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ABSTRACT

This paper provides a temporal model for the propagation of transient aousti waves in

ontinuous inhomogeneous isotropi porous material having a rigid frame at low frequeny range.

A temporal equivalent �uid model in whih the aousti wave propagates only in the �uid

saturating the material, is onsidered. In this model, the inertial e�ets are desribed by the

inhomogeneous inertial fator [A.N. Norris., J. Wave Mat. Interat. 1 365 (1986)℄. The visous

and thermal losses of the medium are desribed by two inhomogeneous suseptibility kernels

whih depend on the visous and thermal permeabilities . The medium is one dimensional and

its physial parameters (porosity, inertial fator, visous and thermal permeabilities) are depth

dependent. A generalized wave propagation equation in ontinuous inhomogeneous material is

established and disussed.
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I. INTRODUCTION

The propagation of sound in �uid-saturated porous media with rigid solid frames is of great

interest for a wide range of industrial appliations. With air as the pore �uid

1
appliations an be

found in noise ontrol, nondestrutive material haraterization, thermoaoustially ontrolled

heat transfer, et.

The aousti propagation in homogeneous porous materials having rigid frame has been well

studied, di�erent methods and tehniques were developed in frequeny

1−5
and time domains

6−12

for the aousti haraterization. All these tehniques are valid only for homogeneous porous

materials, in whih, their physial parameters are onstant inside the porous medium. However,

in the general ase, the porous media are inhomogeneous

13−15
and their physial properties are

loally onstants, i.e. they are onstant in the elementary volume of homogenization

13
, but they

may vary from point to point in the porous medium. For this general ase, a good understanding

of the aousti propagation is neessary for developing a new methods of haraterization. A

generalized hyperboli frational equation for transient wave propagation in inhomogeneous

rigid-frame porous materials has been established in the asymptoti domain (high frequeny

range)

15
, but not in the visous domain (low frequeny range), in whih another set of physial

parameters (inertial fator, visous and thermal permeabilities) intervene in the propagation.

The stati thermal permeability

16 k′0 of the porous material is a geometrial parameter equal to

the inverse trapping onstant of the solid frame

17
. In the desription of the thermal exhanges

between the frame and the saturating �uid, the stati thermal permeability plays a role similar

to the visous permeability in the desription of the visous fores. The inertial fator

18 α0

orresponds to the low frequeny approximation of the dynami tortuosity

1,6
given by Norris

18
;

α0 =
<v(r)2>

<v(r)>2 , where < v(r) > is the average veloity of the visous �uid for diret urrent �ow

within a volume element, small ompared to the relevant wavelength, but large ompared to the

individual grains/pores of the solid.
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This time-domain approah is an alternative to the lassial frequeny-domain model. It

is an advantage of the time-domain method

6−11,14,15,19−22
that the results are immediate and

diret. The attration of a time domain based approah is that analysis is naturally bounded by

the �nite duration of aousti pressures and it is onsequently the most appropriate approah

for transient signals. However, for wave propagation generated by time harmoni inident waves

and soures (monohromati waves), the frequeny analysis is more appropriate

1−5
.

This work follows the investigation previously done in Refs. 6 and 15, in whih a time-domain

approah was developed and a generalized hyperboli frational equation of propagation has been

established in the asymptoti domain (high frequeny range). Here, a general expression for the

equation of wave propagation in ontinuous inhomogeneous porous medium is derived at visous

domain (low frequeny range) .

The outline of this paper is as follows. Setion II shows the equivalent �uid model, the

relaxation funtions desribing the inertial, visous and thermal interations between �uid and

struture are realled. In this setion, the onnetion between the temporal operators and wave

propagation in rigid homogeneous porous media in the low frequeny range is established. Finally,

in Setion III the analytial derivation of the general propagation equation is given in time

domain. The di�erent terms of this equation are disussed.

