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Abstract
• The anatomical differences of mature black spruces and balsam firs were examined at stem and
root level in order to characterize their wood properties at cellular level and link these differences to
climate.
•Anatomical variability of these species was evaluated in relation to climate data gathered from 2001
to 2004 during the cell enlargement (CE) and wall thickening and lignification (WTL) phases. Lumen
area, single cell wall thickness and total tracheid radial diameter were analyzed and regrouped into
earlywood and latewood.
• Results from a principal component analysis (PCA) indicated that both first eigenvectors account
for 82% and 90% of total variance for CE and WTL respectively. These component factors revealed
that precipitation, humidity and number of days with precipitation significantly influence the lumen
area (p = 0.0168) and radial cell diameter (p = 0.0222) in earlywood. Significant differences were
registered between species and tree parts (stem and root) for the lumen area, radial cell diameter and
cell wall thickness in both earlywood and latewood.
• In our study, black spruce exhibited smaller tracheid size in both stem and roots compared to bal-
sam fir. Furthermore, the lower amount of tracheids produced during the growing season and higher
proportion of latewood ensure a higher wood density of black spruce. The influence of temperature
on earlywood formation is significant, whereas no influence was observed on latewood.

Mots-clés :
forêt boréale /
aire du lumen /
diamètre radial des cellules /
épaisseur de la paroi /
paramètres climatiques

Résumé – Relations entre climat et caractéristiques cellulaires dans la tige et les racines de
l’épinette noire et du sapin baumier.
• Les différences anatomiques au niveau de la tige et du système racinaire d’épinettes noires et de
pins gris matures ont été examinées afin de caractériser la qualité de leur bois au niveau cellulaire et
de le relier aux conditions climatiques.
• Les propriétés anatomiques de ces espèces ont été évaluées en relation avec des variables clima-
tiques compilées au cours des années 2001 à 2004 durant la phase d’élargissement des cellules (CE)
et celle de l’épaississement et de la lignification des parois (WTL). L’aire du lumen, l’épaisseur des
parois ainsi que le nombre total de trachéides au niveau du diamètre radial des cellules ont été analy-
sés et regroupés selon le bois final et le bois initial.
• Les résultats issus d’une analyse en composantes principales (PCA) ont révélé que les deux pre-
miers facteurs (eigenvector) représentent 82 % et 90 % de la variance totale de CE et de WTL res-
pectivement. Ces composantes ont indiqué que la précipitation, l’humidité et le nombre de jours avec
pluie influencent significativement la formation de l’aire du lumen (p = 0.0168) et le diamètre radial
des cellules (p = 0.0222) dans le bois initial. Des différences significatives ont aussi été enregis-
trées entre les espèces et les parties de l’arbre pour l’aire du lumen, le diamètre radial des cellules et
l’épaisseur des parois dans le bois initial comme dans le bois final.
•Dans notre étude, l’épinette noire a présenté dans les tiges et les racines des trachéides de plus petite
dimension contrairement au sapin baumier. De plus, la faible quantité de trachéides produite durant
la saison de croissance combinée à une proportion plus grande de bois final confère à l’épinette noire
une densité de bois plus élevée. Une influence significative de la température a été enregistrée sur la
formation du bois initial.
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1. INTRODUCTION

It is well known that climate influences tree-ring formation
and wood characteristics, as demonstrated by numerous den-
droclimatological studies worldwide (Hughes, 2002). These
studies focussed on the relationships between climatological
data and ring width in the stems of several tree species. How-
ever, the commercial species of the Canadian boreal zone
have only occasionally been examined and roots rarely con-
sidered (Krause and Morin, 1995; 1999). In the last decade,
some innovative approaches have been developed to investi-
gate climate-growth relationships at both high temporal and
spatial resolution, such as dendrometers, microsampling and
pinning (Rossi et al., 2008; Turcotte et al., 2009). Deslauriers
et al. (2003) and Deslauriers and Morin (2005) provided in-
teresting information on cambial activity and its relation to
climate by examining tracheid formation and xylogenesis of
balsam fir in the boreal forest of Quebec. The authors showed
that this species needs an adequate water availability and suffi-
ciently high night-time temperatures to produce tracheids. A
relationship between the onset of cambial activity and low
temperatures has been also evidenced by Thibeault-Martel
(2007) in black spruce. However these analyses were possi-
ble only after repetitive sampling of growing tissues, with the
impossibility of a retrospective examination. Moreover, to our
knowledge, no long-term monitoring of tree-ring formation
has been done.

