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Abstract
• Water availability is one of the main factors explaining flora composition and growth in Mediter-
ranean regions, where it may decline with climate change.
• Our goal was to develop a model for forest site assessment in Mediterranean environments, focus-
ing on water availability to assess potential vegetation composition and productivity in any places,
whatever their level of disturbance.
•We designed a statistical model, using global climatic and geographic variables, as well as detailed
local topographic and edaphic variables, to compute a bioclimatic index for Mediterranean forest en-
vironments. This model was calibrated in France with a flora index from 325 old forests. The model
explained 80.3% of the flora index variance. The method fills a gap in existing models, bridging scales
from the region to forest sites.
• Beyond its theoretical aspect, it was designed to allow practical tools to be derived from it for
decision-making and management, such as the assessment of climate change impact on vegetation,
and of forest productivity. Its development and adaptation is possible in other Mediterranean regions,
and in any region where water is one of the main limiting factors.
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Résumé – Un nouveau modèle bioclimatique calibré à l’aide de la flore pour les milieux fores-
tiers méditerranéens.
• La disponibilité en eau est un des principaux facteurs contrôlant la composition et la croissance de
la flore en région méditerranéenne. Elle devrait décroître avec le changement climatique.
• Notre objectif était de développer un modèle pour l’analyse stationnelle des milieux forestiers mé-
diterranéens. Basé sur la disponibilité de l’eau, il devait permettre l’évaluation de leur flore potentielle
et de leur productivité, quel que soit leur état de perturbation.
•Nous avons conçu un modèle statistique, utilisant conjointement des variables globales, climatiques
et géographiques, et des variables locales topographiques et édaphiques pour calculer un indice bio-
climatique adapté aux milieux forestiers méditerranéens. Ce modèle a été calibré en France sur 325
placettes de forêts âgées à l’aide d’un indice floristique dont il explique 80.3 % de la variance. Avec
des échelles de travail allant en continu de la région à la station forestière, la méthode comble un vide
dans la gamme des modèles existants.
• Ce modèle ouvre des perspectives pour l’évaluation de l’impact du changement climatique sur la
flore et de la productivité forestière. La méthode peut être adaptée à d’autres régions méditerranéennes
et à toute région où le bilan hydrique est un des principaux facteurs limitants.
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1. INTRODUCTION

1.1. Context

Mediterranean forests of Europe and North Africa are par-
ticularly affected by climate change: drought is already one
of the main environmental constraints (Daget, 1977) and the
predictions of General Circulation Models forecast a faster
warming than in most other continental areas, associated with
a reduction of rainfall during the growth season (Hesselbjerg-
Christiansen et al., 2007). This puts vegetation at risk of
not adapting to local changes in its environment (Jump and
Penuelas, 2005) nor following the fast shift in the limits of
its climatic niche envelope. In order to assess and understand
vegetation productivity and organization, and be able to fore-
cast its response to expected global changes, scientists have
developed many vegetation and bioclimatic models. However,
few of them have been designed to predict vegetation structure
or the distribution of dominant species on scales comprised
between the region and forest sites. In California, Franklin
(1998) and Meetenmeyer et al. (2001) compared various sta-
tistical methods to assess landscape-scale patterns of shrub-
species abundance. They used climate data and geographic
coordinates, adding local topographically mediated variables
computed from digital maps such as slope, potential solar
irradiance, substrate rockiness and soil moisture. Although
the simulated distribution of plants generally fitted vegeta-
tion maps, error analysis suggested that important factors were
not considered. A multiple scale approach (regional, landscape
and site) is found in Ben Wu and Smeins (2000) for the predic-
tion of rare plant occurrence in Texas (USA). However, each
scale was tackled separately, local scale models using fine-
resolution field data, while large scales models used indepen-
dently coarse-scale geographic and climate information.

