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Abstract

o The Reineke Stand density rule relating stem numbers to the quadratic mean diameter is generally
used as a reference for modelling maximal stand density.

o The linearity of this relationship after double logarithmic transformation is generally assumed, but
it must be questioned for untouched stands and stands with a conventional thinning regime. Curvilin-
earity is demonstrated for some spruce and beech stands in Switzerland and shown to be statistically
representative. This relationship is independent of the site index. It can be interpreted as a change in
mortality in young stages mainly due to competition and in older stages more to ageing.

e A more accurate estimation of the maximal stand density needs to take into account the important
variation around the mean course, known as the yield level. A simple method to assess the yield level
of any stand regardless of whether it is thinned or not is presented, based on estimating the effect of
a stand opening on the basal area.

Résumé — Amélioration de I’estimation de la densité maximale de peuplement combinant la loi
de taille-densité selon Reineke au niveau de production, a ’exemple de I’épicéa commun (Picea
abies L. (Karst.)) et du hétre (Fagus sylvatica L.).

e La loi de Reineke reliant le nombre de tiges au diameétre quadratique moyen est généralement
utilisée comme référence pour la modélisation de la densité maximale de peuplements.

e On remet en question la linéarité d’une telle relation dans I’espace logarithmique, dans le cas des
peuplements non traités aussi bien que pour ceux traités par des interventions conventionnelles. La
curvilinéarité de cette relation est démontrée pour quelques peuplements purs d’épicéa et de hétre
en Suisse et dans sa représentativité statistique. La relation est indépendante de I’indice de fertilité
et interprétée comme modification du type de mortalité au cours du développement, due pendant le
jeune age a la seule compétition, puis s’y ajoute celle due au vieillissement.

o Une estimation appropriée de la densité maximale des peuplements doit tenir compte des variations
importantes autour de la courbe moyenne connue comme niveau de production. Une méthode simple
de détermination du niveau de production dans tous les cas de traitement antérieur est présentée,
fondée sur une estimation de I’effet de I’ouverture du couvert sur la surface terricre.

1. INTRODUCTION

The search for an objective and more or less invariant, but
comprehensible, determination of stand density has preoccu-
pied forest scientists for a long time. It belongs to conven-
tional wisdom on forest yield to use therefore the so called
stand density rule or self thinning rule of Reineke (Reineke,
1933), relying on the size to density relationship N vs. d, (the
quadratic mean diameter at breast height). Reineke considered

* Corresponding author: jph.s@bluewin.ch

this rule to have a general character not only in forestry. Such
an overall applicable size-density rule is, however, too simple
to be biologically credible (Lonsdale, 1990). Its general ap-
plication to different tree species has been repeatedly refuted
(Lonsdale, 1990; Weller, 1987; White, 1981; Zeide, 1985) be-
cause each species, depending on its competitive tolerance,
can exhibit other closure features. Even the applicability of
the rule to the same tree species during stand development has
been questioned because, in accordance with Zeide (1987):
“Horizontal canopy closure of even-aged stands is in con-
stant change; it is a process. The degree of horizontal crown
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closure is affected by two opposing and mutually related fac-
tors: lateral growth of crowns, which increases crown closure,
and mortality, which decreases it.” Thus the linearity of N
vs. dy in a double logarithmic grid has been questioned. Pret-
zsch (2006) presented results from long-term yield series from
south Germany and demonstrated log(N) to log(d,) relation-
ship was, at least in some cases, non-linear.

One of the problems regarding the change in the steepness
of the so called self-thinning line in the log grid leading to a
convex curvilinear form is the question of a clear definition
of what full stand closure is. In ageing stands, instability in-
duced by long-term overcrowding leads to mortality, which
originally affects only suppressed low social trees in juvenile
stages (density-dependent mortality), affecting higher social
elements from the adult stage on (active mortality due to haz-
ardous events and ageing). It can result in changes in canopy
closure which, if not excessive, are compensated for by the
lateral growth of neighbouring trees. This phenomenon was
the main reason, according to Zeide (1987), for the observed
non-linearity of the self-thinning line for various tree species.
Observations in virgin forests show that, at the end of a life
cycle, a successive growing space release of the main stand
occurs (Korpel, 1995). Thus, if the ontogenic cycle develops
further, the main stand will collapse at any time. Yield research
generally avoids this stage, in that, as soon as such a collapse
occurs, and an opening or several openings appear, the record
is interrupted. Thus long-term yield plot series represent only
full closed stands. In reality, there is a continuous transition
from full closure to light opening. In any case, an acceptable
working hypothesis seems to be that, during the ontogenic de-
velopment of the same tree species, the density relationships
change successively.

