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Abstract This article details two approaches to compute

barycenters of measures using 1-D Wasserstein distances

along radial projections of the input measures. The first me-

thod makes use of the Radon transform of the measures, and

the second is the solution of a convex optimization problem

over the space of measures. We show several properties of

these barycenters and explain their relationship. We show

numerical approximation schemes based on a discrete Radon

transform and on the resolution of a non-convex optimization

problem. We explore the respective merits and drawbacks

of each approach on applications to two image processing

problems: color transfer and texture mixing.

Keywords Optimal transport · Radon transform · Wasser-

stein distance · Barycenter of measures

1 Introduction

The mass transportation problem corresponds to the com-

putation of an optimal warping to map (i.e. push-forward)

a given input probability measure µ0 to a second probabil-

ity measure µ1. The optimality corresponds to minimizing

a cost (the so-called Wasserstein distance) associated to the

warping, which measures the effort needed to perform the

corresponding motion. Informally, the effort is expressed as

the cost it would require to move a pile of sand representing
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Fig. 1 The mass transportation problem consists in optimally moving a

probability measure µ0 represented by a pile of sand, toward a proba-

bility measure µ1 making a hole. At an intermediate time t ∈ [0,1], an

interpolated probability measure µt , the displacement interpolation, is

obtained. A Wasserstein barycenter generalizes this notion by consider-

ing more than 2 probability measures.

µ0 toward a hole made of µ1, by summing the cost (typically

a squared distance) for each particle of sand to reach its des-

tination in the hole (see Fig. 1). We refer to [31] for a review

of the mathematical foundations of optimal transport.

As a byproduct of the computation of this optimal trans-

port, it is possible to define a geodesic µt , for t ∈ [0,1] inter-

polating between the two input measures. This corresponds

to the so-called displacement interpolation introduced by

McCann [22]. Such an interpolation has several applications

ranging from the analysis of PDEs to computer graphics,

which we review below. Moreover, as introduced in [1], this

interpolation between two densities can be extended to an

arbitrary number of measures by defining a barycenter ac-

cording to the transportation distance. However, a major

bottleneck is the computational complexity of computing the

optimal transport, geodesics and barycenters in arbitrary di-

mension. In this paper, we address these issues by leveraging

the fact that these problems are easy to solve for 1-D distribu-

tions. We propose alternative definitions of barycenters using

two frameworks based on 1-D projections of the measures.

We describe the associated fast computational schemes, and

show some applications in image processing (color transfer)

and computer graphics (texture mixing).
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1.1 Previous work

Computational Optimal transport. There is a vast literature

on the numerical computation and approximation of the opti-

mal transport plan. For discrete measures (i.e. sums of Dir-

acs), it boils down to the solution of a linear program, as initi-

ated by Kantorovitch [20] which laid the modern foundations

of transportation theory. There exist dedicated combinato-

rial optimization methods, such as the auction algorithm [5]

and the Hungarian algorithm [17]. The L2 optimal transport

map is the solution of the celebrated Monge-Ampère non-

linear PDE. A variety of methods have been proposed to

approximate numerically the solution to this equation, see

for instance [4] and references therein.

Wasserstein geodesics. The Wasserstein geodesic (i.e. a min-

imizing length path interpolating between two measures) is

easily computed by linearly interpolating between the iden-

tity and the optimal transport. It is thus a trivial by-product of

the computation of the optimal map. Let us however notice

that the landmark paper of Benamou and Brenier [3] proposes

to actually proceed the other way around, i.e., to compute the

geodesic as the solution of a convex optimization problem.

The drawback of this approach is that it requires the addition

of an extra dimension (time parameterizing the geodesic), but

it allows the computation of an accurate approximation of the

geodesic on a fixed discretization grid. This algorithm has

recently been revisited using proximal splitting optimization

schemes [24] ; we make use of this approach to compare

the Wasserstein geodesics with the one obtained through our

methods.

Wasserstein barycenters. Wasserstein barycenters generalize

the notion of geodesic interpolation from two to an arbitrary

number of measures. The mathematical foundation for the

formulation of these barycenters (i.e. existence, uniqueness

and linear programming formulation) is detailed in [1]. These

barycenters have found application, for instance, in statistical

estimation [6]. They enjoy an almost closed form expres-

sion in the case of Gaussian measures. This property is used

in [14] to perform texture mixing of Gaussian texture models.