The scarcity of research at root level is obviously explained
by the lack of commercial interest in these organs. However,
roots play an essential role in the physiology and stability of
trees, so investigations on their structure and growth can al-
low mechanisms of development of the tree as a whole to be
understood. It is already known that roots may contain xylem
with higher contents of parenchyma and fewer cells than the
stem (Fayle, 1968). In addition, cells produced in the roots
are usually wider and longer, with thinner and less lignified
walls (Trendelenburg and Mayer-Wegelin, 1955). Such infor-
mation is almost non-existent for the boreal species in Canada,
even for stems. However, the wood and paper industries pre-
fer black spruce to balsam fir because the former exhibits
higher wood stiffness (Alteyrac et al., 2006). This parameter
is directly linked to wood density, as well as microfiber an-
gles (Cown, 2005; Downes et al., 2002; Wimmer et al., 2008).
From an anatomical point of view, the major contributing fac-
tor to wood density is the proportion of latewood and, specif-
ically, cell wall thickness (Antal and Micko, 1994; Ivkovich
et al., 2002). This suggests that an increase in cell wall thick-
ness, as well as the percentage of latewood, should translate
into better mechanical properties. This knowledge is currently
unavailable for roots.

Genetic traits play a role in regard to wood density and cell
anatomy, interacting with climatic parameters to influence the
xylogenesis. Climate-growth relationship has seldom been ex-
amined at root system level despite its potential for dendrocli-
matological studies having been shown by Schulman (1945).
In four tree species from northern Germany, different climatic
signals are found in roots and stem. The highest tempera-
ture signal is registered within the stem, whereas the high-

est precipitation signal occurs within the roots (Krause and
Eckstein, 1993). The increasing interest in the influence of cli-
mate on wood features is still limited to few species and loca-
tions around the world (Drew and Downes 2009; Fritts et al.,
1999). By examining tree-ring development, a longer period of
cambial activity is assumed to occur in roots (Stevens, 1931).
Thibeault-Martel et al. (2008) showed that cell production in
roots and stem occurred at the same time, although significant
differences in cell maturation were observed between the two
tree parts. Compared to the stem, lignification of cell walls
started later in roots and lasted for a longer period. Thus, cli-
matic parameters do affect the anatomical features of wood,
but the influences are expected to occur at different intensities
in the tree parts because of the different time window available
for tracheid formation in roots and stem.

This paper aims to assess the anatomical differences be-
tween stem and roots in black spruce and balsam fir and to
link these differences to climate. We tested the hypothesis that,
given the higher wood stiffness, black spruce exhibits wood
with a higher amount of latewood and greater cell wall thick-
ness compared to balsam fir.

2. MATERIALS AND METHODS

Two study plots were selected in the southern part of the boreal
forest in the Lac-Saint-Jean region (Quebec, Canada), at the Simon-
couche research station (48◦ 12’ N, 71◦ 14’ W). The plots were 250 m
apart and located within monospecific stands of black spruce and bal-
sam fir originating from a forest fire in 1922 (Gagnon, 1989). The
average annual temperature, recorded at the closest weather station,
1.5 km away, was 1.5 ◦C in the period from 2001 to 2004. The av-
erage summer temperature was 14.7 ◦C and annual precipitation was
667 mm.

2.1. Sampling

Ten dominant or co-dominant adult trees with upright stem and
similar radial growth, as well as similar number of tracheids formed
per tree ring, were selected for each species (Tab. I). Trees with poly-
cormic stems, partially dead crowns, reaction wood (by checking in-
crement cores), or evident damage due to parasites were excluded.
On each tree, microcores were collected on the stem at breast height,
and on two horizontally-oriented roots at an approximate distance
of 80 cm from the stump beneath a 1–5 cm layer of soil and mosses.
Samplings in the stem were oriented parallel to the slope and, in roots,
were taken on the upper part in order to avoid compression wood or
discontinuous rings, which are frequently noted on the underside of
roots (Fayle, 1968). Anatomical measurements were performed on
the tree rings produced during the period 2001–2004.