Another question is whether the scale-density relationship
for a particular species is dependent on the site index. Gener-
alisation of Reineke’s stand density rule implies more or less
independency. Studies of Pinus radiata plantations (Bi, 2001)
and other crops (Morris, 2003) provide evidence and suggest
that the validity of this assertion should be doubted and, in-
stead, that harsh site conditions influence competitiveness dif-
ferently from good conditions.

When determining maximal stocking, another difficulty
arises. The observed maximal basal area G,,x varies within
a large range, presenting sometimes extreme values beyond
what is usually expected. This is particularly the case in coun-
tries with very different climatic conditions like in the peri-
alpine zone, especially when precipitation attains a high level.
For spruce stands, for instance, extreme maximal basal area
value of more than 100 m?/ha has been recorded (Bachofen
and Zingg, 2001). The phenomenon that density and yield
characteristics can vary substantially independently of the site
index, was first mentioned 1955 by Assmann (1955) under
the term “yield level”. It was first defined as the variation in
the total yield over i, (mean quadratic height), but the yield
level also affects the maximal basal area G,.x as well as the
stem number density and other yield features (Assmann, 1974;
Franz, 1965; 1967) . Basal area can be considered as a good
indicator of the carrying capacity of the site. Franz (1965) de-
scribes a different way to assess the yield level with a set of
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stand dendrometric variables, or alternatively as well with the
N:d, relationship. The latter is promising because it can be
easily related to Reineke’s way of assessing stand density. In
fact, a scrutiny of a scatter plot of N:d, values (Fig. 1) re-
veals a variation in both sides of the mean course. Reineke
uses as a reference for the maximal stand density the outer
line, tangential to the values of the scatter-plot. Albeit fre-
quently used in this way (Zhang et al., 2005) this is ques-
tionable from a statistical as well as from a biological point
of view, because it is based on the assumption that only ex-
tremes values represent the real maximum stocking. In reality,
every value represents full closure. The variation in the stand
density can be more than trivial. For beech and spruce stands
under Swiss conditions it amounts to about 80% (+40% of the
mean value) (Schiitz, 2008). Other authors demonstrated sim-
ilar significant variation (Assmann, 1974; Bégin and Schiitz,
1994; Franz, 1965; 1967; Kennel, 1973; Pfadenauer, 1975)
depending on site conditions not yet entirely explained until
now. Reinecke way of assessing density leads to overestimate
the real density conditions by half of the variation around the
mean. Thus the self-thinning curve should correspond to the
statistical mean course of In(N):In(d,). In this case, it may be
interesting to consider the residual variation, i.e. the quotient
Nobserved t0 Nmean, as the yield level.

Stand density relationships are strictly considered valid
only when derived from untouched stands. In temperate cen-
tral Europe, with a tradition of repeated thinning untouched
stands do not represent normality and untouched yield plots
are rare. Overcrowding tends to increase their instability and,
especially for species vulnerable to storms like spruce (Schiitz
et al., 2006), threatens their survival. Nevertheless, allomet-
ric relationship during ontogenic development of the stands
could also be verified in treated forests stands under the con-
dition that the thinning regime is uniform. On the other hand,
a thinned stand provides the advantage that thinning avoids
mortality from overcrowding and ensures more stability in the
upper storey of the stand. Since 1882 (i.e. since foundation
of the IUFRO), West European yield research has harmonized
the definition of thinning especially for the implementation of
yield trial series (Verein Deutscher Forstlicher Versuchsanstal-
ten, 1902). Thus, especially in Germany and Switzerland, long
yield time series have been recorded under the same thin-
ning regime, B (moderate thinning from below) up to today,
which fulfils the above mentioned conditions of uniformity of
the thinning regime. B-plots are functionally not very different
from plots in untouched stands as the thinning does not inter-
fere significantly with the main stand development. In Switzer-
land since the 1930s, when Schédelin (Schédelin, 1934) pro-
posed selective thinning (H according to IUFRO definition),
this thinning regime has been applied throughout the coun-
try so that we also have long series for this regime, and they
should also be scrutinised.