To reduce the numerical complexity of computing this

barycenter, Rabin et al. [27] introduce a different variational

problem that sums the Wasserstein distances of 1-D pro-

jections of the input measures. Our method generalizes the

iterative 1-D histogram matching used in [25] to perform

color palette modification. Our work builds on the initial

construction of Rabin et al. [27]. We propose a more for-

mal exposition of this method and its main properties, and

also present an alternative formulation based on the Radon

transform.

Applications in imaging. There are numerous applications

of mass transportation in image processing, computer vi-

sion and computer graphics. The Wasserstein distance leads

to state-of-the-art results for several image retrieval prob-

lems, see for instance [29] for an early work on this topic.

The optimal transport plan has been used for color transfer

in images [25] and for meshing in computer graphics [13].

Displacement interpolation has been employed for image

warping and registration [18,23], to remove flickering in old

movies [11] and in computer graphics to perform manipula-

tions on textures [21] and to interpolate reflectance for 3-D

rendering [8]. The Wasserstein barycenter of Gaussian dis-

tributions has found applications for texture synthesis and

mixing, using either non-parametric density estimations [27]

and Gaussian density estimation [14].

1.2 Contributions

In this paper, we introduce two efficient methods to ap-

proximate the Wasserstein barycenter of an arbitrary number

of measures based on 1-D projections. The first approach,

that we call “Radon barycenter”, computes 1-D barycen-

ters of Radon projections of the input measures, and defines

the resulting barycenter as a back-projection of these 1-D

barycenters. This method leads to a fast numerical scheme

for an Eulerian discretization of the measures (i.e. based on

histograms on a regular lattice), using a discrete Radon trans-

form. The second approach, that we call “sliced barycenter”,

is defined as the solution of an optimization problem which

integrates the distances of all the Radon projections. A La-

grangian discretization (i.e. using point clouds with freely

moving positions) is well adapted to the numerical resolution

of a non-convex re-formulation of this optimization problem.

We demonstrate properties of these two barycenters, ana-

lyze their relationship and show how they compare in practice.

We show that both approximations solve a similar variational

problem that only differs in the lack of surjectivity of the

Radon transform. We also prove that both barycenters ex-

hibit similar translational and scaling properties as the exact

Wasserstein barycenter at a fraction of its computational cost.

We compare our approximation with the exact barycenter of

two probability measures using a state of the art method [24].

We exemplify typical usages of these two complementary

approaches to solve a problem of color harmonization in im-

age processing, and a problem of texture mixing in computer

graphics.

The code to reproduce the figure of this article is available

online1.

1 https://github.com/gpeyre/2014-JMIV-SlicedTransport
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1.3 Notations

We denote S
d−1 the unit sphere in R

d , and we define

Ω d = R×S
d−1. We denote dθ the uniform measure on the

sphere, which is normalized to satisfy
∫

Sd−1 dθ = 1. We write

C0(X) the space of continuous functions on X tending to 0

at infinity, where in the following X is either Rd or Ω d . It is

a Banach space with respect to the norm

∀ f ∈ C0(X), || f ||∞ = max
x∈X

| f (x)|.

We denote as M (X) the Radon measures on X , which is the

space of finite Borel measures on X , and can also be repre-

sented as the dual of C0(X), i.e., it is the space of continuous

linear forms on C0(X). We write

∀(µ,g) ∈ M (X)×C0(X),
∫

X
g(x)dµ(x) ∈ R

the duality pairing between these spaces, which evaluates

at g the linear form defined by µ . M (X) is a Banach space

with respect to the dual norm, which is the so-called total

variation norm, ∀µ ∈ M (X)

||µ||TV = max

{

∫

X
g(x)dµ(x) ; g ∈ C0(X), ||g||∞ 6 1

}

. (1)

In the following, the convex cone of positive Radon measures

is written

M
+(X) =

{

µ ; ∀ f ∈ C0(R
d), f > 0,

∫

f dµ > 0

}

.

