, 7, 11, 22, 23]. Most modelling works consider
wood at the cellular level, using the beam theory to formulate
the structural behaviour. Although both analytical [12, 13, 20,
32] and numerical solutions [2, 10, 16, 27] have been pro-
posed, only the latter are able to model the actual cellular
arrangement of wood. 

In spite of these numerous works, the prediction of macro-
scopic properties of heterogeneous species, such as ring
porous hardwoods, using a deterministic approach is still rare.
To our knowledge, only some explanations and analytical
models are available to explain the effect of ray cells on trans-
verse anisotropy ratio [8, 14, 18, 19].

This work is devoted to the prediction of oak properties
from the tissue arrangement at the growth ring level. A numer-
ical approach is proposed, which uses a finite element method
to solve the homogenisation problems applied to periodic
structures [10, 27]. This deterministic approach requires two
kinds of local information:

1 - Characterisation of the microscopic components: the
intrinsic properties of each component of the composite
material have to be known.

2 - A geometrical (virtual) description of the material
structure must be made.

The characterisation of each tissue requires the use of very
specific experimental devices and intricate measurements on
micro-samples. This step was the primary objective of already
published works [3, 4]. The description of the oak annual ring
was the aim of the first part of this paper [5]. The work pre-
sented in Part I also explains the whole procedure that allows
the anatomical pattern of an actual wood sample to be meshed
using finite elements. This work involved several key steps:
sample cutting, X-ray imaging, image enhancement, image
segmentation, length controlled discretisation of the contours
and mesh generation.

The present part (Part II) is devoted to the computation of
macroscopic properties and microscopic stress fields
(figure 1). It comprises three steps:

– Homogenisation: Homogenisation computations are
performed using a periodic formulation. Four elementary
problems are solved: three for the elastic behaviours in the
transverse plane and one for shrinkage. The numerical
solutions are computed with a finite element tool, called
MorphoPore, specifically developed for that purpose [25, 26].
Some considerations on the effect of mesh refinement are
discussed also.

– Computation examples: The first example depicts the
effect of fibre proportion and fibre zone shape on the macro-
scopic properties. The second example uses the anatomical
morphology coming from two positions of the same tree and
allows the effect of growth rate on macroscopic properties to
be quantified.

– Localisation: Localisation is one of the interesting
possibilities of the mechanical formulation. It consists in
calculating the microscopic stress field that results from any
macroscopic configuration. The solutions of the elementary
homogenisation problems are used to calculate these

microscopic stress fields. Two localisation problems are
proposed: the first case assumes that no macroscopic stress
field exists (free shrinkage configuration), whereas the second
assumes that the macroscopic displacement is constrained
along one direction (drying configuration).

2. HOMOGENISATION

Homogenisation is one of the formulations that allows the
prediction of the macroscopic properties from the microscopic
description of a heterogeneous medium [1, 16, 27–29].

In the case of a medium assumed to be periodic, for which
the micro and macro scales do not interfere, homogenisation
reduces to that of solving a steady-state physical problem over
the unit cell. Specific periodic boundary conditions are associ-
ated with this problem.

The principle of the formulation uses a double scale co-
ordinate system. The macroscopic position is defined by vec-
tor x (x1, x2, x3) while the position within the Representative
Elementary Volume (REV) is defined by vector y (y1, y2, y3).
Variables x and y are supposed to be independent. This
description allows the variations in space to be divided into:

– the part resulting from the large distance change for a
point situated at the same position of the unit cell (points M
and M’’ in figure 2, for instance, with different values of x);

– the part resulting to the short distance effect that results
from points situated at the same macroscopic position x, but at
different locations of the unit-cell (for instance, points M and
M’’ in figure 2 with different values of y). 

A small parameter � is defined, which denotes the ratio that
exists between the macroscopic and the microscopic scales
(figure 2). One classical way to obtain the final problems to be
solved is to proceed to a formal expansion of the physical for-
mulation with respect to the successive power of the small
parameter [21, 28, 29]. 

