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Abstract — Two parental linkage maps have been constructed from the P. pinaster reference population (0024 x C803) based on AFLP, SSR and
EST markers. Although segregating polymorphism was low due to a high degree of homozygosity in the parents, 12 linkage groups with 26 to
46 markers each were obtained for each parent. The availibility of 70 anchor points based on fragments common to both parents and based on co-
dominant SSR and EST markers allowed to determine homologous chromosomes for both maps and to construct one integrated map. Total ge-
nome length of the integrated map is around 2000 cM including 1182 markers. Since some of the EST and SSR markers are also mapped in
different pine species, association of linkage groups of our reference population with those of other published maps was possible.

AFLP, SSR, EST markers / genetic mapping

Résumé — Vers la construction d’une carte génétique ultra-haute densité chez Pinus pinaster. Deux cartes génétiques ont été construites a
partir d’un croisement intra-spécifique de P. Pinaster (0024 Landes x C803 Corse) avec des marqueurs AFLP, SSR et EST. Malgré un faible po-
lymorphisme di a la forte homozygotie des parents, 12 groupes de liaison comprenant 26 a 46 marqueurs ont été obtenus pour chacune des car-
tes. La présence de 70 points d’ancrage déterminés a partir des fragments communs aux deux parents a permis d’identifier les chromosomes
homologues des deux cartes et de construire une carte consensus d’une longueur totale d’environ 2000 cM et comprenant 1182 marqueurs. La
présence de quelques marqueurs EST et microsatellites déja cartographiés chez différentes especes de pins a permis d’aligner un certain nombre
de groupes de liaison avec cette carte de pin maritime.

marqueurs AFLP, SSR, EST / cartographie génétique

1. INTRODUCTION as well as EST [3] and SSR markers [8] which may be useful

Several linkage maps have been produced in a variety of for aligning different maps.

forest species including Pinus. They are based on different
marker types such as RFLPs in Pinus taeda [6, 19] and
RAPDs in Pinus pinaster [4] and Pinus radiata [7]. Also
AFLP maps are available for Pinus pinaster [4] , P. radiata
[2] and Pinus edulis [22]. Recently a high-density map of P.
pinaster has been constructed [5]. Other marker types such as
proeins and isozymes are integrated in these maps [4, 6, 15]

* Correspondence and reprints
Tel.: 34 945 121 381; fax: 34 945 281 422; e-mail: eritter @neiker.net

In order to apply DNA marker technology in breeding of
coniferous species a project has been initiated with the aim of
constructing an ultra-high-density linkage map (UHD map)
of Pinus pinaster based on several thousands AFLP markers
and numerous published microsatellites (SSR). The reference
map will be used for comparative genome and QTL analyses
in different genetic backgrounds. It is the aim to align other
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published linkage maps in forest species with this reference
map. Based on areduced number of markers, comparative ge-
nome and QTL analyses will be performed in different pine
species and related gymnosperms.

In this paper we present the first project results, which
consist of an integrated linkage map derived from two P.
pinaster genotypes and some associations of linkage groups
of our map with those of different pine species.

2. MATERIALS AND METHODS

2.1. Plant material

The F1 reference population of P. pinaster descended from the
cross 0024 Landes x C803 Corsica. The parental trees had been se-
lected in cooperation by INRA-Pierroton and AFOCEL SW re-
search stations. The cross was performed in 1987 and the
129 resulting progeny trees were established in the field by
AFOCEL in 1990. A total of 80 out of the 129 progeny genotypes,
established in the AFOCEL experimental stands of Troussas and
Arsague (Landes; SW, France), were used for linkage mapping.

2.2. Molecular methods

Genomic DNA was extracted from needles using the DNeasy
Plant Kit from Qiagen with slight modifications of the supplier’s
protocol.

AFLP analysis was performed according to [23] using
EcoRIl/Msel adapters. Preamplification was performed with one se-
lective nucleotide and specific amplification with 3 selective nu-
cleotides (+1/+3 amplification). Also +2/+4 amplifications were
performed. Amplification products were separated on 6 or 8% dena-
turing polyacrylamide gels. Different techniques were used for de-
tecting amplification products. AFLP fragments were detected on a
LI-COR 4200-S1 DNA sequencer using primers labelled with the
fluorescent infrared dye IRD800 (LI-COR, Lincoln, Nebraska,
USA) or on a ALFexpressll (Amersham Pharmacia Biotech, Ger-
many) with Cy5-Amidite labelled primers (MWG-Biotech, Ger-
many). Analysis was performed according to the manufacturer
instructions in each case.