We denote as ♯ the push-forward operator, which, for

any measurable map M : X → Y defines a linear operator

M♯ : M (X)→ M (Y ) as, for any µ ∈ M (X)

∀g ∈ C0(Y ),
∫

Y
g(y)d(M♯µ)(y) =

∫

X
g(M(x))dµ(x).

If dµ(x) = ρ(x)dx has a density ρ with respect to some

measure dx (e.g., the Lebesgue measure on R
d), and if M is

a C1 diffeomorphism, then one has

d(M♯µ)(y) = (ρ ◦M−1)(y)|det(∂M−1(y))|dy. (2)

Using the disintegration theorem (see for instance [10]),

one can slice a measure ν ∈ M (Ω d) into its conditional

measures with respect to the uniform measure on S
d−1 to

obtain a measure νθ ∈M (R) for almost all θ ∈ S
d−1 outside

a Borel set of zero measure, which satisfies, ∀g ∈ C0(Ω
d)

∫

Ω d
g(t,θ)dν(t,θ) =

∫

Sd−1

(

∫

R

g(t,θ)dνθ (t)

)

dθ , (3)

and such that for any Borel set A⊂R, θ ∈ S
d−1 7→ νθ (A)∈R

is a Borel map.

The convex set of normalized positive probability mea-

sures is M
+
1 (Rd) ⊂ M+(Rd), which are measures µ ∈

M+(Rd) which satisfy µ(Rd)= 1. We also denote M̄
+
1 (Ω d)

the set of positive probability measures having normalized

conditional mesures along the t variable, i.e.,

M̄
+
1 (Ω d) =

{

ν ∈ M
+
1 (Ω d) ; ∀θ ∈ S

d−1, νθ (R) = 1
}

where νθ ∈ M
+
1 (R) is the conditional measure defined ac-

cording to the disintegration formula (3).

We denote as δx ∈M
+
1 (Rd) the Dirac measure at x ∈R

d ,

i.e.

∀ f ∈ C0(R
d),

∫

Rd
f (y)d(δx)(y) = f (x).

We write D(X) the space of C ∞(X) functions with com-

pact support, and D∗(X) its dual, which is the space of dis-

tributions.

The Fourier transform of f ∈ L1(Rd) is defined as

∀ω ∈ R
d , f̂ (ω) =

∫

Rd
f (x)e−i〈ω,x〉dx,

and the Fourier transform of a measure µ ∈ M (Rd) as

∀ω ∈ R
d , µ̂(ω) =

∫

Rd
e−i〈ω,x〉dµ(x).

Given a finite index set I, we define the simplex set of

weights as

ΛI =

{

λ = (λi)i∈I ∈ R
I ; ∀ i ∈ I, λi > 0, ∑

i∈I

λi = 1

}

(4)

where the notation R
I corresponds to the set of vectors in-

dexed by I.

We define the following translation and scaling operators,

for all (s,u) ∈ R
+,∗×R

d ,

∀x ∈ R
d , ϕs,u(x) = sx+u ∈ R

d ,

∀(t,θ) ∈ Ω d , ψs,u(t,θ) = (st + 〈u, θ〉,θ) ∈ Ω d .

We denote O(Rd) the orthogonal group of Rd , i.e. Φ : Rd 7→

R
d is an invertible linear map with Φ∗ = Φ−1 the adjoint

operator. For all Φ ∈ O(Rd) we denote

Φ̃ : (t,θ) ∈ Ω d 7→ (t,Φ∗θ) ∈ Ω d .

A measure µ is said to be radial (denoted µ ∈ Radial(Rd)) if

Φ♯µ = µ for all rotation Φ ∈O(Rd). It is said to be centrally

symmetric (denoted µ ∈ Central(Rd)) if S♯µ = µ for the

central symmetry S ∈ O(Rd) such that S =−Id
Rd .
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2 Wasserstein Distance

2.1 Optimal Transport

For (µ1,µ2) ∈ M
+
1 (Rd)2, we define the L2-Wasserstein

distance W
Rd (µ1,µ2)

2 to be equal to

inf

{

∫

Rd×Rd
||x1 − x2||

2dγ(x1,x2) ; γ ∈C(µ1,µ2)

}

(5)

where

C(µ1,µ2) =
{

γ ∈ M
+
1 (Rd ×R

d) ; Πi♯γ = µi, i = 1,2
}

where Π1(x1,x2) = x1 and Π2(x1,x2) = x2. We refer to [31]

for more details regarding optimal transport and properties

of the Wasserstein distance.