Table I. Characteristics of the sampled trees.

Balsam fir Black spruce
Age (cm) 50 70
Tree height (m) 14.4 (1.7) 17.8 (1.7)
DBH (cm) 18.4 (1.3) 21.1 (2.5)
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Table II. Anatomical parameter statistics of trees sampled by species and tree part.

Balsam fir Stem Root
Parameters RW EW LW RW EW LW
Tracheid count 33.7 (8.1) 26.8 (7.1) 6.9 (1.9) 39.7 (23.4) 33.2 (22.1) 6.5 (3.1)
Tracheid count (%) 80 20 84 16
Lumen area 982.7 (255.1) 166.0 (122.2) 981.1 (301.7) 211.8 (128.9)
Cell wall thickness 2.5 (0.7) 4.2 (0.9) 2.9 (0.8) 4.5 (0.8)
Cell radial diameter 37.0 (5.4) 16.0 (6.0) 38.4 (6.2) 18.8 (6.0)
Cell wall/lumen ratio 0.09 (0.04) 0.82 (0.52) 0.10 (0.05) 0.7 (0.4)
Black spruce Stem Root
Parameters RW EW LW RW EW LW
Tracheid count 20.7 (6.2) 13.0 (4.1) 7.7 (2.9) 35.5 (23.6) 23.9 (19.3) 11.6 (6.7)
Tracheid count (%) 63 37 67 33
Lumen area 724.2 (187.7) 124.4 (95.9) 649.3 (200.3) 193.4 (111.5)
Cell wall thickness 2.5 (0.6) 4.5 (1.1) 3.5 (0.8) 5.4 (1.1)
Cell radial diameter 31.4 (5.2) 16.0 (5.3) 33.8 (4.9) 22.1 (6.5)
Cell wall/lumen ratio 0.10 (0.05) 0.95 (0.51) 0.15 (0.11) 0.67 (0.43)

RW: Ring-width; EW: earlywood; LW: latewood.

Microcores were dehydrated by successive immersions in ethanol
and D-limonene, embedded in paraffin, then transverse sections of
8–10-µm thickness were cut with a rotary microtome (Rossi et al.,
2006a). The sections were stained with aqueous 1% safranin and
fixed on slides with the Eukitt� histological mounting medium. A
camera mounted on an optical microscope was used to record nu-
merical images and measure xylem features with an image analysis
system specifically designed for wood cells (WinCELLTM). Anatom-
ical features of xylem (cell lumen area, cell radial diameter and cell
wall thickness) were measured along three radial paths of each tree
ring at magnifications of 200×, standardized and averaged for each
tree (Deslauriers et al., 2003; Vaganov et al., 1990).Tracheids were
classified as belonging to earlywood or latewood according to Mork’s
formula, which classifies all cells with lumen areas of less than twice
the thickness of a double cell wall as latewood (Denne, 1988).

2.2. Climate data

A standard weather station was installed in an artificial gap close
to the sites to measure temperature at a height of 3 m (Tmean, Tmin,
Tmax, ◦C) and under cover (Tcov, ◦C), soil water content (SWC,
m3/m3), precipitation (P, mm), relative humidity (H, %), and radi-
ation (R, Wm2). Soil water content was measured with a Campbell
Scientific CS615 (water content reflectometer), which measures the
volumetric water content of porous media using time-domain mea-
surement methods. Data were recorded every 5 min and stored as
hourly means or sums in a CR10X datalogger (Campbell Scientific
Corporation). The number of days with precipitation (DP) was also
calculated for each growing season.