II. THE EQUIVALENT FLUID MODEL

In air saturated porous media, the struture is assumed to be motionless : the aousti waves

travel only in the �uid �lling the pores. The wave propagation is desribed by the equivalent

�uid model whih is a partiular ase of the Biot's theory

23
. In this model, the interations

between the �uid and the struture are taken into aount in two frequeny dependent response

fators whih are the generalized suseptibilities : the dynami tortuosity of the medium α(ω)3

and the dynami ompressibility of the air inluded in the medium β(ω)1,16. These two response
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fators are omplex funtions whih heavily depend on the frequeny f = ω/2π, ω is the angular

frequeny. These funtions represent the deviation from the behavior of the �uid in the free

spae as the frequeny inreases. Their theoretial expressions are given by Johnson et al3, and

Allard

1
and Lafarge et al16 :

α(ω) = α∞

(

1 +
φσ

iωα∞ρ

√

1 + i
4α2

∞
ηρω

σ2Λ2φ2

)

, (1)

β(ω) = γ − (γ − 1)



1 +
ηφ

iωρk′0Pr

√

1 + i
4k′20 ρωPr

ηφ2Λ′2





−1

, (2)

where i2 = −1, γ represents the adiabati onstant, Pr the Prandtl number, α∞ the tortuosity,

σ the �ow resistivity, Λ and Λ′
the visous and thermal harateristi lengths

1,3
, η is the �uid

visosity, φ is the porosity and ρ is the �uid density. This model was initially developed by

Johnson

3
, and ompleted by Allard

1
by adding the desription of thermal e�ets. Later on,

Lafarge

16
introdued the parameter k′0 whih desribes the additional damping of sound waves

due to the thermal exhanges between �uid and struture at the surfae of the pores. Generally

the ration between Λ′
and Λ is between 1 and 3.

The funtions α(ω) and β(ω) express the visous and thermal exhanges between the air and

the struture whih are responsible of the sound damping in aousti materials. These exhanges

are due on the one hand to the �uid-struture relative motion and on the other hand to the air

ompressions-dilatations produed by the wave motion. The part of the �uid a�eted by these

exhanges an be estimated by the ratio of a mirosopi harateristi length of the media, as for

example the sizes of the pores, to the visous and thermal skin depth thikness δ = (2η/ωρ)1/2

and δ′ = (2η/ωρPr)
1/2

. For the visous e�ets this domain orresponds to the region of the �uid

in whih the veloity distribution is perturbed by the fritional fores at the interfae between

the visous �uid and the motionless struture. For the thermal e�ets, it is the �uid volume

a�eted by the heat exhanges between the two phases of the porous medium, the solid skeleton

being seen as a heat sink. At low frequenies (visous domain)

24
, the visous and thermal skin

thiknesses are muh larger than the radius of the pores δ/r ≫ 1 and δ′/r ≫ 1. The visous
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fores are important everywhere in the �uid, the ompression dilatation yle in the porous

material is slow enough to favor the thermal interations between �uid and struture. At the

same time the temperature of the frame is pratially unhanged by the passage of the sound

wave beause of the high value of its spei� heat : the frame ats as a thermostat. In this ase,

the expressions of the dynami tortuosity and ompressibility are given by the relations

24,25
:

α(ω) = α0

(

1 +
ηφ

j ωα0ρk0

)

, (3)

β(ω) = γ −
(γ − 1)ρk′0Pr

ηφ
jω, (4)

where j2 = −1, γ represents the adiabati onstant, Pr the Prandtl number, k is the visous

permeability related to the �ow resistivity σ by the relation : k = η/σ.

In the time domain, the fators α(ω) and β(ω) are operators and their asymptoti expressions

are given by

24,25
:

α̃(t) = α0

(

δ(t) +
ηφ

α0ρk0
∂−1
t

)

, (5)

β̃(t) = γδ(t) −
(γ − 1)ρk′0Pr

ηφ
∂t. (6)

In these equations, ∂−1
t is the integral operator ∂−1

t g(t) =
∫ t
0 g(t

′)dt′. In eah of these equations

the �rst term in the right hand side is the instantaneous response of the medium (δ(t) is the Dira

funtion) while the seond term is the memory funtion. In eletromagnetism, the instantaneous

response is alled optial response. It desribes all the proesses whih annot be resolved by

the signal.