Although partly satisfactory according to their initial goals,
most of the other attempts to model vegetation distribution and
functions on local or intermediate scales come up against vari-
ous problems, including human impact, which can partly hide
the role of natural factors (Zimmermann and Kienast, 1999),
the small size of the possible targeted area (Vogiatzakis and
Griffiths, 2006), or difficulties accurately measuring some key
variables (Mao et al., 2007). A thorough and realistic descrip-
tion of site characteristics seems necessary to understand and
simulate vegetation composition, dynamics or productivity on
a local scale (Rathgeber et al., 2003). This has rarely been done
up to now, because local data are lacking or not sufficiently in-
cluded in model parameters.

Vegetation analysis is usually an interesting tool for for-
est site assessment. Floristic composition and structure inte-
grate all site conditions, including local conditions as well as
global climate variables and their variability and extremes in
the middle term, and the many interactions between all of them
(Berges et al., 2006). Some of the plants are individually con-
sidered as good indicators of specific site conditions such as
hydromorphy, pH, nutrient status or water availability (Gégout
et al., 2003; Rameau et al., 1989). However, Mediterranean
vegetation is generally disturbed by fire, grazing or clearing,
so that the fast-changing vegetation is not representative of site

Figure 1. Map of the study area.

potential; in such conditions, site assessment must rely mainly
on abiotic variables.

1.2. Basic hypothesis and goals

Our basic hypothesis was that water availability is the main
constraint for Mediterranean vegetation (Le Houérou, 2005).

In this study, the main goal was to design a new model
based on abiotic variables that could be used in Mediterranean
environments for forest site assessment, in any places, what-
ever their level of disturbance. Focusing on water availability,
it should help in assessing potential vegetation composition
and productivity. Flora composition of undisturbed forests, as
an integrated indicator, was used to calibrate this model, which
was designed with three important additional goals to fill a gap
in the range of existing models: (i) to integrate scales from
very local to regional, (ii) to allow automatic mapping of its
outputs on these various scales, so that vegetation dynamics
could be simulated without scale constraints, and (iii) to con-
tribute to the assessment of climate change impact on vege-
tation, as climate variations may directly and rapidly reduce
water availability.

2. MATERIALS AND METHODS

2.1. Choice of the study area, stands and plots

The study area is located in Provence, South-Eastern France
(Fig. 1). Its Mediterranean climate is characterized by a severe
drought in summer (2 to 4 months), mild and humid winters, and
a very low cloudiness. The mean annual temperature and rainfall
range, respectively, from 15.3 ◦C/500 mm on the south-western
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coast to 9.5 ◦C/1000 mm on the highest ridges, with an average of
13.2 ◦C/720 mm.

The limestone-based Provence was chosen for two reasons: (i) be-
cause some important soil parameters are homogenous: pH is stable
and nutrients are rarely limiting, and (ii) because carbonated soils
represent more than 80% of the Provence area. In this typical cuesta-
type landscape, soils are generally shallow out of valleys and thal-
wegs, and ecosystem productivity depends to a large extent on nature
and penetrability for the roots of superficial bedrocks.

Forests are dominated by unevenaged stands of Pinus halepensis
Mill., most of the time mixed with Quercus ilex L. in the drier sites
and Quercus pubescens Will. in more mesic sites and on deeper soils,
and to a lesser extent by mixed stands of both oaks. In order to max-
imize the abiotic signal in the vegetation response, we selected only:
(i) sites without any wildfire since the establishment of the dominant
trees, (ii) old forests or forests established more than 70 years ago,
and (iii) sites with no disturbing activity such as logging, grazing,
clearing, trampling or prescribed fire in the last 30 years. In such con-
trolled cases, vegetation should be representative of site conditions.

2.2. Sampling strategy

We used a stratified sampling design based on 4 main vari-
ables on a regional scale (for details about variables, see Table I):
(1) bioclimatic zone (2 classes : meso-Mediterranean and supra-
Mediterranean), (2) altitude in four classes: 200 m each between
0 and 800 m, (3) two main types of superficial soil layers (au-
tochthonous = alterite ; allochthonous = colluvium, alluvium), and
(4) potential solar irradiance (Becker, 1984) in 3 classes (hot, neu-
tral and cool). Crossing these 4 main factors produced 48 possible
combinations, among which 36 were present in the field. For each of
these 36 combinations, a minimum of 7 and a maximum of 15 plots
were chosen, balancing as far as possible for each combination and
globally for the whole sample the classes of four secondary variables:
parent rock, general topography, local site topography and total depth
of soil observable layers.