SSR primers developed in different species were analyzed
for polymorphism and segregation. SSR developed in Pinus
pinaster and  P. halepensis  [13] in  P.strobus (9, 10];
http://dendrome.ucdavis.edu/Data/echt_ssr_primers.html), in P. radiata
and P.sylvestris  ([11, 20, 21]; http://dendrome.ucdavis.edu/
Data/hardssr.html) were used for this purpose. Furthermore, several
other as yet unpublished SSR primers from Pinus radiata were ob-
tained from Gavin Moran (CSIRO, Australia) and from Craig Echt
(Forest Research Inc., New Zealand) and from Picea abies from
Giovanni Vendramin (IMGPF, Italy). SSR analysis was performed
as described by [13] or based on the information given in the men-
tioned WEB pages. EST primers were obtained from the informa-
tion provided on http://www.pierroton.inra.fr/genetics/pinus/
primers.htm. EST analysis was performed according to [12].

2.3. Data analysis and linkage mapping

Polymorphic DNA fragments were scored for presence or ab-
sence in parents and F1 progenies. Linkage analysis between marker

fragments, estimation of recombination frequencies, and determina-
tion of linear order between linked loci including multipoint linkage
analysis and the EM algorithm for handling missing data were per-
formed as described in [16, 17]. The MAPRF program [17] was ap-
plied for the computational methods. Firstly, linkage groups were
constructed based on fragments specific to either parent. Linked
fragments were arranged into linkage groups using a minimum,
commonly accepted LOD threshold of 3.0 between consecutive
markers. Subsequently, fragments common to both parents were in-
tegrated into linkage groups as anchor points as described in [16].
Only common markers linked with recombination frequencies of
zero to at least one parent (LOD > 6) and linked with a minimum
LOD threshold of 3.0 to the other parent were considered for this
purpose.

3. RESULTS

3.1. Generation of polymorphic DNA markers

Nearly 300 different primer combinations (PCs) were ana-
lyzed for the generation of AFLP-fragments. More than 100
fragments were often produced with specific primer combi-
nations, with from one to 25 segregating fragments in the
mapping population. However, some primer combinations
produced no segregating fragments. This was generally the
case for primer combinations with high AT contents. In gen-
eral, better quality of gels were obtained with the +2/4+4 am-
plification system.

A total of 239 AFLP primer combinations were used for
the molecular analyses and generated 1740 segregating frag-
ments. Thus on average, 7.3 polymorphic bands per primer
combination were obtained. Approximately 39% of the seg-
regating fragments were specific for either one parent of the
cross, while 22% of the fragments were present in both par-
ents. Around 16% of the fragments showed significant devia-
tions (o > 5%) from the expected segregation ratios.

Furthermore, a total of 120 SSR and 30 EST primer pairs
were used in this study. Amplification products were ob-
tained in most cases after adapting the particular PCR condi-
tions in each case. However, as with AFLP markers, a low
degree of polymorphism between parental alleles together
with a large degree of homozygosity (i.e. non segregating
polymorphic fragments) was observed. Only 21 SSR and
10 EST markers showed one or more segregating bands.

3.2. Construction of linkage maps

Initially, individual linkage maps of 12 linkage groups
each were obtained for the two parents of the mapping popu-
lation. Their characteristics are summarised in fable I. Details
of the maps, parental AFLP profiles as well as the obtained
polymorphisms are displayed on the project WEB page
(http://www.neiker.net/UHDfor). Linkage groups of the P1
map (parent 0024) contained 26 to 46 individual and common
markers each and were between 107.8 and 180.1 cM in
length. The total P1 map length (female parent 0024) was
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Table I. Characteristics of the P. pinaster maps from the cross 0024 x C803.