According to this double co-ordinate system, the aim of
homogenisation is to derive the local problem in order to be

Figure 1. Principle of homogenisation: Part II of this paper is devoted
to the calculation of the macroscopic properties and the determination
of the microscopic stress fields that result from the macroscopic
configuration.
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able to predict the macroscopic properties. The initial problem
starts with a classical mechanical equilibrium formulation that
accounts for local shrinkage. We assume that no volume
forces act. At the level of one unit cell, specific periodic
conditions appear instead of the classical boundary conditions
(traction force and/or displacement conditions):

(1)

In (1), � is the stress tensor, a the elastic constitutive equa-
tion, e the strain tensor resulting from the displacement field u,
s the strain tensor due to shrinkage and n the external unit vec-
tor at the boundary. H is the macroscopic field responsible for
shrinkage and because shrinkage appears in wood only within
the hygroscopic range, H is calculated from the moisture con-
tent X (kg–1, dry basis) using the following formula:

H = min (X, Xfsp) – Xfsp (2)

where Xfsp is the moisture content at the fibre saturation point.
Within the domain of free water, H is equal to zero, within the
domain of bound water, H has a negative value.

The displacement field u is written as an asymptotic expan-
sion in successive power of �:

ui(x, y) = ui
(0)(x, y) + �ui

(1)(x, y) + �2�ui
(2)(x, y) + ... (3)

According to the double coordinate system, we can derive
the following rule for the spatial derivative:

.  (4)

Applying this rule to equation (1b) leads to an asymptotic
expansion of the stress tensor:

... (5)

where (6)

 
The same rule for the space derivative applies for the diver-

gence of the stress tensor, hence:

.  (7)

Let us now separate the spatial scale by letting � tend
towards 0. In taking this limit lies the fact that we first assumed
the two scales to be independent. The only possibility for the
balance equation to remain valid is to cancel each power of �.
Order -2 gives:

 with u(0) Y-periodic (8)

a being coercitive, equation (8) implies that u(0) is a function
of x only.

Going further at order -1 gives:

(9)

because u(0) is only a function of x, the last term in the left
hand side vanishes.

Finally, the order 0 is required to close the problem. Keep-

ing in mind that  is anti-periodic and integrating the
resulting equation over the unit cell, we finally obtain:

. (10)

This equation represents the macroscopic behaviour of the
material. Now, in order to get the macroscopic properties, we
return to equation (9). Because of the linear constitutive equa-
tion, u(1) depends linearly on u(0) and H. So, we seek a solution
of the following form:

. (11)

Due to the linearity of the formulation, the elementary solu-
tions  and w do not depend on the macroscopic variable x.
Each has to be calculated only once by solving the problem

Figure 2. Principle of formal expansion used to derive the hydro-
elastic formulation.
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corresponding to the dimensionless macroscopic fields. More
precisely:

 and H(0) = 0

for problem m associated to ,

 and H(0) = 1 for the problem associated to w.

Finally, the following problems are required to be solved
over the unit cell:

(12)

. (13)

The knowledge of each basic solution allows the macro-
scopic properties to be calculated. The simplest and well-
known formula concerns the elastic properties:

(14)                      

Equation (14) proves that the macroscopic property is the
sum of the average over the unit cell of the microscopic prop-
erties and a corrective term, determined from the elementary
solutions . The last term of the right side represents the
effect of the microscopic morphology.

The elementary solution related to shrinkage does not give
directly the macroscopic shrinkage, but rather the macroscopic
stress field Qij due to shrinkage, assuming the macroscopic
strain field equal to zero:

. (15)

The macroscopic shrinkage is then obtained through the
macroscopic constitutive equation, which accounts for shrink-
age. This equation comes from the combination of equations
(6b) and (10):

. (16)

The macroscopic shrinkage Skh is determined from equa-
tion (16), as the macroscopic strain field obtained for H = 1,
which cancels the macroscopic stress field (this is the concept
of “free shrinkage”), hence:

. (17)

3. COMPUTATIONAL ASPECTS

The homogenisation formulation results in a classical PDE
(Partial Differential Equations) problem. Moreover, owing to
the assumption that the microscopic and macroscopic scales
are independent, together with the simple physical formulation
used up to now in our laboratory (Fick’s law, Fourier’s law,
elastic constitutive equation…), the problems under consider-
ation are steady-state, linear and uncoupled. On the contrary,

the model must be able to handle any geometry and to deal
with properties that vary strongly in space. Consequently, the
FE method was the chosen numerical solution strategy. In con-
trast with classical FE software, the model proposed here has
to deal with periodic boundary conditions, which imposes
constraints on the linear solver and to the mesh. In particular,
each node situated at the boundary must have its “periodic”
equivalent. This requirement has been fulfilled when
constructing the partitioned boundaries of the unit cell con-
tours (see Part I, [5]).