Finally, 325 plots were surveyed, about one-third each year from
1996 to 1998. Their general size and shape is a 400 m2 circle, a few
plots being rectangular to guarantee homogeneous site conditions in
narrow linear environments like thalwegs and ridges.

2.3. Variables

The survey includes:

– Vegetation composition and structure: (1) a flora census, us-
ing the classical Braun-Blanquet coefficients (Braun-Blanquet,
1932); (2) a description of the structure by the percentage of
cover, in six height classes for each of the main tree species and
for vegetation as a whole; (3) a wood core sample in five domi-
nant Aleppo pines, the closest to the center of the plot, to assess
their age with tree ring counting, and the height and circumfer-
ence of these trees, and (4) when necessary and possible a count
of tree rings on broadleaved species to assess the age of the last
fire or logging.

The flora census was performed with a “variable-time strategy with
minimum time limit” (Archaux et al., 2006), e.g. for a minimum of
1/2 h with a stop if no new species was found within 5 min.

– Abiotic variables: (1) climatic, geographic and orientation vari-
ables mapped with a GIS over the whole study area with a ground
resolution of 50 m, and named globally “CG variables”; (2) vari-
ables which can be reliably measured only on a local scale,
mainly topographic and edaphic, named “TE variables”.

For climatic variables, we interpolated the data from eighty-one mete-
orological stations with complete series over at least 38 years (1961–
1998), over the whole study area and a peripheral buffer of 50 km to
avoid border effects.

2.4. Statistical analyses

2.4.1. Designing the model

In order to identify floristic gradients that could be related to bio-
climatic constraints and particularly water availability, we first per-
formed a Correspondence Analysis (CA) with flora. We only took
taxa present in at least three plots into account, keeping 192 plants
among the 323 found in the plots.

We checked the relevance of the main CA axes towards bio-
climatic gradients, introducing as supplementary variables the dis-
junctive classes of all abiotic variables (Becker, 1979). After testing
several axes and gradients, alone or in pairs (Vennetier, 2007), the
coordinate of each plot on the first CA axis was finally retained as its
flora index (Fi).

In order to model this “Fi” index with relevant abiotic variables
as predictors, we used Partial Least Squares (PLS) regression (Ter-
Braak and Juggins, 1993). PLS regression was particularly adapted
as it has been designed to handle many variables with relatively few
observations (Cramer et al., 1988), and to cope with correlated vari-
ables (Tenenhaus, 1998). The final choice of variables was performed
by an ascending and descending stepwise PLS regression. The pre-
dicted value of Fi for each plot, using abiotic variables in the PLS
model, was considered as its bioclimatic index (Bi).

2.4.2. Robustness of the model design

We checked the robustness of the CA axes towards potential inac-
curacies of floristic censuses due to time or spatial strategies or the
observer (Archaux et al., 2006; 2007) and towards analysis options.
This verification was performed with a Multiple Factorial Analysis
(MFA) (Escofier and Pages, 1994) testing the stability of CA axes
and plot coordinates: on one hand, by increasing the number of plots
where a plant must be present to be taken into account from 3 to
30, and on the other hand, comparing presence/absence and Braun-
Blanquet coefficients in the analysis.

Some variables seemed to have a non-linear relationship with Fi.
To optimize the PLS model, we first checked the relation of all rel-
evant variables to Fi using neural networks (Guiot, 1991) and trans-
formed some of them. Before being validated, each transformation
was tested in the model, comparing the transformed and the raw vari-
able in a new neural network optimization, and in the PLS model.

Details on the resampling and robustness tests of all our statistical
analyses are given in Annex 1.
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3. RESULTS

3.1. Robustness of the basic analysis

In the MFA factorial map, the first two CA axes as well as
the coordinates and ranks of plots on these axes were very sta-
ble (R2 > 0.97 for the coordinates) when the minimum occur-
rence for plants to be taken into account was increased from
3 to 25, cutting their number by more than 2. Only from the
limit of 30 plots of occurrence, which means the elimination
of more than 75% of all the plants and of 60% of those with at
least 3 occurrences, a significant rotation of axes occurred and
differences were found in the relative rank of plots on the first
CA axis.