2.3. Statistical analyses

The climatic variables (air and under cover temperatures, precipi-
tation, relative humidity, radiation and soil water content) were sepa-
rated in two groups and averaged according to the periods of (i) cell
enlargement and (ii) wall thickness and lignification, as defined by
Deslauriers et al. (2003). The timings of xylogenesis were assessed
for this study area by Thibeault-Martel et al. (2008). In both species,

the first enlarging cells were observed at the end of May, while cell
wall thickness and lignification occurred until August and Septem-
ber in stem and roots, respectively. These observations were made
over a three-year period and small annual variations were registered.
Principal component analyses (PCA) were then performed on the av-
erages of the climatic variables calculated for the four sampling years
and during earlywood and latewood formation. PCA removed the
effects of common factors between the variables producing unique
factors uncorrelated with each other. The principal components (PC)
extracted using the FACTOR procedure with VARIMAX orthogonal
factor rotation (SAS, 2003) were used to project data onto the new
reduced space, and were compared with cell lumen area, radial diam-
eter and wall thickness through analysis of covariance (ANCOVA).

3. RESULTS

3.1. Anatomical features of xylem

The samples revealed that balsam fir stems produced 40%
more tracheids than those of black spruce at the ring-width
level (33.7 versus 20.7) and even 50% within earlywood. The
difference was less marked in roots (Fig. 1, 39.7 versus 37.9).
Root systems registered higher tracheid counts than the stems
in black spruce, with a significant increase of 40% (35.5 versus
20.7). The number of tracheids produced over a four year time-
span showed no clear increasing or decreasing tendency.

The proportions of latewood measured within the stem and
root tree-rings of balsam fir were low; 20% and 14% respec-
tively. These proportions increased to 37% in black spruce
stems and 31% in root tree-rings (Tab. II). The number of late-
wood tracheids in stems and roots of black spruce was signifi-
cantly higher than in balsam fir (Fig. 1).

3.2. Cell wall/lumen ratio

Black spruce exhibited a higher cell wall/lumen ratio than
balsam fir, especially in the stem latewood, with a value of 0.95
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Figure 1. Mean comparisons of anatomical parameters between stem and root within the earlywood and latewood for black spruce and balsam
fir. Vertical bars refer to the standard deviation. Same letters are not significantly different (p < 0.05).

(Tab. II). This parameter was also higher in the root systems
but only in earlywood.

The inter-annual pattern of cell wall thickness within the
stems and roots of balsam fir and black spruce was character-
ized by low values at the start of tree-ring formation (early-
wood), followed by a gradual increase toward the end of ear-
lywood development. This trend continued during the early
phase of latewood formation, but was replaced by a decrease
in cell wall thickness at the end of tree-ring formation. The
cell wall thickness was similar (2.5 µm) within the stem of
both species in the earlywood. In the latewood, the cell wall
thickness was higher in black spruce (Fig. 1). At root level,
black spruce registered significantly higher cell wall thickness
values in earlywood and latewood compared to balsam fir.

The average values of lumen area in the stems of balsam fir
were 1250 µm2 at the start of tree ring development and grad-
ually decreased to reach values below 500 µm2 towards the

end of earlywood development. By dividing the tree-ring, the
tracheid lumen area within the earlywood averaged 983 µm2,
whereas it decreased to 166 µm2 in the latewood (Fig. 1). A
similar trend was observed along the root tree rings, where
smaller lumen area values were measured in the latewood.

The tracheid lumen area in black spruce was significantly
smaller than in balsam fir in both the earlywood (724 µm2)
and latewood (124 µm2) (Fig. 1). Lower lumen area values
were also measured in black spruce roots in the earlywood
(649 µm2), but significantly higher in the latewood (193 µm2).

3.3. Cell radial diameter

In balsam fir, the tracheid radial diameters were almost sim-
ilar in stems and roots in the earlywood, whereas they were
larger in the latewood of roots (Tab. II).
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Figure 2. Principal components (PC1 and PC2) calculated on the climatic variables measured during cell enlargement and wall thickening and
lignification in xylem of black spruce and balsam fir. The climatic variables included in the analysis are precipitation (P), humidity (H), number
of days with precipitation (DP), mean air temperature (T ), maximum air temperature (T+), minimum air temperature (T−), temperature under
cover (TC), global radiation (R), water in soil (WS).