Note that the periodic boundary conditions of these prob-
lems prove that the solution does not depend on the macro-
scopic configuration: the elementary problems have to be
solved once in order to obtain the property of the equivalent
macroscopic medium.

The computational code MorphoPore, developed in Fortran
90 by one of the authors of this paper, P. Perré, has been used
in this work [25, 26]. A graphical library (Winteracter 3.1)
allows both pre- and post-processing with a Windows-like
interface. Triangular (T3) and quadrilateral (Q4) elements can
be used, with various kinds of boundary conditions (periodic,
symmetrical REV, imposed macroscopic strain or stress). An
efficient linear solver permits large meshes to be processed
economically on typical personal computer hardware.

In this work, three node triangular elements were chosen
because they provide a flexible way to follow any contour
shape. The unstructured meshes are generated directly from
the X-ray image. After image segmentation, the contours are
extracted and smoothed. The length of each contour segment
can be chosen as an input parameter (mesh refinement) for the
mesh generator (see Part I, [5]). 

Because the solver has to deal with periodic conditions, it is
absolutely necessary to ensure that the mesh generator respect
periodic positions: each node placed at the boundary face must
have its corresponding node at the opposite face. Then Mor-
phoPore generates an allocation table such that only one set of
unknowns is associated to this pair of nodes. This procedure
allows the number of unknowns to be significantly reduced
while, at the same time, satisfying the periodic conditions. The
linear systems are solved by employing the Bi-Conjugate Gra-
dient Stabilised Method [31], together with an Incomplete
Block Factorisation level zero, ILU(0), preconditioning tech-
nique. 

The microscopic properties used in the calculation (see
table I) come from specific experimental measurements previ-
ously made on micro-samples [3, 4].
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Table I. Microscopic properties of the different components used for
the calculation. These values come from specific experimental
investigations [3, 4].

ER (MPa) ET (MPa) �TR GTR �R (%/%) �T (%/%)

vessels 1 1 0.10 0.45 0 0

parenchyma 1 700 850 0.40 607 0.142 0.253

fibre zone 1 900 1 900 0.71 555 0.334 0.553

ray cells 3 600 3 800 0.30 1385 0.167 0.177
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One typical set of solutions is drawn as the elementary dis-
placement solutions shown in figure 3, which allows the mac-
roscopic properties of the composite to be calculated (see
table II). In figure 3, the solid lines represent the initial posi-
tion of boundaries between different kinds of tissues, while the
coloured zones represent the deformation of these zones as
calculated for each elementary solution (an amplification fac-
tor is applied so that the deformation field can be observed eas-
ily). Vessels, ray cells and fibre zones can be recognised.
These solutions emphasise the complexity of the pore struc-
ture of oak, and its implication on mechanical behaviour. In
particular, it is interesting to note the following features:

– The vessels have no shrinkage and no mechanical
resistance. They simply act as a degree of freedom for the
structure.

– The fibre zones have an important shrinkage and are
strong enough to impose this shrinkage to the rest of the
structure (problem w).

– The ray cells are particularly rigid in the radial direction
and have a low shrinkage in this direction.

– The ring porous zone is a weak part unable to transmit any
tangential forces (in this part, the ray cell enlargement is
negligible, problem 11) and prone to shear strain
(problem 12).

– The weakness of the ring porous zone enables the ray cell
to support any macroscopic radial forces (problem 22).

As usual with computational strategies, one has to keep in
mind that satisfactory compromise has to be found between
computational time, data storage requirements and accuracy.
For the same X-ray raw image, several meshes have been built

having various degrees of freedom (dof) ranging from a very
coarse one (236 dof) up to a quite reasonably refined mesh
(9848 dof). For each mesh, the number of dof comes from an
exact calculation that accounts for the periodic boundary
conditions and the four corners having both displacements (u
and v) blocked. Figure 4 depicts the macroscopic properties
calculated for these successive meshes. Note that the first
mesh is so coarse that all large vessels of the initial zone have

Figure 3. Periodic displacement fields computed for the four
problems to be solved over the representative cell. (W) shrinkage
problem; (�11) and (�22) mechanical problems in radial and tangential
direction. (�12) corresponds to the shear problem. Thin lines represent
the initial contours of tissues.

Table II. Macroscopic values computed by MorphoPore for the
structure depicted in figure 6 with the microscopic values of the
table I.