Accordingly, the 4 main CA axes and coordinates of plots
were very stable whatever the code used for flora (pres-
ence/absence vs. Braun-Blanquet code: R2 = 0.98 on the first
CA axis).

Neural Network analyses of 24 CG variables and 27 TE
variables confirmed that the relations between abiotic vari-
ables and Fi were not always linear and required transforma-
tions, particularly for the CG group (Tab. I). The main TE vari-
ables did not require transformations, except soil depth.

3.2. Flora analysis and the bioclimatic index

An average of 25 taxa were found in plots (8 to 51, sd =
7.8). With an eigenvalue twice that of axis 2, the first CA axis
was dominant by far (Fig. 2a). In this study, we did not focus
on the ecological interpretation of individual plants and their
position in the CA plane, but only on the main gradients re-
sulting from flora composition as a whole.

Figure 2b displays as an example the classes of some of the
main CG variables projected as supplementary variables on the
first CA plane. All CG variables were well ordered throughout
this map and correlated with the first axis. The same result
was obtained with all TE variables related to water availability.
Variables describing vegetation structure were not correlated
with the first two CA axes.

Figure 2c shows a synthetic representation of four main
ecological gradients interpreted from the distribution of all
variables in the CA map. These gradients were calculated with
a linear regression on the coordinates of the classes of vari-
ables concerned in the plane:

(1) climate and geographic gradient: rainfall, temperature, al-
titude and continentality (resulting from Fig. 2b),

(2) orientation gradient, taking into account orientation on all
scales,

(3) soil texture gradient: sand vs. clay and silt percentages, and
related water-holding capacity (whc),

(4) topography (from local to landscape scales) and soil qual-
ity gradient (local TE variables).

Without any exception, all variables had in the left half of the
CA plane their classes related to low water availability (dry
and hot climate, rocky or shallow soils, low water-holding ca-
pacity and unfavorable topography), and in the right half of the
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Figure 2. (a) CA eigenvalues and distribution of the 325 plots in the
main CA factorial map (axes 1/2). Axis No. 1 is by far dominant
(twice the eigenvalue of No. 2). The slight arch effect is partly due to
the geographical structure of the study area (see Fig 2b) with interme-
diate mountains close to the sea. (b) Disjunctive classes of some of the
main CG variables (climate, continentality) projected as supplemen-
tary variables in the CA map (axes 1/2). A clear ordination appears
with all hot and dry situations bottom left and cool and humid ones
on the top right. The resulting climate and continental synthetic gra-
dient is shown in fig 2c with three other gradients obtained with the
same methods and other groups of variables. (c) Synthetic represen-
tation of the 4 ecological gradients combining all relevant variables
by groups.
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Figure 3. Regional map of the global bioclimatic index (Bi-CG) computed from 8 CG variables, centered and split into 9 classes, from 1 (the
driest and hottest sites), to 9 (the more mesic ones). Limits of the classes: –1.101 ; –0.496 ; –0.357 ; –0.218 ; –0.541 ; 0.520 ; 0.216 ; 0.380 ;
0.601 ; 1.71. Maximum and minimum predicted values for plots: –0.832 and 1.03. The extreme positive values come from very steep north
slopes with elevations between 800 and 1100 m (less than 1% of the study area not taken into account in the calibration of the model) ; the
minimum prediction for plots, just a bit higher than the minimum value for the study area, shows that our sample correctly represented very
dry and hot sites.

plane classes describing opposite situations. This first axis, re-
sulting only from flora distribution, could be clearly related to
water availability, which confirms our basic hypothesis.

Considering its dominance, this first axis was retained alone
for modeling. The coordinate of each plot on this axis was con-
sidered as its flora index (Fi). This index was modeled, keeping
finally 14 raw or transformed CG and TE variables (Tab. I) to
obtain its abiotic estimate (Bi). The model explained 80.3%
of Fi variance, among which CG and TE groups of variables
explained, respectively, 47.7% and 32.6%.