In this framework, the basi equations of the aousti waves propagation along the positive axis

diretion are :

ρα̃(t) ∗
∂w

∂t
= −φ

∂p

∂x
, (7)

φβ̃(t)

Ka
∗
∂p

∂t
= −

∂w

∂x
. (8)

The �rst equation is the Euler equation, the seond one is the onstitutive equation. Ka is the

bulk modulus of air, p is aousti pressure and w = φv where v is the partile veloity, ∗ denotes
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the shorthand notation for the time onvolution

(f ∗ g)(t) =

∫ t

0
f(t− t′)g(t′)dt′. (9)

The wave equation is dedued from these equations

24,25
:

∂2p(x, t)

∂x2
−

1

c2
∂2p(x, t)

∂t2
−A

∂p(x, t)

∂t
+B

∂3p(x, t)

∂t3
= 0, (10)

where the oe�ients c, A and B are onstants respetively given by ;

1

c2
=

ρ

Ka

(

α0γ −
(γ − 1)Prk

′

0

k0

)

, A =
ηφγ

Kak0
=

φσγ

Ka
, B =

ρ2(γ − 1)k′0Prα0

Kaηφ
, (11)

the �rst one is related to the wavefront veloity c = 1/

√

ρ
(

α0γ −
(γ−1)Prk′0

k0

)

/Ka of the wave in

the air inluded in the porous material. The term

(

α0γ −
(γ−1)Prk′0

k0

)

appears as the refrative

index of the medium whih hanges the wave veloity from c0 =
√

Ka/ρ in free spae to

c = c0/

√

(

α0γ −
(γ−1)Prk′0

k0

)

in the porous medium. The originality of this wavefront veloity is

its dependene on the inertial, visous and thermal e�ets in the porous material, ompared to

the wavefront veloity in high frequeny range

6,10,11,15
whih depends only on inertial interations

via the tortuosity α∞. The oe�ient A is responsible of the attenuation of the wave without

dispersion due to the visous losses via the visous permeability k0. The onstant B governs the

spreading of the signal, and desribes the dispersion due to the thermal interations between

�uid and struture via the thermal permeability k′0. To note that in this regime of frequeny,

the dispersion phenomena desribing by the term B ∂3p(x, t)/∂t3 is not as important as in the

high frequeny range, in whih the frational derivatives

6,10,11,15
are needed to desribe in time

domain the high dispersion in the porous material. This propagation equation has been solved

analytially in Ref. 24. The diret

24
and inverse

25−27
sattering problem for a slab of porous

material has been studied given a good estimation of the physial parameters (visous and

thermal permeabilities, and inertial fator).
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III. GENERALIZED PROPAGATION EQUATION IN INHO-

MOGENEOUS POROUS MATERIALS

Consider the propagation of transient aousti waves in ontinuous inhomogeneous porous

material having rigid frame. In this material, the aoustial parameters (inertial fator, poro-

sity, visous and thermal permeability) depend on the thikness, and are ontinuous funtions.

For a wave propagating along the x−axis, the �uid-struture interations are desribed by the

inhomogeneous relaxation operators α(x, t) and β(x, t) given by

α̃(x, t) = α0(x)

(

δ(t) +
ηφ(x)

α0(x)ρk(x)
∂−1
t

)

, (12)

β̃(x, t) = γδ(t) −
(γ − 1)ρk′(x)Pr

ηφ(x)
∂t. (13)

In these equations, the porosity φ(x), the tortuosity α0(x), visous and thermal permeability

k(x) and k′(x) depend on the thikness of the porous material for desribing the inhomogeneous

losses in the material.

In this framework, the basi equations

13−15
for our model an be written as

ρα(x, t) ∗
∂w(x, t)

∂t
= −φ(x)

∂p(x, t)

∂x
, (14)

φ(x)

Ka
β(x, t) ∗

∂p(x, t)

∂t
= −

∂w(x, t)

∂x
. (15)

In the next setion, the generalized propagation equation in ontinuous inhomogeneous porous

material having an aoustial parameters varying with depth is derived. The derivation of the

generalized wave equation in an inhomogeneous porous material is important for omputing

the propagation of an aousti pulse inside the medium, and for solving the diret and inverse

sattering problems.