Table III. Eigenvalues and proportion and cumulative variance explained by the first three principal components (PCs) based on the analysis
of climatic variables measured during cell enlargement and wall thickening and lignification in xylem of black spruce and balsam fir.

Cell enlargement Wall thickening and lignification
Eigenvalue Proportion (%) Cumulative (%) Eigenvalue Proportion (%) Cumulative (%)

PC1 4.09 45.51 45.51 7.01 77.87 77.87
PC2 3.29 36.58 82.09 1.12 12.47 90.34
PC3 1.26 14.02 96.12 0.38 4.23 94.57

Table IV. Results of analysis of covariance including principal component factors (PC1 and PC2), species (black spruce and balsam fir) and
tree part (stem and roots).

Earlywood Latewood
Lumen area Cell diameter Wall thickness Lumen area Cell diameter Wall thickness

PC1 0.63 1.97 0.07 0.34 0.07 2.29
PC2 7.92* 7.07* 0.00 0.08 0.48 0.68
Species 231.96**** 159.41**** 4.86* 12.15** 2.33 15.69**
Tree part 3.92 22.72*** 30.37*** 39.75**** 24.23*** 12.60**

Asterisks indicate significant differences where ∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.001 and ∗∗∗∗ = p < 0.0001.

Cell radial diameters were smaller in the earlywood of
black spruce stems compared to balsam fir. Small differences
were found in the latewood of both species (Tab. II). Average
cell radial diameter in the earlywood of black spruce roots was
smaller than balsam fir, but larger in the latewood (Tab. II).

3.4. Relationship between anatomical measurements
and climate data

The first two principal components (PC1 and PC2) ac-
counted for 82.1 and 90.3% of the total variation. By adding
PC3, the variance explained reached 96.1 and 94.6% dur-
ing cell enlargement and wall thickening and lignification,
respectively, although the increase in the variance explained
was only 4.2% for wall thickening and lignification (Tab. III).
During cell enlargement, PC1 explained 45.5% of the varia-
tion and was a measure of water availability, with the higher

positive loadings represented by relative humidity, number of
days with precipitation and amount of precipitation (Fig. 2).
Radiation, as expected, was negatively correlated with water
availability and showed highly negative loadings. PC2 rep-
resented mainly the air temperature and, to a lesser extent,
that under cover. For cell wall thickening and lignification,
PC1 explained 77.9% of the variance and measured mainly air
temperature and relative humidity, but with opposite effects.
Precipitation showed the higher loadings along PC2, although
the separation between water availability and temperature was
less evident (Fig. 2).

ANCOVA performed between the anatomical features of
xylem and PCs produced significant models in both differen-
tiation phases, with F-values ranging between 7 and 61 and
probabilities lower than 0.01 (Tab. IV), although no influence
of PC1 was observed either during earlywood or latewood for-
mation (p > 0.05). For PC2, significant results were observed
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on lumen area and cell diameter of earlywood, with p-values
lower than 0.05, but not on wall thickness. No relationship was
detected between PC2 and lumen area and cell diameter of
latewood. Differences between species and tree part were al-
ways significant with p lower than 0.001, except for lumen
area between stem and roots and for cell diameter between
black spruce and balsam fir (p > 0.05).