The determination of the yield level in repeatedly thinned
stands with different regimes is more difficult because of com-
pensative forces between the removed trees and the canopy
closure due to the lateral expansion of the crown. In practice,
the silvicultural history of the stands is normally not known,
at least not in detail. The basal area contains intrinsically the

507p2



Combining Reineke’s size-density rule and the yield level

yield level and appears to be the right indicator for its de-
termination. The problem is that basal area also depends on
the thinning history. Assmann (1957) showed, on the basis
of thinning trials with very different thinning intensities, that
full compensation occurs within some limits of closure open-
ing, from full closure to a thinning intensity threshold (rule
of the relative mean basal area). Only below the threshold of
the so called critical basal area G does a clear reduction in
the yield features (increment) occur. In finding a way to assess
the influence on the basal area G of the reduced stand density
i.e. by thinning it appears possible to separate the two influ-
ences mentioned above and as a result to determine correctly
the yield level, for all plots treated and not treated. This al-
lows enlarging the data base and enhances performing statistic
regressions.

The aim of the present work is to verify and quantify the
size-density relationship so to be able to predict the maxi-
mal basal area G« including its variation (yield level). The
variables included should be as simple as possible so that
the method can be used for practical purposes. The study
was part of a project to construct a modern, distance inde-
pendent, growth simulator for even-aged pure spruce (Picea
abies Karst.) and beech (Fagus sylvatica L.) stands in Switzer-
land (Model SiWaWA), based on one of the largest data set
from classical yield plots available as well as on several one-
time surveys. Because there are not sufficient complete time
series of untouched stands, the data base was enlarged with
a set of incomplete series and some temporary plots. These
were carefully selected for representativeness according to site
variation and stand closure. Some plots from primeval forest
from Switzerland and for spruce from Slovakia have also been
added in order to cover the mature development stages that are
normally missing in yield series, as long as they correspond
to yield plots regarding tree species composition (pure stands)
and stand closure conditions (only stands with full closure).

2. MATERIALS AND METHODS

The data was taken mainly from permanent yield plots repeatedly
measured over a long time span (1882-2006), mostly from the yield
data base WSL (Swiss Federal Institute for Forest Snow and Land-
scape Research, Birmensdorf). The permanent yield plots WSL are
distributed over the whole of Switzerland. Plots above 1200 m a.s.l.
have been excluded. Plot size generally amounts to about 0.25 ha.
All trees are identified by a number. Measurements were carried out
about every 4 to 7 y after a thinning intervention. The dbh of all trees
above 4 cm dbh (in some case for young stands above 2 cm) is accu-
rately recorded to mm, crosswise with a calliper. Inventories from the
plots of the chair of silviculture ETH-Z have been added to enlarge
the information base on untreated stands and also to keep records
of the actual kinds of treatment of selective thinning according to
Schidelin (1934) particularly in the old and mature stages. ETH plots
are of two kinds: (1) repeated surveys, similar to the WSL plots in de-
sign and measurement, regarding one thinning trial with three inten-
sities of selection thinning in spruce (regime H) and four permanents
plots in a pure beech pristine forest reserve St-Ursanne (Tariche) in
Switzerland; (2) selected stands, surveyed once, from the training for-
est ETH, typical for the treatment H but with full canopy closure,
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as well as 51 plots of untreated stands, selected for a Ph.D.-thesis
(Ammann, 2004). To obtain more information on older development
stages for untreated spruce, which is very important for verifying the
extremities in the N:d, thinning curve, three inventories of a perma-
nent plot from the virgin forest Kosodrevina (Chopok) Low Tatras,
Slovakia (elevation 1230) have been included, selected from a devel-
opment stage with full closure (see diameter distribution of the plot
3 in Korpel, 1995, p. 252). This is the only comparable spruce vir-
gin forest available. Other spruce Slovakian virgin forests lie in the
near subalpine belt and could not be considered according to Kor-
pel (1995), because they showed differences between mountain and
subalpine forest dynamics at an altitude threshold of about 1500 m
a.s.l.

Thinning interventions in WSL plots correspond, in terms of thin-
ning types and intensity, generally to conventional practice, i.e. with
moderate thinning from below until about 1940 i.e. grade B accord-
ing to IUFRO rules (Verein Deutsche Forstlicher Versuchsanstalten,
1902) and selective thinning according to Schidelin (1934) after
1940. In some cases yield series with variation in thinning intensity
(A = natural thinning, B = moderate thinning from below, C = heavy
thinning form below, D = very heavy thinning from below, H = thin-
ning from above) have been established.

The complete data set available consists of 418 surveys for spruce
and 620 for beech. Table I presents the distribution between complete
long times series (30% of the surveys for spruce and 45% for beech),
incomplete long time series (29, 29%), short time series with 2 to
5 surveys (21, 23%) and one time surveys (19, 3%). Table II presents
the age class distribution of the surveys, showing a lack of data for
unthinned older spruce stands, and, but less evident, on unthinned
beech stands. This explains the necessity to incorporate data from
pristine forests. The variation in terms of site index defined as the top
height at age 50 y is 15.5-30.7 m for spruce and 12-26 m for beech,
and in terms of stand density (SDI) 0.403-1.000.