2.2 Wasserstein Barycenter on R
d

Following [1], we define the Wasserstein barycenter as a

natural extension of the variational formula for barycenters

in R
d .

Definition 1 (Wasserstein barycenter). Given λ ∈ ΛI and

(µi)i∈I ∈ M
+
1 (Rd)I , we define

BarW
Rd (µi,λi)i∈I = argmin

µ∈M
+
1 (Rd)

∑
i∈I

λiWRd (µi,µ)
2. (6)

Note that the variational problem is convex but it does

not necessarily have a unique solution so that in general

BarW
Rd (µi,λi)i∈I is a (convex) set of measures. The solution

can be shown to be unique (so that BarW
Rd (µi,λi)i∈I is a sin-

gleton) if at least one of the µi does not give mass to so called

“small sets” (sets of Hausdorff dimension strictly smaller than

d), see [1].

It is proved in [1] that this barycenter can be computed as

the projection in R
d of a measure on (Rd)I solving a linear

program. This theorem shows that, in the particular case

where the input measures are discrete probability measures

(i.e. sums of weighted Diracs) then the barycenter measures

solving (6) are discrete probability measures, which can be

computed by solving a finite dimensional linear program.

Note that since in this case all the input measures do give

mass to small sets, then the barycenter can be non-unique

for some degenerate configurations of input Diracs. Also

note that solving such a high dimensional linear program is

intractable for imaging applications. This is one of the main

motivations to introduce alternative definitions of barycenters

of measures.

The following proposition states some invariance proper-

ties of the Wasserstein barycenter with respect to translation,

scaling, rotation and symmetry.

Proposition 1. We consider λ ∈ ΛI , (µi)i∈I ∈ M
+
1 (Rd)I .

For all (s,u) ∈ R
+,∗×R

d ,

BarW
Rd (ϕs,u♯µi,λi)i∈I = ϕs,u♯BarW

Rd (µi,λi)i∈I , (7)

and for all Φ ∈ O(Rd),

BarW
Rd (Φ♯µi,λi)i∈I = Φ♯BarW

Rd (µi,λi)i∈I . (8)

In particular, one has

∀ i ∈ I,µi ∈ Radial(Rd) (9)

⇒ BarW
Rd (µi,λi)i∈I ⊂ Radial(Rd), (10)

and also

∀ i ∈ I,µi ∈ Central(Rd) (11)

⇒ BarW
Rd (µi,λi)i∈I ⊂ Central(Rd). (12)

Proof. From the definition (5), one verifies that

W
Rd (ϕs,u♯µ1,ϕs,u♯µ2) = sW

Rd (µ1,µ2). (13)

so that

Es,u(µ) = ∑
i∈I

λiWRd (ϕs,u♯µi,µ)
2

= s2 ∑
i∈I

λiWRd (µi,ϕ
−1
s,u ♯µ)

2 = s2
E1,0(µ̃).

where we have introduced the following change of variable

µ = ϕs,u♯µ̃ ⇐⇒ µ̃ = ϕ−1
s,u ♯µ,

(note that ϕ−1
s,u = ϕs−1,−s−1u). One thus has

argmin
µ

Es,u(µ) = ϕs,u♯argmin
µ̃

E1,0(µ̃)

which proves (7). Property (8) is proved similarly. Proper-

ties (9) and (11) directly follow from (8).

The following proposition shows that the Wasserstein

barycenter of translated and scaled copies of a given measure

is also a translated and scaled copy.