Let us onsider the Euler equation (14) and the onstitutive one (15) in an in�nite inhomogeneous

porous material. By putting

a(x) =
ηφ(x)

α0(x)ρk(x)
and b(x) =

(γ − 1)ρk′(x)Pr

ηφ(x)
,
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we obtain :

ρα0(x)δ(t) ∗
∂w(x, t)

∂t
+ a(x)w(x, t) = −φ(x)

∂p(x, t)

∂x
, (16)

φ(x)

Ka
γδ(t) ∗

∂p(x, t)

∂t
− b(x)

∂2p(x, t)

∂t2
= −

∂w(x, t)

∂x
. (17)

We note P (x, z) the Laplae transform of p(x, t) de�ned by

P (x, z) = L [p(x, t)] =

∫

∞

0
exp(−zt)p(x, t)dt. (18)

The Laplae transform of Eqs. 16, 17 yields

ρα0(x)

[

1 +
a(x)

z

]

zW (x, z) = −φ(x)
∂P (x, z)

∂x
, (19)

φ(x)

Ka
[γ − b(x)z] zP (x, z) = −

∂W

∂x
(x, z), (20)

where W (x, z) is the Laplae transform of w(x, t).

Using Eqs. 19 and 20 and the alulus developed in Appendix. A, we obtain the following

equation

∂2P (x, z)

∂x2
=

[

∂

∂x
ln

α0(x)

φ(x)
+

∂a(x)

∂x

(

1

z + a(x)

)]

∂P (x, z)

∂x

+
ρα0(x)

Ka

[

−b(x)z3 + (γ − a(x)b(x)) z2 + γa(x)z
]

P (x, z). (21)

Using the inverse Laplae transform of Eq. 21 and the initial onditions

10
;

∂p
∂t (x, 0) = p(x, 0) = 0,

we �nd the generalized propagation equation in time domain.

∂2p(x, t)

∂x2
−

1

c2(x)

∂2p(x, t)

∂t2
−A′(x)

∂p(x, t)

∂t
+B′(x)

∂3p(x, t)

∂t3

−
∂a(x)

∂x

∫ t

0
exp (−τa(x))

∂p(x, t− τ)

∂x
dτ −

∂

∂x

[

ln
α0(x)

φ(x)

]

∂p(x, t)

∂x
, (22)

where

1

c2(x)
=

ρα0(x) [γ − a(x)b(x)]

Ka
, A′(x) =

ρα0(x)γa(x)

Ka
, and B′(x) =

ρα0(x)b(x)

Ka
.

Eq. (22) is the generalized propagation equation for lossy inhomogeneous porous material in low

frequeny range. This equation is very important for treating the diret and inverse sattering

9



problems in inhomogeneous porous materials in time domain. It is easy to �nd the speial ase

of homogeneous porous medium, i.e. when α0(x), φ(x), k(x) and k′(x) beome onstants (inde-

pendent of x), we �nd A′(x) = A(x), B′(x) = B, ∂a(x)/∂x = 0. In this ase, the generalized

wave propagation (Eq. 22) is redued to the propagation equation in homogeneous material (Eq.

10).

The �rst and seond term in the propagation equation (22) :

∂2p
∂x2 (x, t)−

1
c2(x)

∂2p
∂t2

(x, t) desribe the

propagation (time translation) via the front wave veloity c(x). The term

√

(

α0(x)γ −
(γ−1)Prk′(x)

k(x)

)

appears as the refrative index of the medium whih hanges the wave veloity from c0 =
√

Ka/ρ

in free spae to c = c0/

√

(

α0(x)γ −
(γ−1)Prk′(x)

k(x)

)

in the porous medium. From this equation,

(as it has been shown in the homogeneous ase

24
), it an be seen that the inertial, visous and

thermal e�ets are all responsible of the hange in the wave front veloity ompared to the high

frequeny inhomogeneous ase

15
in whih only the inertial e�et modify the front wave veloity.

The third term in the propagation equation (22) :A′(x)∂p(x,t)∂t is the most important one for

desribing the aousti attenuation in porous materials at low frequeny range

26
, it results on

the attenuation of the wave without dispersion. It depends on the visous permeability, whih

is the most in�uential parameter in this domain of frequeny. This term desribes the aousti

attenuation due to the visous and inertial interations between �uid and struture. To note

that the thermal e�ets do not intervene in this therm. This an be explained by the fat that

the visous e�ets are the most important at this range of frequeny. The ontribution of the

thermal e�ets is taken into aount only in the seond term in Eq. 4. This term is very sensitive

to the spatial variation of the visous permeability k(x).