We computed the bioclimatic index (Bi) for each plot, split-
ting it into two components based on the two groups of vari-
ables: a global index (Bi-CG), and a local index (Bi-TE). Al-
though linked in the model by the common computation and
probable interactions, these two indexes can be calculated sep-
arately.

3.3. Mapping the Bi-CG bioclimatic index

Figure 3 shows the map of the Bi-CG index split into 9
classes on a regional scale. Each class includes 1/9 of the to-
tal variation interval after exclusion of the 5% extreme values
(2.5% at each end). These extreme values were merged with
the first and last classes, respectively.

4. DISCUSSION

4.1. Robustness of the modeling approach
based on flora

Although the flora is rather rich, the MFA proved that 30%
of the plants, the most frequent, all perennial or easy to rec-
ognize in any season, were enough for expressing the water
availability bioclimatic gradients; so that overlooking a few
species during the flora census could not have modified the
bases of our model built on the whole flora. As also demon-
strated by the MFA, a possible slight variability in the notation
of Braun-Blanquet codes between the experienced botanists
which participated in the study would have had no influence on
the result. Our model is thus very robust towards the variations
and mistakes of random or human origin which usually spoil
vegetation surveys. This can be explained by the overwhelm-
ing place held here by water availability in interaction with
temperature, deeply structuring plant communities. A slight
arch effect appeared in the factorial map (Fig. 2a) which could
partly be explained by the geographic structure of the study
area. Whatever its causes, we only used axis 1 for modeling,
so that detrending the CA was not useful.

As we wanted the flora index to be used for the calibration
of the abiotic model, and thus to be independent of environ-
mental variables, whose list was long and not fixed a priori,
Canonical Correspondence Analysis (CCA), although a stan-
dard method to link biotic gradients and environmental vari-
ables, did not fit our requirements.
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Figure 4. Zoom in Figure 3 on the scale of a small local hill, with the same classes of Igb_CG index as Figure 3, showing the high fragmentation
of vegetation potential niche envelopes.

4.2. Weight of variables and their interactions

Vegetation of relatively undisturbed Mediterranean forests
appeared to be a reliable indicator of site conditions, in accor-
dance with what is generally observed in other regions (Gé-
gout et al., 2005). Reciprocally, a restricted number of envi-
ronmental variables related to water availability allowed the
reliable assessment of the Flora index. This should help in as-
sessing the potential flora of any site of the study area, what-
ever its present state of evolution or disturbance. Among these
variables, the set of global ones, easy to compute over large ar-
eas, allowed the calculation and mapping of a geographically
and biologically wise bioclimatic index.

The Becker light-climate index (ikr) had the highest weight
among individual variables. It expresses the contrast between
cool and warm hillsides, particularly marked in the study area
because of the east-west dominant orientation of mountain
ranges, which creates a majority of large north- or south-facing
slopes. Ikr is also the only global variable which remains a key
variable on a local scale.

The specific position of the main mountain ranges perpen-
dicular to humid winds coming from the sea creates a posi-
tive correlation between rainfall and altitude (r2 = 0.54), and
negative between rainfall and temperature (r2 = 0.44). Fur-
thermore, any rise in temperature increases evaporation and
evapotranspiration by plants, and thus influences negatively
the global and local water balance. It is thus impossible in
the model to accurately separate the respective roles of rain-
fall, temperature and their interaction. Functionally, the con-
trast between south- and north-facing slopes, as well as the
contrast between low and high altitudes are as much a matter
of aridity as a matter of thermal contrast.

Geographic variables, defining together a continentality in-
dex, carry weight in the model. Although expressing mainly
humidity and temperature gradients, they could not be re-

moved without a loss of more than 10% of the total explained
variance. They integrate local effects of mountain ranges
(cloudiness, cold air flows, temperature inversions, wind cir-
culations and accelerations), which cannot be assessed with
the interpolation of basic climatic variables.

All selected TE variables could be directly linked to the
water gradient on a local scale. A soil useful water reserve is of
paramount importance. This reserve combines several of our
TE variables: soil depth (totE), water-holding capacity (whc)
and the percentage of coarse fragments (Cf%).