The heights of a sample of 20 to 40 trees at each site were mea-
sured with a hypsometer type Jal with a 7 m reference rod and an ac-
curacy of about 0.8 m. The site-index, defined as the top height (mean
height of the 100 largest trees per ha) at the age of 50 y (Hgom50) is
determined with the height:age function of the growth simulator Si-
WaWa.

Different models have been tested to explain N (stem numbers)
as dependent from the mean quadratic diameter d, and its square to
assess curvilinearity in model (1) as well as the addition of the co-
variables Site Index (SI) (model 2) and the provisional stand density
(PDI) model (3). PDI is the quotient between Nobservea aNd Nrynction(1)
in the model and corresponds to the factor SDI (site density index) in
Reineke’s terminology sensu. In the latter case, the density is related
to the outer line tangent of the value scatter-plot. In the former case
it is related to the mean curve position. This explains the need for a
different terminology.

IMNmQ=a+ﬁxmwQ+nym%ﬂz+s 1)

IN(Nmew) = @+ Bx In(d,) +y X [In@)| +dxST+e (@)

1mAgM):a+ﬁth%)+yxpm%ﬂ2+ax31+@xppl+a(m

Regression analysis was processed with the statistics package SY-
STAT for windows (Systat software Inc.). The distribution of the
residues was controlled visually and found to be appropriate in every
case.
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Table I. Characteristics of the data material, distribution between different yield series and not permanent surveys, for the different thinning

regimes.

Type of survey Thinning regime A C D H
N; N; Ny N; N; N; Ny N; N; N;

Spruce
Complete long time series® 3 27 4 29 3 25 3 20 3 23
Incomplete time series” 7 62 5 35 1 10 2 15
Short time series® 8 21 13 44 3 8 1 1 5 16
One time plot 45 45 3 3 1 1 29
Slovakia, permanent t plots 1 4
Sum 57 97 27 138 12 69 5 31 39 83
Beech
Complete long time series 3 26 5 62 6 76 3 38 6 75
Incomplete time series 17 169 1 14
Short time series 44 12 26 73 7 30 2 8 5 18
One time plot 6 6 13 13
Sum 13 44 48 304 13 106 5 46 25 120

Thinning regime according to the IUFRO definition and [41]: A = natural thinning; B = moderate thinning from below, C = heavy thinning from below;
D = very heavy thinning from below, H = selective thinning from above. Ns = Number of sites; Ni = Number of surveys.

“Long time series in the same stand, more than 5 repeated surveys.
b Diachronic time series at the same site.

¢ Short time series, 2—5 repeated surveys.

4 From the reserve St-Ursanne Switzerland.

Table II. Age structure of the data material; number of surveys for the different thinning regimes.

Spruce Beech

Thinning regime A* B C D H A* B C D H
10-19 4 1

20-29 18 4 2 1 10 3 4 8 2 3
30-39 29 16 11 3 12 4 19 8 5 15
40-49 14 21 22 6 10 6 31 10 5 9
50-59 22 20 17 8 12 6 35 8 7 11
60-69 7 23 11 7 15 4 32 10 6 13
70-79 2 17 5 4 8 2 34 14 5 17
80-89 2 11 2 2 8 3 30 13 6 13
90-99 10 6 1 30 9 5 13
100-109 10 2 1 23 9 3 7
110-119 3 1 1 19 8 3 6
120-129 5 21 5 2 6
130-139 1 15 2 2 5
140-149 4 2 2
150-159 3

160-169 3

170-179 1

180-189 1

* Excluding the virgin forest in Slovakia (spruce) and the reserve St-Ursanne (beech).

3. RESULTS

Figure 1 shows the classical size-density relationship stem
numbers (N) over d,, according to Reineke (1933) for un-
thinned stands in a double logarithmic grid for spruce and
beech. The mean curve is fitted with multiple regression anal-
ysis. In order to test the curvilinearity, a quadratic term is in-
cluded following Pretzsch (2006), model (1).

The results of the regression analysis are expressed in terms
of the z-statistic of the standard partial regression coefficient
tolerance of the variables, representative of their usefulness in
the model and the corresponding p-tail of the transgression-
probability (Tab. III). Significant parameters are highlighted
in bold. A statistically significant parameter y means that the
curvilinearity of the model applies.