The fourth term in the propagation equation (22) :B′(x)∂
3p(x,t)
∂t3

governs the spreading of the

signal, and desribes the weak dispersion due to the thermal interations between �uid and

struture via the spatial thermal permeability k′(x). To note that in this regime of frequeny,

the dispersion phenomena desribed by this term are not as important as in the high frequeny

range, in whih the frational derivatives are needed to desribe in the time domain the high

10



dispersion in the porous material.

The �nal term :

∂
∂x

[

ln α0(x)
φ(x)

]

∂p(x,t)
∂x desribes the attenuation aused by the spatial variation

of the tortuosity and the porosity. In ontrast to the other terms, this term does not ontains

temporal derivative of the pressure, it is independent of the relaxations times of the medium

and thus to the frequeny omponent of the aousti signal.

Finally the term in the propagation equation (22) : −
∂a(x)
∂x

∫ t
0 exp (−τa(x)) ∂p(x,t−τ)

∂x dτ desribes

the spatial variation of the inhomogeneity of the porous medium due to the inertial and visous

interations (there are no thermal e�ets) of the medium.

The generalized propagation equation derived at the visous domain (low frequeny range)

and given by Eq. 22 is very di�erent from the generalized frational equation derived at the

asymptoti domain (high frequeny range)

15
. The physial parameters desribing the propaga-

tion are not the same in the two domains, for example, the visous and thermal interations

between �uid and struture are desribed by the visous and thermal harateristi lengths Λ

and Λ′
at the asymptoti domain, however at the visous domain, these interations are desri-

bed by the visous and thermal permeabilities k0 and k′0. The inertial e�ets are also desribed

by di�erent parameters at the two regimes of frequenies, the tortuosity α∞ is used for the high

frequeny range, while the inertial fator α0 is used at the low frequeny range. In addition the

relaxations times responsible of the dispersion phenomenon and memory e�ets of the aous-

ti wave are expressed by di�erent temporal operators. It has been shown

6,15
in the asymptoti

domain (high frequeny range), that the tortuosity and ompressibility operators depend on fra-

tional operators for desribing the visous and thermal interations. These frational operators

give a frational derivative term in the generalized propagation equation for the inhomogeneous

material. This frational term is not found in the derived equation (equation 22). For the visous

domain orresponding to the low frequeny range, the loss operator have a simple expressions,

whih are funtions of simple derivatives, and thus there is no frational term in the generalized

propagation equation. However, we �nd a term with third derivative responsible of the disper-

11



sion whih is not found in the asymptoti domain. To note that the dispersion phenomenon

desribed by the frational derivative

10,11
is more important in the asymptoti domain than the

dispersion phenomenon desribed by the third derivative term

24,25
in the visous domain. The

porosity is the only parameter whih plays an important role in both the high and low frequen-

ies domains. The variation of the porosity with the depth φ(x) is found in the two generalize

equations (asymptoti and visous domains).

Generally it is interesting to work at the very low frequenies, espeially when we want to

obtain the visous permeability or the �ow resistivity by solving the inverse problem diretly

in time domain via transmitted or re�eted aousti waves

25−27
. In this ase, the e�et of the

inertial fator α0 beomes negligible in the expression of the inhomogeneous relaxation operator

α̃(x, t) given by Eq. 12, in this ase, we obtain the following expression :

α̃(x, t) =
ηφ(x)

ρk(x)
∂−1
t .

The visous interations are the most important in this ase, the inertial exhange between �uid

and struture are negligible. The thermal permeability is not involved in the basi equations of

aousti in porous material in this domain of frequeny. The inhomogeneous relaxation operator

β̃(x, t) beomes independent of the depth x, its expression will be given by

β̃(t) = γδ(t),

In this framework, the basi equations of the model beome

ηφ(x)

k(x)
w(x, t) = −φ(x)

∂p(x, t)

∂x
, (23)

γφ(x)

Ka

∂p(x, t)

∂t
= −

∂w(x, t)

∂x
, (24)

where the Euler equation (23) is redued to Dary's law whih de�nes the variation of the stati