Proposition 2. We consider λ ∈ ΛI , µ ∈ M
+
1 (Rd). For all

(si,ui)i∈I ∈ (R+,∗×R
d)I ,

ϕs⋆,u⋆♯µ ∈ BarW
Rd (ϕsi,ui

♯µ,λi)i∈I , where (14)

s⋆ =

(

∑
i∈I

λis
−1
i

)−1

and u⋆ =
∑i∈I λis

−1
i ui

∑i∈I λis
−1
i

. (15)
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Proof. We aim at determining (s⋆,u⋆) such that

µ⋆ ∈ BarW
Rd (µi,λi)i∈I where

{

µ⋆ = ϕ⋆♯µ,

µi = ϕi♯µ,

and where for simplicity we have denoted ϕi = ϕsi,ui
and

ϕ⋆ = ϕs⋆,u⋆ . First, let us notice that

ϕs,u(x) = ∇

( s

2
||x+u/s||2

)

,

so that the set T of maps of the form ϕs,u is a subset of

gradients of convex functions. Following [1], we thus only

need to show that

∑
i∈I

λiTi = Id
Rd where Ti = ϕ⋆ ◦ϕ−1

i = ϕs̃i,ũi

where

{

s̃i = s⋆s−1
i

ũi = u⋆− s⋆s−1
i ui

since Ti♯µi = µ⋆ and Ti ∈ T is a gradient of a convex func-

tion. So that µ⋆ is a barycenter if and only if

∑
i∈I

λiTi = ∑
i∈I

λiϕs̃i,ũi

= ϕ∑i∈I λi s̃i,∑i∈I λiũi
= Id

Rd = ϕ1,0.

This in turn is equivalent to the relationships

∑
i∈I

λis̃i = 1 and ∑
i∈I

λiũi = 0,

which corresponds to (15).

2.3 Wasserstein Barycenter on R

The following result shows that it is possible to compute

a Wasserstein barycenter measure solving (6) in the 1-D case,

with a close form expression. Note that if all the input mea-

sures contain Dirac atoms, the barycenter is not necessarily

unique.

Proposition 3. Let µ ∈ M
+
1 (R) be absolutely continuous

with respect to the Lebesgue measure (i.e., such that µ has

a density), and (µi)i∈I ∈ M
+
1 (R)I . Denoting Ti such that

Ti♯µ = µi the optimal transport between µ and µi (which is

unique), then

µ⋆ =

(

∑
i∈I

λiTi

)

♯µ (16)

is a barycenter measure solving (6), i.e. µ⋆ ∈ BarW
R
(µi,λi)i∈I .

Proof. The proof is done in [1] for µ = µ j for some j ∈ I,

which is supposed to be absolutely continuous. It extends to

an arbitrary measure µ .

For µ ∈ M (R), we write the cumulative function as

∀ t ∈ R, Cµ(t) = µ(]−∞, t]). (17)

As for any non-decreasing function h :R→R, one can define

its pseudo inverse

∀ t ∈ R, f+(t) = inf{s ∈ R ; f (s)> t} . (18)

The following corollary shows that 1-D barycenters can be

computed almost in closed form using inverse cumulative

functions.

Corollary 1. Given (µi)i∈I ∈ M
+
1 (R)I , and λ ∈ ΛI . Then

µ⋆ =
d

dt

(

∑
i∈I

λiC
+
µi
(t)

)+

, (19)

where the derivative should be interpreted in the sense of dis-

tribution, satisfies µ⋆ ∈ BarW
Rd (µi,λi)i∈I , i.e., is a barycenter

measure. In particular, it satisfies

C+
µ⋆ = ∑

i∈I

λiC
+
µi
.

Proof. When using µ , the uniform and normalized measure

on [0,1], with the notation of Proposition (3), one has Ti =
C+

µi
. One then recognizes that formula (19) is the same as

formula (16).

We recall that if all measures µi contain Dirac’s masses,

the barycenter might not be unique. In that case, formula (19)

selects a particular measure in the convex set of barycenters.

2.4 Wasserstein Barycenter on Ω d

We extend 1-D Wasserstein barycenters to barycenters

of measures on Ω d by essentially computing the barycenter

along the t variable only. For this to be feasible, we restrict

our attention to measures in M̄
+
1 (Ω d) having normalized

conditional densities along the t variable.

Definition 2 (Wasserstein Barycenter on Ω d). Given (νi)i∈I ∈
M̄

+
1 (Ω d)I and λ ∈ ΛI , we define the barycenters as

ν ∈ BarW
Ω d (νi,λi)i∈I ∈ M̄

+
1 (Ω d)

by, for almost all θ ∈ S
d−1,

νθ ∈ BarW
R
(νθ

i ,λi)i∈I .