ER (MPa) ET (MPa) �R (%/%) �T (%/%)
average values 1 803 1 420 0.188 0.310
macroscopic values 1 465 1001 0.203 0.394
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disappeared. On the contrary, the large meshes are refined
enough for the small vessels of the latewood zone to be
accounted for. Figure 4a considers directly the computed
macroscopic properties. One can note that the shrinkage coef-
ficient remains surprisingly almost independent of the mesh
refinement. Both Young’s moduli decrease slightly as the
mesh refinement progresses. However, the variations remain
small: less than 5% between 2000 and 10 000 dof (table III).

The macroscopic property changes result from two differ-
ent reasons:

– the accuracy of the FE calculations increases with the
mesh refinement;

– the shapes and proportions of each phase change with the
segment length used to describe the tissue morphology.

In order to improve the analysis, figure 4b exhibits the
dimensionless macroscopic properties, which have been cal-
culated as the ratio of the macroscopic property divided by the
average of the microscopic properties (see Eq. (14)). Keeping
in mind that the averaged shrinkage has to be weighted by the
material stiffness, the dimensionless macroscopic shrinkage is
calculated according to the following expressions:

Radial shrinkage      (18)

Tangential shrinkage  (19)

Figure 4b highlights that the dimensionless macroscopic
shrinkage varies as the mesh refinement changes. However,
for the annual ring pattern under consideration, this
second graph confirms that above 2000 dof, the variations of

macroscopic behaviour are almost negligible. In the forthcom-
ing results, all meshes are built with a segment length that pro-
duces a resolution comparable to the mesh with 5000 dof. 

4. SOME COMPUTATIONAL EXAMPLES

The complete analysis, from the wood cross-section to
homogenised properties, provides completely new  possibili-
ties in the study of relationships between tree development and
wood properties. The following examples illustrate the main
callings of this tool. The first application depicts the effect of
fibre proportion and fibre shape on the elastic and shrinkage
values. It uses a real X-ray image of an oak sample that has
been modified in order to vary the fibre proportion (annual
ring width) and/or the fibre pattern (triangles, rectangles and
no fibre zones). The shapes are such that the fibre proportion
does not change between triangles and rectangles. As
expected, computed results exhibit an increase of shrinkage
and moduli when the ring width, hence the density, increases
(figure 5). This result is in accordance with usual experimental
data and well-known statistical trends [9]. The new contribu-
tion of this work is that this effect is quantified. In addition, for
the first time, it becomes possible to differentiate the effect of
tissue morphology from the effect of tissue proportion. For all
of the calculated properties, the effect of the fibre is slightly
higher for triangular shaped zones. Such possibilities offer an
interesting potential for genetic selection.

In order to focus the attention on the effect of growth con-
ditions, a second example is proposed that deals with actual
anatomical patterns. Two positions of the same tree have been
selected. The second position, which is taken just after thin-
ning the forest stand, exhibits a very large annual ring (3.1 mm
instead of 1.7 mm). Homogenisation calculations have been
performed on each of these zones. According to the remark
specified in the “representation” section, these calculations
allow us to quantify the wood material that would have been
produced by this tree with a regular growth rate (thin annual
ring for the first REV and large annual ring for the second).

A first observation shows that the computed values are very
reasonable compared with the usual data proposed in litera-
ture. For example, the renowned anisotropy of oak is clearly
present for the mechanical properties with a factor lower than
2 [15]. Furthermore, the anisotropy also is pronounced for the
shrinkage properties, with a factor close to two [24]. 

A more detailed analysis reveals that, due to the large
extension of the fibre zones with the annual ring width, all
homogenised parameters exhibit higher values for the large
annual ring (figure 6). In particular:

– the shrinkage coefficients increase by 17% and 18%;
– the Young’s modulus increases by a significant factor in

the tangential direction (+ 23%);
– the Young’s modulus is slightly modified in the radial

direction (+ 11%).
These effects result from the spatial distribution of tissues

in oak. Due to the presence of the initial porous zone (large
vessels elaborated in earlywood), only the ray cells are able to
constitute a continuous mechanical pathway in the radial
direction from one ring to the other. The rigidity of the fibre

Table III. Macroscopic values computed by MorphoPore: effect of
mesh refinement.