�ow resistivity with the depth x ; σ(x) = η/k(x). The wave equation in time domain is given by

∂2p(x, t)

∂x2
+

[

∂

∂x
ln

(

k(x)

η

)]

∂p(x, t)

∂x
−

γηφ(x)

Kak(x)

∂p(x, t)

∂t
= 0 (25)

12



The �elds whih are varying in time, the pressure, the aousti veloity, et., follow a di�usion

equation with the di�usion onstant

D(x) =
Kak(x)

γηφ(x)

A quite similar result is given in Refs. 6, 26 and 27 for the homogeneous porous materials. For

liquid saturated porous materials, the thermal expansion is negleted, and thus the adiabati

onstant does not appear in the Johnson's

28
model for homogeneous porous materials. We reall

that in the homogeneous ase, we have the following di�usion equation :

∂2p(t)

∂x2
−

(

γηφ

Kak

)

∂p(t)

∂t
= 0. (26)

The main di�erene between Eqs. 25 and 26 is the depth dependene of the porosity φ(x) and the

visous permeability k(x). In addition, the term :

∂
∂x ln

(

k(x)
η

)

∂p(x,t)
∂x desribes the attenuation

aused by the spatial variation of the permeability k(x) due to the inhomogeneity of the porous

material. At the very low frequenies, the generalized propagation equation (22) is redued to

the di�usion equation (25). These equations are very important for the solving the diret and

inverse problem in time domain for the inhomogeneous porous materials. This is our objetive

in the future works.

IV. CONCLUSION

In this paper the generalized wave equation in inhomogeneous porous material is established

in the visous domain (low frequeny range when δ/r ≫ 1 and δ′/r ≫ 1). The di�erent terms of

the propagation equation show how the spatial variation of the inertial fator, porosity, visous

and thermal permeabilities a�et the propagation. In this propagation equation there is no

frational derivatives as it has been shown in the asymptoti domain

15
(high frequeny domain),

but a third derivative term is needed for desribing the dispersion in the porous material. At low

frequenies, the inertial, visous and thermal e�ets are involved in the expression of the veloity

13



of the wavefront. The domain of very low frequeny range is also studied and a generalized

di�usion equation is derived.

These established equations onstitute a basis for the resolution of the diret and inverse

sattering problems. Future studies will onentrate on methods and inversion algorithms to

optimize the aousti properties of inhomogeneous porous media.

14



APPENDIX. A

By di�erentiating both sides of Eq. 19 with respet to x, one �nds that

ρ
∂α0(x)

∂x
[z + a(x)]W (x, z) + ρα0(x)

∂a(x)

∂x
W (x, z)

+ρα0(x) [z + a(x)]
∂W (x, z)

∂x
= −φ(x)

∂2P (x, z)

∂x2
−

∂P (x, z)

∂x

∂φ(x)

∂x
. (27)

From Eq. 19, we obtain

W (x, z) =
−φ(x)

ρα0(x) [z + a(x)]

(

∂P (x, z)

∂x

)

(28)

The two �rst terms of Eq. 27 an be written as

ρ
∂α0(x)

∂x
[z + a(x)]W (x, z) = −

∂α0(x)

∂x

φ(x)

α0(x)

∂P (x, z)

∂x

ρα0(x)
∂a(x)

∂x
W (x, z) = −

∂a(x)

∂x

φ(x)

z + a(x)

∂P (x, z)

∂x

Using Eq. 20, the third term of Eq. 27 an be written as :

ρα0(x) [z + a(x)]
∂W (x, z)

∂x
= −

ρα0(x)φ(x)

Ka
[z + a(x)]

[

γz − b(x)z2
]

P (x, z)

Eq. 27 beomes :

[

−
∂α0(x)

∂x

φ(x)

α0(x)
−

∂a(x)

∂x

(

φ(x)

z + a(x)

)]

∂P (x, z)

∂x
−

ρα0(x)φ(x)

Ka
[z + a(x)]

[

γz − b(x)z2
]

P (x, z)

= −
∂φ(x)

∂x

∂P (x, z)

∂x
− φ(x)

∂2P (x, z)

∂x2
(29)

By dividing the two members of Eq.29 by −φ(x), we obtain the relation (21).

15
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