4. DISCUSSION

4.1. Climate and cell features

The PCA performed between climate data and cell features
was based on the period of cambial activity and tree-ring for-
mation observed for the two species in the same sites, and the
growing season was subdivided into two growing phases: (a)
cell enlargement and (b) cell wall thickening and lignification
(Thibeault-Martel et al., 2008). The climatic parameters ex-
plained more than 80% and 90% of the total variation within
cell enlargement and cell wall thickness and lignification, re-
spectively (Tab. III). Despite the significant differences be-
tween species and tree parts, only temperature appeared to be
an important factor affecting cell features in earlywood. Cam-
bium activity culminates during June and July (Rossi et al.,
2006c), but temperatures can still be cold, even below 0 ◦C
(data not shown). Low temperatures are known to affect cell
division, but this study demonstrated their important influence
on the processes of cell maturation, so affecting the size of
cells and walls. Studies by Richardson and Dinwoodie (1964)
and Farrar and Barnfield (1969) revealed that cell enlargement
of earlywood occurs essentially at night, when temperatures
are low in the boreal forest and so can significantly affect
growth. On the contrary, latewood formation occurs during
August-September (Deslauriers et al., 2003), when the temper-
atures are warmer and freezing events infrequent. Moreover,
at the end of the growing season, trees set up mechanisms that
concentrate the cell sap and lower the freezing point of veg-
etal tissues, thus improving their frost resistance (Wisniewki
and Ashoworth, 1986). Consequently, most latewood is pro-
duced during a period of the year with more favourable ther-
mal conditions, thus explaining the lack of influence of the
temperature on cell features (Tab. IV). The lower amount
of latewood cells (only 6–11 cells along a tree ring) might
also explain the weak relationships between climatic parame-
ters and anatomical features. Furthermore, compared to early-
wood, longer periods are required for completing maturation
in latewood (Rossi et al., 2006b), so extreme weather condi-
tions are expected to influence tracheid formation of early-
wood more strongly, because of the shorter time for differen-
tiation. In latewood, unfavourable conditions would have to
occur over several consecutive days to be able to significantly
influence its anatomical features.

To our knowledge, only one study has correlated anatom-
ical properties to climatic parameters in the Canadian boreal
forest. St-Germain and Krause (2008) found no relationship
between anatomical measurements along a north-south gradi-
ent of temperature and precipitation. The absence of weather

stations near the studied stands might explain the results of that
work. Although based on two species and two tree parts, our
investigation concerns only a 4-year period (tree-ring growth
of 2001–2004). Further studies over longer periods are neces-
sary to improve our understanding of the impact of climate on
cell and wall formation in boreal conifers.

4.2. Cell features

In our study, the proportion of latewood in balsam fir stems
was only 20% of the total ring-width, whereas in black spruce
it was 37%. Moreover, the cell wall/lumen ratio was higher
in black spruce stems than in balsam fir. These findings con-
firmed the hypothesis in regard to different anatomical features
in black spruce and balsam fir. The proportion of latewood in
tree rings is one of the best known parameters used to quan-
tify wood density (Ivkovich et al., 2002). Since latewood and
wood density, expressed by cell wall/lumen ratio as well as
microfiber angle, are the most important contributors to the
mechanical properties of a tree (Downes and Drew, 2008), our
findings confirm the higher wood density of black spruce com-
pared with balsam fir, which should result in higher mechani-
cal stiffness.

The high proportion of latewood recorded in black spruce
in our research is generally higher than previously published
results for other Picea species. For example, proportions of
latewood in Picea abies were around 20% within a tree ring
(Bosshard, 1961), whereas this percentage reached 30% in
Picea glauca and Picea engelmanni (Ivkovich et al., 2002).
A comparable proportion of latewood (35%) to that measured
in black spruce has only been reported in Picea sitchensis
(Mitchell and Denne, 1997). Our findings indicate that the
anatomical features of black spruce explain why this species
exhibits better mechanical properties compared to other Picea
species.

Investigations in roots showed that black spruce exhibits
smaller tracheid sizes than balsam fir, which results in higher
cell wall/lumen ratios (Tab. II). These anatomical differences
are related not only to environmental conditions but also to
mechanical forces affecting the root system (Gartner, 1997;
Riedl, 1937). By considering only the mechanical stiffness,
the cell wall/lumen ratio in balsam fir roots is lower than in
the stems (Tab. II). The results are different for roots of black
spruce, where the ratio is higher in earlywood but lower in late-
wood compared to the stem (Tab. II). It is expected that black
spruce, as a slow-growing species, requires a smaller lumen
area for supporting water transport than the more demanding
balsam fir. Compared with balsam fir, the longer needle re-
tention combined with the smaller photosynthetic surface of
black spruce might explain the anatomical difference observed
between the xylem tissues of the two species. The broad dis-
tribution of black spruce within the boreal forest could be at-
tributed to a better anatomical adaptation to the cold climate
of high latitudes, with the production of smaller and abundant
latewood cells aiming to improve the tissue protection and me-
chanical stability.
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