Mesh number
(number of 
degrees of
freedom)

Radial 
MOE

ER (MPa)

Tangential 
MOE

ET (MPa)

Radial 
Shrinkage 
coefficient
�R (%/%)

Tangential 
Shrinkage 
coefficient
�T (%/%)

236 1971 1223 0.200 0.347

366 1872 1174 0.206 0.359

916 1778 1116 0.201 0.356

1342 1684 1092 0.206 0.366

1650 1717 1105 0.200 0.357

2140 1663 1085 0.203 0.363

2786 1676 1086 0.199 0.358

4072 1618 1066 0.204 0.365

4968 1629 1070 0.201 0.362

6224 1632 1071 0.200 0.360

7982 1604 1060 0.203 0.365

9848 1603 1057 0.202 0.363

S11
* S11

A11ij� �
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zones is altered in the radial direction by the presence of ves-
sels, while the same zones are able to act efficiently in the tan-
gential direction.

The increase of shrinkage in the tangential direction has to
be connected with the increase in the fibre zones, but also with
the increase in fibre proportion within latewood when the
annual ring width is large. This result is in agreement with the
experimental data described by Botosso [7] who observed a

great correlation between the presence of a fibre zone in late-
wood and tangential shrinkage. The value of the radial shrink-
age coefficient results from a balance between the large
shrinkage value of the fibre zones and the small shrinkage
value of the ray cells.

5. LOCALISATION

The formulation offers the possibility, through a procedure
called localisation, to calculate the microscopic stress field
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Figure 5. Effect of growth width and fiber zones pattern on elastic
and shrinkage properties of Oak in the radial-tangential plane (virtual
annual rings).

Figure 6. Effect of growth width and fiber pattern on elastic and
shrinkage properties of Oak in the radial-tangential plane (Actual
annual rings). The microscopic properties of each tissue are supposed
to be identical in the two configurations.
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that results from any macroscopic loading. In the case of
wood, localisation is of utmost importance. For example, it
allows the checks due to shrinkage in the latewood part of soft-
wood to be understood, and even predicted. Indeed, due to the
heterogeneity, some parts of the REV that have high (low)
shrinkage values will undergo microscopic tensile (compres-
sive) stresses (figure 7). This is easy to understand in the case
of series or parallel structures.

In general, a rigorous formulation can be derived to calcu-
late these microscopic stress fields. Once the four solutions

have been calculated for the four problems to be solved over
the unit cell, the microscopic stress and strain fields that result
from a macroscopic loading can be calculated from the follow-
ing expression:

. (20)

Figure 7. Localisation principle: while
homogenisation allows the macroscopic
properties to be calculated from micro-
scopic data, localisation allows the micro-
scopic stress field resulting from macro-
scopic configurations to be determined.
Three macroscopic configurations have
been chosen in this work.
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In equation (20), the macroscopic values,  and H
arise from a classical elastic solution computed at the macro-
scopic scale using the equilibrium equation and the macro-
scopic constitutive equation (Eq. (16)).

The first selected example deals with a very important
problem in wood science – the problem of free shrinkage. In
this example, the macroscopic conditions are just the absence

of the macroscopic stress field   and the presence of
shrinkage (H = – Xfsp), for an oven-dried sample, see Eq. (2).

From equation (16), the macroscopic strain field  to
be used in equation (20) is obvious.

This is exactly what is usually called “free shrinkage”.
Obviously, because the structure is heterogeneous, micro-
scopic stress is generated by shrinkage, even if no macro-
scopic load exists (figure 7). Indeed, stresses are generated
because the microscopic strain field due to local shrinkage
does not fulfil the geometrical compatibility.

In the previous section, some considerations on the mesh
refinement led to the conclusion that the calculated macro-
scopic values are quite accurate as soon as the mesh is reason-
ably detailed. However, the calculation of the microscopic
stress field does take advantage of the same averaging effect.
So, it is natural to be cautious of important deviations from the
solution even for refined meshes. This is why the same meshes
have been used to analyse the effect of mesh refinement on the
local microscopic stress field (figure 8). Surprisingly, the cal-
culated microscopic stress level has a satisfactory value even
for very coarse meshes. In this figure, the legend of each figure
depicts the stress value between the extreme values. There is
no doubt from these results that the microscopic stress value is
accurate enough for the same level of resolution that was used
for the calculation of the macroscopic values.