Topography proved to be the most important TE factor. To-
pographic variables have a direct role in water availability, as
local water circulation, concentration or drainage depends a lot
on the shape of landscape on local and slope scales: concave,
plane or convex. Soil quality and depth are also correlated with
topography, although our sampling design limited this interac-
tion.

4.3. The operational scales of the model
and its potential for assessing climate
change impact

Even when mapped with only the Bi-CG index, the land-
scapes of the study area appeared as a highly fragmented
patchwork on a local scale (Fig. 4). The contrast between both
sides of a small hill may display locally up to 4 classes among
the 9 found on a regional scale.

As TE variables explain one-third of Fi variance, adding
the TE component increases the variability of this mosaic: ev-
ery Bi-CG class may include several contrasted classes of Bi-
TE on a local scale, particularly due to topography and soil
depth, but also bedrock outcrops. When both components of
the model are added, differences equivalent to 5 or 6 classes
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among the 9 of Bi-CG can be found within a few hectares of
hilly landscape.

The local limits of bioclimatic envelopes are thus
very irregular and fragmented: many enclaves of meso-
Mediterranean microclimate exist far inside the global enve-
lope of the supra-Mediterranean area and vice versa. Thus,
taxa adapted to warm and dry environments, liable to replace
less tolerant ones in the case of climate warming and drying,
are already scattered in the landscapes of the hinterland and
ready to spread from these advanced bases. In contrast, nu-
merous cooler or wetter microclimatic and edaphic poles are
disseminated in the landscape at low altitude. They should al-
low the water-demanding species to survive beyond the aver-
age limit of their distribution area, at least for some time.

The notion of niches as redefined by Chase and Lei-
bolt (2003) allows the integration of evolutionary phenom-
ena across levels and scales of organization. Although some
models tried to predict the assemblage of species on the ba-
sis of both global and some local variables (Franklin, 2002),
very few were made to downscale these modeled niches from
global to very local scales. In forest environments, precise soil
maps are rarely available. However, simulating the variability
of edaphic variables is possible by combining existing models
of soil type distribution in landscapes (Scull et al., 2003) and
local validation and calibration tests (Lagacherie et al., 1995).
Our model is the only one in which the topographic structure
of landscape on different scales is integrated directly as vari-
ables, allowing either a precise site assessment on a local scale
on observed data, or an automatic downscaling on simulated
data. Mapping precisely both our indexes and derived ecolog-
ical niches could be more fully automated in the future.

The classes chosen to map the Bi-CG index in this paper
are arbitrary and could be adapted, split or grouped together
to fit the specific conditions of particular sites, the limits of
the observed distribution area of a species or of a nature re-
serve, for example. Characterizing the ecological niche of the
main species or groups of species with a combination of the
two components of our model can contribute to the assessment
and mapping of their current and future potential niche distri-
bution. The model may also help in evaluating realistically the
potential dispersal of species throughout the landscape with
various scenarios of climate change, as its ground definition is
adapted to the average seed dispersal distance of the majority
of plant species (Clark et al., 1999). This downscaling capac-
ity is among its most original contributions. Furthermore, be-
ing able to integrate several scales allows one to approach the
impact of climate change for species as well as for metacom-
munities (Leibold et al., 2004).

5. SYNTHESIS AND PROSPECTS

5.1. Other potential scientific and operational
uses of the model

The relation established between flora composition and en-
vironmental abiotic variables comes out in many potential sci-
entific and operational outputs, particularly the assessment of

the impact of climate change, the follow-up of vegetation dy-
namics and the assessment of forest productivity.

The Bi indexes are by themselves good indicators which
can be used in forest site assessment and mapping, and to
compare various sites at different locations for experimental
designs requiring homogeneous constraints. A link can be es-
tablished between forest productivity and both components of
the model, as a single homogeneous framework on large areas
(Vennetier, 2007).

It is possible for each plot to compare on one hand, Bi vari-
ations with various expected changes in climate, and on the
other hand, Fi variations with a simulated vegetation shift. Fit-
ting Fi and Bi variations may help in assessing climate change
impact on vegetation. Resampling our plots in time will allow
the same comparison with real climate and flora data.