P1 - MAP (0024) P2 - MAP (C803) Integrated Map
LG Length ™M CM ™ Length ™M CM ™ Length ™ CM ™ AP
1 160.4 35 9 44 173.3 27 10 37 175.6 62 12 74 7
2 153.2 28 12 40 171.1 28 10 38 168.9 56 13 69 9
3 131.8 26 9 35 174 25 6 31 176.5 51 9 60 6
4 151.2 27 10 37 190.5 23 7 30 175 50 11 61 6
5 146.3 27 8 35 187.3 30 7 37 179.3 57 11 68 4
6 107.8 20 6 26 153.7 19 4 23 151.5 39 6 45 4
7 121.5 24 7 31 116.7 23 6 29 1232 47 8 55 5
8 1353 22 7 29 130.5 22 5 27 142.5 44 8 52 4
9 180.1 38 8 46 181.5 27 8 35 191 65 10 75 6
10 148.7 33 7 40 115.1 24 7 31 156.5 57 9 66 5
11 149.2 27 8 35 175.1 24 12 36 182.8 51 13 64 7
12 150.3 28 7 35 172.7 32 9 41 171.4 60 10 70 6
Total: 1735.8 335 98 433 1941.5 304 91 395 1994.2 639 120 759 70
Mean: 144.7 279 8.2 36.1 161.8 253 7.6 329 166.2 533 10 63.3 5.8

+ 217 markers linked with recombination frequencies of zero to other markers
+ 206 associated fragments: Total Markers: 1182

Legend:

LG = linkage group; IM = individual markers (parent specific); CM = markers common to both parents; TM = total number of markers for linkage group; AP = number of anchor points.

1736 cM. The P2 map (male parent C803) was 1942 cM in
length and made up of linkage groups with 23 to 41 markers
each. The size of the linkage groups varied between 115.1
and 190.5 cM.

Further 217 fragments were linked with recombination
frequencies of zero to other fragments in these linkage maps
and have not been not considered in these counts.

Linkage to mapped markers on linkage groups was appar-
ent for 206 additional markers. However, these were highly
distorted or consisted of common fragments linked to other
fragments with reduced LOD values and could not be placed
in a single interval with high certainty. Since the standard er-
rors of the estimates of the recombination frequencies were
high, these 206 markers are included in this map as so called
“associated markers”, anchored to the marker with the high-
est probability.

Based on the integration of 70 markers common to both
parents and codominant markers like SSRs and ESTs into
linkage groups for both parents, it was possible to assign all
12 homologous chromosomes for P1 and P2, and to obtain in
this way an integrated consensus map with a total of
759 markers (table I, figure 1). Linkage groups of the inte-
grated map varied between 123.2 and 191 cM in length and
contained between 45 and 74 markers each. Considering the
217 markers linked without recombination to other displayed
markers and the 206 associated markers, an integrated map of
1182 markers was achieved with an average of 99 markers
per linkage group.

3.3. Associations of linkage groups between
the reference map and other published maps

The SSR and EST markers amplified one or two loci each
with variable number of alleles. A total of 14 SSR (19 loci)
and 7 EST markers (7 loci) could be placed on the reference
map (figure 1). Since some of them were also mapped in other
pine species, an association of several linkage groups from
our reference population with those of other published maps
was possible. The summarized results are shown in table I1.

4. DISCUSSION

4.1. The generation of segregating polymorphic DNA
markers

The pine genome is known to be relatively large and con-
tains large amounts of repetitive elements [24]. Thus a highly
increased number of AFLP amplification products can be ex-
pected. Itis also well known that increased AT contents in the
selective nucleotides leads to a higher number of amplifica-
tion products. However, the resolution of the gel is limited so
that different amplification products may comigrate, hiding
in this way possible segregating polymorphisms. Therefore
using PCs with lower AT content and/or increasing the num-
ber of selective nucleotides in the primers to 4, potentially re-
sults in less amplification products, but in higher segregating
polymorphisms of variable number of bands with good qual-

ity.
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Table II. Locations of mapped SSR and EST markers in our P. pinaster reference map and in other published Pinus maps.