Figure 9 depicts the REV morphology and microscopic
stress fields calculated in such conditions. Some important
effects should be noted:

– a quite important shear stress field exists. This results
from the two-dimensional property variations over the REV
(this field does not exist with multi-layered materials such as
softwoods);

– the fibre zones are rigid enough to allow a large shrinkage
to develop within the structure. Consequently, fibre zones
undergo important tensile stresses in the tangential
direction ���;

– the radial shrinkage coefficient is about the same for the
fibre and parenchyma zones. On the opposite, radial shrinkage
is low for ray cells. This is why free macroscopic shrinkage
induces radial compressive stress within ray cells and radial
tensile stress in fibre and parenchyma zones.

The second example of localisation has been chosen from
one important industrial operation. Wood drying is always dif-
ficult to control, and is specifically difficult for oak. The fol-
lowing example represents what happens close to the
exchange surface when the moisture content just decreased
below the fibre saturation point. This phenomenon occurs just
when the drying stresses develop, so that the elastic formula-
tion used in this work is not unrealistic. Shrinkage occurs near
the surface while the core of the board remains within the
domain of free water. Consequently, shrinkage occurs with
almost no macroscopic deformation along the direction paral-
lel to the exchange surface. The macroscopic coefficients to be
used in equation (20) depend on the sawing pattern (figure 7):

•  and

    for a quartersawn board;

•  and

    for a flatsawn board.

In each case, the missing part of  is determined to
fulfil equation (16), the value of H used in the calculation is
10% (one third of the hygroscopic range). Figures 10a and
10b depict the local stress field determined from these macro-
scopic loading configurations respectively. As expected, due

Figure 8. Localization solutions: effect of mesh refinement on the
computed stress field.
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to shrinkage, all stress values along the constrained direction
are positive (tension stress):  in figure 10a and  in
figure 10b. In the corresponding fields, the presence of vessels
becomes obvious, with very low values of  in figure 10b
(no tangential rigidity in the ring porous zone) and low values
of  in figure 10a for the latewood part situated in series
within the vessel zone. In this figure, the stress level is much
higher close to and within the ray cells. In the case of a flat-
sawn board (figure 10b), the tangential stress level is rather
high in the ray cells, especially in regions in series within fibre
zones. This observation has to be related to a well-known
behaviour of oak, which is prone to checking within ray cell
during drying.

In the direction that is normal to the exchange surface, no
geometrical constraint exists and the average value of the
stress field is equal to zero. The stress levels are low in this
direction (  in figure 10a), except the phenomenon already
exhibited in the free shrinkage problem, namely the contrast of
the shrinkage values in the radial direction between fibre
zones and rays cell (see the large compression stress in ray
cells observed for  in figure 10b).

6. CONCLUSION AND PROSPECTS

In this two part paper, a complete suite of tools has been
developed to enable the determination of the elastic and
shrinkage properties of oak from its anatomical pattern.
Homogenised properties are computed on finite element

�rr �tt

�tt

�rr

�tt

�rr

Figure 10. Localization: micro-
stress fields computed in the case
of constrained macroscopic de-
formation (case of drying condi-
tions). Red color = positive values;
blue color = negative values). (a):
<�RR> = 0. (b): <�TT> = 0.

Figure 9. Localization: micro-stress fields computed in the case of
free macroscopic stress (often called “free shrinkage” in wood
science). Red color = positive values; Blue color = negative values.
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meshes generated directly from X-ray images of real oak sam-
ples. Shrinkage coefficients and elastic properties can be com-
puted in the transverse plane (radial-tangential).

Several examples were proposed, which prove that the
effect of tissue proportion can be separated from the effect of
tissue morphology. A test performed on two different parts of
one single tree allowed the effect of growth ring width on
wood properties to be quantified.

Two different localisation solutions were also proposed:
free shrinkage of wood and drying of wood. Each component
of the stress tensor field can be visualised within the unit cell.
By this way, the risk of structure damage can be evaluated not
only according to the macroscopic loading, but also according
to the anatomical pattern.

Such an approach has a great potential for studying wood
quality in relation to growth conditions of trees. It could also
provide objective criteria for genetic selection. 

Obviously, the method proposed here should be used only
as a tool. One must keep in mind that several problems remain
to be solved, including the treatment of other spatial scales and
the difficult problem of property characterisation at the micro-
scopic scale.

In addition, one must keep in mind that the model has to be
validated. This work is in progress in our laboratory. The
results of computations should be compared to experimental
values that should be measured on the same samples.
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