The difference between the Fi index of burned or disturbed
sites, or abandoned land, with their Bi index and the follow
up of this difference in time can show how far they are from
recovery and how fast they are recovering.

With fast climate warming, wildfire frequency and inten-
sity should increase. This uncontrolled hazard may be the ma-
jor factor reshaping the vegetation, faster and deeper than the
climate change itself (Cary et al., 2006). The risk is all the
more important as Bi indexes are low. The simulation and
mapping of Bi-CG spatial evolution with climate change, com-
bined with Bi-TE maps, could be used as inputs in fire risk
modeling at landscape level.

5.2. Conclusion

We designed a new bioclimatic model adapted to the
Mediterranean context. Computing a bioclimatic index which
explains a large percentage of the observed variations of flora,
it confirmed that water availability was one of the main factors
shaping Mediterranean vegetation.

It is related to statistical models (Guisan et al., 2002) whose
goals are to propose mathematical bases for the interpretation
of ecological relationships observed or suggested by general
models, and particularly to highlight the decomposition of the
role and the respective weight of the explanatory variables.

Calibrated with an analysis of the global flora of studied
sites, and thanks to the very detailed description of key lo-
cal variables including topography, this model has no current
equivalent in terms of design and of span of operational scales.
It allows one to analyze the bioclimatic structures of land-
scapes and may help in assessing accurately the impact of cli-
mate change on vegetation on very local to regional scales.

The development of the method is possible in other regions:
(1) in all the French Mediterranean area; (2) in any area where
water is the main limiting factor and where a sufficient number
of sites remain in a good state of conservation for a balanced
flora sampling, and (3) in other regions where any single lim-
iting factor for vegetation is dominant.
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Annex 1: Validation and resampling methods
in the statistical analyses.

The number of significant components for PLS regres-
sion was chosen with a 10,000-replication permutation test
on observations, keeping components whose percentage of ex-
plained variance was not passed by more than 5 % of the per-
mutations. With significant components, variables were sorted
through a 1,000-resampling cross-validation test ; only vari-
ables whose confidence interval (95%) for the partial correla-
tion coefficient excluded 0 were used. For the choice of rel-
evant variables in the model, each step of the ascending and
descending stepwise PLS regression was validated by a per-
mutation test on PLS components and a cross-validation for
variables concerned. All variables in the final version of the
model were highly significant on the first two PLS components
(p < 0.001).

Neural networks were used combining variables 6 by 6.
Each neural network was optimized with a 200-replication

bootstrap, each replication including 104 calibration steps. Af-
ter the optimization of the neural network, the response of
each variable was plotted on its whole variation interval, the
other variables being maintained at their mean value if they
were not correlated with the tested one, or maintained succes-
sively at their first, second and third quartile for those which
were correlated. In the last case, the 3 responses were com-
bined in a sliding weighted mean to obtain the global response.
We only transformed a variable according to a non-linear re-
lation shown by neural networks when this relation was stable
throughout these many tests and enhanced the total explained
variance or its partial correlation coefficient.

We used ADE4 software (Thioulouse et al., 1997)
for CA, MFA and PLS permutation tests, Statgraphics�

software for stepwise PLS regression, R software
(R_Development_Core_Team, 2004) for the cross-validation
of PLS variables, and PPPhalos software (Guiot, 1991) for
neural networks.

711p10


	Introduction
	Context
	Basic hypothesis and goals

	Materials and methods
	Choice of the study area, stands and plots
	Sampling strategy
	Variables
	Statistical analyses
	Designing the model
	Robustness of the model design


	Results
	Robustness of the basic analysis
	Flora analysis and the bioclimatic index
	Mapping the Bi-CG bioclimatic index

	Discussion
	Robustness of the modeling approach based on flora
	Weight of variables and their interactions
	The operational scales of the model and its potential for assessing climate change impact

	Synthesis and prospects
	Other potential scientific and operational uses of the model
	Conclusion

	References
	Annex 1: Validation and resampling methods in the statistical analyses.