No Name Type Origin Location in reference map  Location in other published maps
1 4CL EST P. taeda Lg9 P. abies Lg6 (1)
2 AF028073 EST P. taeda Lg12 P. pinaster Lg8 (2)
3 ASOI1F3 EST P. pinaster Lgl P. pinaster Lg4 (2)
P. abies Lg4 (1)
4 E28072 EST P. taeda Lg2 P. pinaster Lg5 (2)
5 E87909 EST P. taeda Lg2 P. pinaster Lg8 (2)
6 PPAS EST P. pinaster Lg5 P. pinaster Lg10 (2)
7 RSO1D5 EST P. pinaster Lg1 P. pinaster Lg7 (2)
8 FRPPI1 SSR P.pinaster Lgll P. pinaster Lg9 (3)
9 FRPP%4a/b SSR P.pinaster Lg5/Lgs P. pinaster Lg5 (3)
10 ISSR9 ISSR Lg7 -
11 ITPH4516a/b SSR P.halepensis Lg3/Lg4 P. pinaster Lg3 (3)
12 NZPRO0413 SSR P. radiata Lgl P. pinaster Lg4 (2)
P. radiata Lg4 (4)
13 NZPR1702a/b SSR P. radiata Lg12/Lg3 P. pinaster
Lg8/Lg 11(2)
P. radiata 1Lg10 (4)
14 NZPR1078 SSR P. radiata Lg6 P. pinaster Lg2 (2)
P. radiata Lg2 (4)
15 NZPR386a/b SSR P. radiata Lgl/Lg4 P. radiata Lg2 (4)
16 NZPR472 SSR P. radiata Lgll P. pinaster Lgl (2)
P. radiata Lgl (4)
17 NZPR006 SSR P. radiata Lg2 P. radiata 1L.g5 (4)
18 NZPR823 SSR P. radiata Lgl P. pinaster Lg5 (2)
P. radiata 1.g5 (4)
19 PR092a/b SSR P. radiata Lg5/Lg9 P. radiata 1Lg3 (5)
20 RPS-160 SSR P.strobus Lg12 -
21 RTPEST11 SSR P. taeda Lg2 P. pinaster Lg5(2)

(1) http://www .pierroton.inra.fr/genetics/Picea/

(2) http://www.pierroton.inra.fr/genetics/pinus/primers.html and Chaumeil P., Développement de marqueurs hypervariables (microsatellites) chez le pin maritime (Pinus pinaster Ait.) et ap-
plications en génétique, 2001, DEA Biologie Forestiere, Université de Nancy (several markers are only cited in the DEA but will be published on this web site).

(3) Mariette et al., 2001.

(4) P. radiata map aligned with P. taeda reference population [1]; Phil Wilcox and Craig Echt, personal communication.

(5) Devey et al., 1999.

Independently of these findings, the unexpected low de-
gree of polymorphism of AFLP, SSR and EST markers ob-
served in our progeny is surprising considering the well
marked differentiation between the original provenances of
the parents [14] and the similar level of genetic diversity en-
countered in P. pinaster and other Pinus species [9, 20].
Many polymorphic fragments exist between the parents of
our mapping population, which represent different ecotypes
from Landes and Corsica, respectively. However, a large de-
gree of homozygosity exists, since parent specific fragments
do not segregate. This increased homozygosity is probably
due to alow degree of biodiversity, which exist at the specific
sites (i.e., trees are quite different between sites but very sim-
ilar within a site).

4.2. Arrangement of DNA markers into linkage maps

The analysis of segregating DNA markers established
twelve independent linkage groups for the P. pinaster geno-
types 0024 and C803, respectively (i.e., lateral markers were

not statistically linked to any other lateral marker of any other
linkage group). These 12 linkage groups may correspond to the
12 chromosomes of the haploid pine genome (2n = 2x = 24).
Moreover, the presence of common markers made it possible
to identify all homologous chromosomes in each parent. With
several common markers present in the same order on chro-
mosomes of both parents, it is possible to combine the infor-
mation of markers from different individuals as described in
[17]. In this way the number of markers available per chro-
mosome can be increased.

The total length of linkage maps did not differ between the
parents of the mapping population and is in agreement with
other linkage maps obtained in this species. Our P. pinaster
reference map represents one of the maps with the highest
number of markers in forest species.

4.3. Alignment with other Pinus maps

Alignment between different linkage maps can be
achieved, if identical markers have been used in these maps
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and if comigrating bands map to identical positions. SSR and
EST markers are mainly codominant, highly polymorphic
and represent powerful tools for different genetic analyses.
Since they seem to be conserved among species and to a cer-
tain degree also within families, they have been used for map-
ping and alignment of linkage maps in several forest species
[1, 3, 8, 13]. We have evaluated numerous SSR and EST
markers in our study and several could be used to associate
linkage groups in different parents (table II). However, the
low level of polymorphism of EST and SSR markers ob-
served in our reference population has led to association of
linkage groups between maps. Since this goal is crucial for
the usefulness of our map, additional SSR/EST primers will
be evaluated in order to achieve a complete alignment.

Alignments between maps were achieved also with
comigrating AFLP markers in potato, involving different
Solanum species [18]. However, it will be necessary to prove
if this is also possible for pine species by comparing parental
profiles and map locations of comigrating fragments from
AFLP primer combinations which have been used in differ-
ent mapping populations.
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