This means that the inclusion of the quadratic component is
highly significant.
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Size-density for unthinned spruce and beech

N/ha
10000 <
%
1000 AR
Py
py
2
P
‘qﬁ\
X
A
A\
d
100 <
1 100 20 40 60 100

° Spruce yield plots & Spruce virgin forest

* Beech yield plots 4 Beech virgin forest

Figure 1. In (Np,y) over In (d,) for untouched beech stands and spruce
stands.

Figures 2a—2c shows the size-density relationship for dif-
ferent thinning regimes H (selective thinning from above), B
(moderate thinning from below), C (heavy thinning from be-
low) and D (very heavy thinning from below) for beech stands.
Figure 3 depicts the same for spruce stands, but only display-
ing single values for H-thinning. The corresponding #-statistic
for the standard coefficient tolerance for the different variables
is given in Table I'V.

In order to verify a possible influence of the site index (SI)
on the size density relationship, a multiple regression is fitted
with the site index (SI) as an additional dependent variable
(Eq. (2)) for the unthinned stands. The site index is defined as
the top height (hgom) of trees aged 50 y. The corresponding #-
statistic for the standard coefficient tolerance of the variables
is given in Table V.

In both cases the influence of the site index appears not to
be significant with a p-tail of 34% and 20%. Because of the
relatively small number of different values in the data set for
unthinned stands, an eventual influence of the site index is ver-
ified with all plots, including the treated stands by incorporat-
ing the stand density and the variable PDI (provisional density
index) into the regression (model 3).

The r-statistic of the standard coeflicient tolerance in
model (3) shows that the parameter O caracterising the effec-
tiveness of the site index is not significant, with t values for
spruce: ¢ = 1.23 (p = 02179 n.s.) N = 315; R* = 0.998 and
for beech ¢ = 0.77 (p = 0.4401 n.s.) N = 661; R*> = 0.998.
Otherwise the parameters y and ¢ are highly significant. This
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Table III. z-statistics for model (1).

Parameter o B Y
Spruce

Standard coefficient tolerance 1.28 —4.33
Corresponding probability 0.20 0.0000
Parameter value 9.0145 0.647461 -0.3801
N 88

R? 0.940

Beech

Standard coefficient tolerance -0.38 5.67
Corresponding probability 0.703 0.0000
Parameter value 9.9648 -0.1006 -0.2731
N 44

R? 0.988

corroborates evidently the results of model (2). It is worth
mentioning in this model (3) that N is not equal Npyy.

Separation of the influence of yield level and stand
closure for treated stands

In the case of unthinned stands the basal area is therefore a
very adequate indicator for the stand density. It is functionally
directly dependent on N and d,, intrinsically as a product of N
and d,; square. However, density is not identical with canopy
closure, as full closure can occur at very different basal areas,
depending on the yield level. For instance, for adult spruce
stands, full canopy closure is reached with basal area varying
from about 50 m? up to 74 m? where the stand characteristics
are the same (site index and age) due to differences in the yield
level, in this case from 0.8 to 1.2, which is absolutely realistic
(Fig. 4).

In thinned plots with unknown thinning history, the deter-
mination of the yield level is more difficult because thinning
affects the basal area. A realistic determination of the yield
level can be assessed if we can determine the portion of basal
area G due to the thinning regime (AGy,). This has been per-
formed on data of plots with a known thinning regime. An esti-
mation of the effect of the thinning regime on the basal area G
has been assessed with the difference between the mean basal
area of all plots (unthinned and thinned) to the mean basal
area G corresponding to the thinning regime under examina-
tion. Thus AGy, + Gobserved = putative Gp,x. Figures 5a and 5b
shows the AGy, values over the density expressed with PDI for
spruce and beech.

This relationship can be fitted with the following model.

AGyp = a+ B X PDI™? +y x (20 — d,)* + & (4a for spruce)

AGyp = a+ B X PDI™'? + v x (40 — d,)* + €. (4b for beech)

The power coefficient has been determined iteratively, and
the culmination of a quadratic influence of d,, visually. The
corresponding t-statistic for the standard coefficient tolerance
for the different variables is given in Table VI.

Thus, for each plot, regardless of its thinning history, the
yield level can be estimated as following:

EN = (AG + Gobserved)/Gmean untreated - (4)
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(a) .. . .. .
Beech, N : d; for treated stands, thinning regime B (b)  Beech, N : dg for treated stands, thinning regime C
N N
10000 y 10000
\Q& X X
X
\
X
1000 - 1000
X
%
X
100 100 X—%
10 10
1 10 100 1 10 100
dg dg

(c) Beech, N: d, for treated stands, thinning regime D

10000

1000 -

100 4

0/0/6

10 T
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Figure 2. In(N) over In(d,) for treated beech stands with known thinning regimes; (a) thinning regime B, moderate thinning from below; (b)
thinning regime C, heavy thinning from below; (c) thinning regime H, selective thinning from above; according to IUFRO rules.
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Table IV. t-statistics for model (1) and different thinning regimes. Significant standard coefficient tolerance are expressed bold.

Thinning regime H B C D

Spruce

Parameter 3

Standard coefficient tolerance 2.56 5.56 4.45 2.28

Corresponding probability 0.0116 0.0000 0.0000 0.0270

Parameter y

Standard coefficient tolerance -7.63 -4.74 -4.17 5.94

Corresponding probability 0.0000 0.0000 0.0000 0.0000

N 120 305 106 46

R? 0.980 0.961 0.978 0.987

Beech

Parameter 3

Standard coefficient tolerance 1.28 3.17 3.49 0.62

Corresponding probability 0.0200 0.0000 0.0008 0.5300

Parameter y

Standard coefficient tolerance -4.33 -4.87 -0.37 -2.95

Corresponding probability 0.0000 0.0000 0.7000 0.0070

N 88 78 70 25

R? 0.940 0.951 0.968 0.986
N/ha Size-density for different thinning regime (spruce) G Course of maximal basal area

10000
1000
N
\
Ny
\
\
'\OD
100 dg
1 10 20 40 60 100
—--—- Curve Thinning B — — Curve no thinning
e Thinning H — Curve thinning H
"""" Curve thinning D

Figure 3. In(N) over In(d,) for treated spruce stands with known thin-
ning regimes.

4. DISCUSSION

It is not our intention to discuss the generality of the so-
called 2/3 power rule of Yoda et al. (1963) and its applica-
bility to every plant crop, as this has been critically discussed
numerous times. However, our results seem to support criti-
cism of the universality of this rule (see Pretzsch, 2000; 2005).

90

80 -

70

60 A

50

40 1

30

20 4

0 10 20 30 40 50 60 70

Beech YL 1.0 ——Spruce YL 1.0 dg
---®--- Linear fit (spruce) —o——Beech YL 1.2
------- Beech YL 0.8 —a— Spruce YL 1.2
————Spruce YL 0.8

Figure 4. Course of the maximal basal area for spruce and beech,
with variations due to the yield level of 0.8 and 1.2 respectively. For
spruce, it displays the course derived from a linear In(N) to In(d,).

Our data material applies to the classical yield of two impor-
tant tree species in temperate European forestry. Under dis-
cussion here is the particular applicability of Reineke’s stand-
density rule (Reineke, 1933), determined as the In(N) to In(d,)
relationship. It is usually accepted that this relationship is
invariant during the ontogenic development, but it may also
be variable.

The curvilinearity of the relationship In(N) to In(d,) turns
out to apply, at least to the data and statistics recorder in
Switzerland. Thus it seems justified to use equation (1) as the
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Table V. z-statistics for model (2).

Parameter 8 % s}
Spruce

Standard coefficient tolerance 1.06 -3.38 0.95
Corresponding probability 0.291 0.0011 0.3450
N 82

R? 0.924

Beech

Standard coefficient tolerance 0.70 -6.91 1.31
Corresponding probability 0.4862 0.0000 0.1976
N 50

R? 0.986

Table V1. z-statistics for model (4 a and b).

Parameter a B %
Spruce

Standard coefficient tolerance 15.15 1.92
Corresponding probability 0.0000 0.0507
Parameter value -8.1995 11.9895 0.003572
N 317

R? 0.436

Beech

Standard coefficient tolerance 22.58 -13.90
Corresponding probability 0.0000 0.0000
Parameter value —13.1349 149313 -0.005849
N 621

R? 0.510

reference to determine the normal stand density of a growth
simulator. The data base appears to be sufficient and repre-
sentative enough for this. Particularly convincing is that the
convex course of the relationship and the form of the deflec-
tion which is comparable throughout the different thinning
regimes and for the two species. These results contradict previ-
ous findings that Reineke’s thinning curve is linear and invari-
ant (Enquist and Niklas, 2001; Lonsdale, 1990; Weller, 1987;
Zeide, 1987; 2005). Whether a change in the steepness of the
relationship during the ontogenic development can be inter-
preted as a change in allometry as suggested by Zeide (1987),
is herewith not definitively verified, because we cannot ex-
clude that canopy gaps, even if they are very small and dis-
persed, had occurred anytime, but they suggest that changes
in closure behaviour occurs. Our data from permanent yield
plots represent principally full closure conditions, as stands
were excluded if the canopy is interrupted. The same applies
to the one-time plots, selected after carefully verification of
their representativeness and their full closure, and especially
to those from unthinned stands after verification of their for-
mer history.

There are two methodological sources of bias to be dis-
cussed. Firstly, for very young stands, d, corresponds to the
full, and not to the truncated distribution of the trees due to an
inventory threshold. Our data were verified on the basis of di-
ameter distributions and, if necessary (in the case of truncated
distributions), excluded from the calculations. Thus N should
consider the entire cohort, but without second growth, under
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Figure 5. Proportion of the basal area due to thinning effect (AG %),
i.e. G difference between curve of the thinning regime and no thinning
in relation to stand density (provisional density index PDI) for spruce
and beech.

storey or brushwood. Nevertheless, the convexity of the thin-
ning curve appears particularly clear for the smaller diameters,
maybe because mortality due to overcrowding manifests itself
only after a certain period of tightness. This would be the case
for a stand with planting with large spacing but does not apply
to our data that developed from dense plantations or natural re-
generation. It is possible that there is a certain delay in the self
thinning process or that very young trees are more resilient to
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overcrowding. Franz (1965) studied the yield level of spruce in
Bavaria and claimed that young stands (under 40 y) should not
be considered in calculating yield level because it had not yet
reached an equilibrium. In our case, this is not that relevant for
modelling the stand density because transformation of N and
d, into basal area in the case of very young stands does not
affect substantially the level of basal area G (see Fig. 4).

A second methodological source of bias is related to the
logarithmic transformation method regularly used to display
the self thinning course and to calculate the corresponding re-
gression coefficients. Logarithmic transformation introduces
an important weighting of the values favouring the small over
the larger dimensions. As a matter of principle, this can be
taken into account by weighting the values inversely propor-
tional to the logarithm. We did not weight our data that it can
be compared with literature. This kind of bias is more im-
portant. Values for large d, are more often underrepresented
because the observations are interrupted following stand de-
cay or even intentional regeneration. Maintaining full closure
should not be considered as static as it usually is, but a dy-
namic process leading normally to progressive canopy open-
ing. That was a reason for us to verify thoroughly the full clo-
sure conditions, and to incorporate data from primeval (virgin)
forest research plots displaying full closure.

Pretzsch (2005b) considers it necessary to check whether
the thinning curve is linear, case by case on long time series
(chronosequences) for the same stand. He found that 2 out
of 9 long time series were curvilinear for spruce and 3 out
of 9 for beech. We agree principally with this argument, al-
though the problem of the definition of real closure conditions
and successive canopy opening remains the same as for scat-
ter plots. We have only a few time series at our disposal and
only a few repeated observations (mean 6.4 spruce and 8.4
for beech). For spruce particularly very old values are lack-
ing. Therefore, Pretzsch’s approach is not quite appropriate for
our data. Nevertheless, we calculated for all chronosequences
with more than 5 inventories the regression according to equa-
tion (1) including A (natural thinning) and B plots (moderate
thinning from below). At a level of transgression probability
of 5% it appears that 1/3 for spruce A-plots, 1/10 of spruce
B-plots, 2/3 of beech A-plots and 6/14 of beech B-plots have
significantly negative y. No positive y was found, in contrast
to Pretzsch (2005).

Figure 4 also shows the substantial consequences of using
a curvilinear fitting of the N:d, curve in comparison to the
classical linear fitting. In terms of basal area, the difference is
impressive, especially over d; 40.

In conclusion, in some cases there is evidence of a convex
curvilinear thinning curve, especially in beech. When consid-
ering a large distribution of plots, it appears as a clear ten-
dency. Because mortality due to hazards is largely, although
not absolutely, excluded from our material the phenomenon
could be due to changes in canopy utilization. A possible ex-
planation is that mortality due to overcrowding, affecting so-
cial low elements in young stands, changes with time, affecting
more elements of the main canopy in adult stages and espe-
cially ageing stages. Pretzsch (2006; 2008) presents results for
spruce and suggests as a factor retraction of the crown due to
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swaying movements as well as the geometry of space occu-
pancy and other factors.

Differences between the spruce and beech stands were sub-
stantial, paticularly the level of basal area G. The stocking of
full closed beech stands culminate at approx. 45 m? in compar-
ison with approx. 65 m? for spruce (see Fig. 4), i.e. about 50%
more for spruce. This corroborates the differences in growth
efficiency found by Pretzsch and Schiitze (2005) who found a
better space occupancy of spruce and a better space exploita-
tion of beech due to differences in branching and resource al-
location. The lightly more convex form of the G-course for
beech corresponds to a greater change in N:d,; steepness of the
thinning curve, as well as the more lateral expansion of the
beech crown.

One of the valuable results is the independence of the size-
density and the site index. A first visual analysis of the dis-
tribution of N:d, values from different site index classes (not
shown here) revealed no pattern supporting such an effect. The
statistical analysis through regressions analysis confirms this.
The range of site index varies between 15.5 and 30.7 m hgom
for trees aged 50 for spruce and between 12.0 and 26.0 m for
beech which is rather a wide range. It seems that height dif-
ferences as encapsulated in the site index explain the space
occupancy behaviour sufficiently.

One of the interesting results is that the classical way of as-
sessing the productivity of a site with the site index based on
the height:age relationship does not influence particularly the
size density relationships. On the other hand, the basal area G
varies substantially, give reasons to reconsider the validity of
the site index utilization. For regions with a great site variation
(climate, precipitation, soil, aspect), where substantial varia-
tion of yield level could be expected, the basal area G is much
more appropriate to characterize the yield performances than
age to height. This is illustrated in Figure 4 where the range of
variation in basal area G is much wider between the low and
the high yield level than variations in stand development (d, or
age). This does not mean that the site index, which gives the
third dimension (stand height), is not useful. To determine all
three dimensional variables like volume, the site index is de-
terminant. Thus we need to determine two components of the
yield capacity: its horizontal dimension expressed by the yield
level and its vertical by the site index. In our study the for-
mer revealed more influential than the latter. The growth sim-
ulator SiWaWa, for instance, is elaborated on the assumption
that basal area G and mean quadratic diameter are sufficient
as primary entry variables in the model. It is not necessary
to determine the site index with high precision. Its estimation
with floristic maps or broad geographic and climatic variables
is sufficient (Keller, 1978). Even age is not considered as a
primary variable, as the stand development can be easily char-
acterized by d,, with age derived indirectly. This simplifies
the practical application because age is often not known and
height is difficult to assess. This approach complies with in
the spirit of Langton’s think movement/theory of so called ar-
tificial life (Langton, 1989), which aims to explain a complex
system with criteria that are as simple as possible.
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Figure 6. Photograph of a stand with a high yield level. Plot 21-052, Biel, age 102y, yield level 1.22, G = 66.5 m?/ha.

S. CONCLUSION

Up to now the yield tables and other growth models repre-
sent only full closed stands or regular opening of the canopy
in the case of thinning regimes. In reality, as soon as canopy
interruptions occur, such models are no longer reliable. Thus
yield models are generally not appropriate for projecting stand
development, or only under certain conditions. The difficulty
is that such mortality events from disturbances are stochastic
(Drossler and Liipke, 2005; Quine and Bell, 1998; Schiitz et al.
2006; Zeibig et al., 2005) and assessing the risk occurrence
implies different methodological probabilistic from those used
to estimate yield alone. For instance, it needs largely corre-
sponding areas covering hundreds of hectares, way beyond the
usual reference for yield plots. Furthermore, the risk of canopy
dislocation varies with regional frequency of storms and with
advancement of ageing factors. From research on comparable
virgin forest, we know that the life cycle duration seems to
present some constancy (Korpel, 1995), 250 y for beech be-
tween 300 and 350 for spruce. Within this time the stand will
have been completely renewed. Nevertheless the inclusion of
risk in growth models is an interesting prospect that requires
more research.

Yield level has been interpreted as a potential for a horizon-
tal space occupancy (Schmidt, 1973), as variable properties for
competition (and for self-thinning) so that a stand can afford
more (or fewer) stem numbers (Schiitz, 2008). Pretzsch (2000)
considers it as an expression of the site carrying capacity. A
high yield level leads to intensified tightness (expressed as
stem density, see Fig. 6), and thus to reductions in the individ-
ual increment. But the proportionally higher number of trees
per area tends to enhance slightly the total increment (Schiitz,

2008). The variations in the yield level have not yet been com-
pletely explained. It seems realistic to consider that they could
have to do with the limitations of the site resources (water, nu-
trients). Some general dependencies with broad sites factors,
such as precipitation and elevation, are discernable (Schiitz,
2008), but these do not explain the whole variation. Other at-
tempts to include edaphical orographical variables are interest-
ing, but there is methodological problem with assessing accu-
rately and representatively the site characteristics, particularly
for edaphic variables (Bégin and Schiitz, 1994; Schiitz and
Badoux, 1979). Wide variations in yield levels within short
distances have been observed (Pretzsch, personal communi-
cation), even in the same communal location (Schiitz, 1992).
The fact that the yield level can be assessed correctly with the
basal area G is interesting and applicable for modelling pur-
poses, but more research is needed to explain the relationship.
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