Considering the following extension of the Wasserstein

distance to M̄
+
1 (Ω d) by integrating 1-D Wasserstein dis-

tances, ∀(ν1,ν2) ∈ M̄
+
1 (Ω d)2,

WΩ d (ν1,ν2)
2 =

∫

Sd−1
WR(ν

θ
1 ,ν

θ
2 )

2dθ ,

we have the following characterization of the Wasserstein

barycenter on Ω d .
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Proposition 4. One has

BarW
Ω d (νi,λi)i∈I = argmin

ν∈M̄
+
1 (Ω d)

∑
i∈I

λiWΩ d (νi,ν)
2. (20)

Proof. One has

ν⋆ ∈ argmin
ν∈M̄

+
1 (Ω d)

∑
i∈I

λiWΩ d (νi,ν)
2

= argmin
ν∈M̄

+
1 (Ω d)

∫

Sd−1
∑
i∈I

λiWR(ν
θ
i ,ν

θ )2dθ .

This is equivalent to the fact that for almost all θ ∈ S
d−1, one

has

ν⋆,θ ∈ BarW
R
(νθ

i ,λi)i∈I .

The following proposition exposes some useful properties

of barycenters in Ω d .

Proposition 5. If ν ∈ M̄
+
1 (Ω d), then ψs,u♯ν ∈ M̄

+
1 (Ω d),

and

BarW
Ω d (ψs,u♯νi,λi)i∈I = ψs,u♯BarW

Ω d (νi,λi)i∈I (21)

BarW
Ω d (ψsi,ui

♯ν ,λi)i∈I = ψs⋆,u⋆♯ν (22)

where s⋆ and u⋆ are defined in (15).

Proof. Proof of (21). Similarly to the proof of (7), the proof

of (21) is obtained by using the following invariance of the

Wasserstein distance on Ω d

WΩ d (ψs,u♯ν1,ψs,u♯ν2) = sWΩ d (ν1,ν2). (23)

Proof of (22). One has that ν⋆ ∈ BarW
Ω d (ψsi,ui

♯ν ,λi)i∈I is

equivalent to

for almost all θ ∈ S
d−1, (ν⋆)θ ∈BarW

R
(ϕsi,〈ui,θ〉♯ν

θ ,λi)i∈I .

Using the property of proposition 2 for d = 1, one obtains

that

BarW
R
(ϕsi,〈ui,θ〉♯ν

θ ,λi)i∈I ∋ ϕs⋆,〈u⋆,θ〉♯ν
θ ,

which gives the desired result.

3 Radon Wasserstein Barycenters

Proposition 1 shows that it is computationally inexpen-

sive to compute the Wasserstein barycenter of 1-D densi-

ties. It thus makes sense to seek for alternate definitions of

barycenters of measures in R
d that rely on 1-D Wasserstein

distances and barycenters. This section investigates a con-

struction based on the Radon transform.

3.1 Radon Transform of Functions

We recall below classical definitions, and refer to [19]

for more details. The Radon transform is first defined on

integrable functions.

Definition 3 (Radon transform of functions). The Radon

transform R f of f ∈ L1(Rd) is defined as

R f (t,θ) =
∫

Rd−1
f (tθ +Uθ γ)dγ (24)

where Uθ ∈ R
d×(d−1) is any matrix such that its columns

defines an orthogonal basis of θ⊥ (the hyperplane orthogonal

to θ ). This defines R : L1(Rd)→ L1(Ω d).

Its adjoint is defined on continuous functions as follows.

Definition 4 (Back-projection operator). The back projection

R∗g of g ∈ C0(Ω
d) is defined as

R∗g(x) =
∫

Sd−1
g(〈x, θ〉,θ)dθ .

This defines R∗ : C0(Ω
d)→ C0(R

d).

One has that R∗R is a translation invariant operator, i.e. a

convolution

R∗R f = h⋆ f where ĥ(ω) = c ||ω||−(d−1),

where ⋆ is the convolution on R
d and c ∈ R is a normaliz-

ing constant whose exact value depends on the dimension

(see [19]). This relationship suggests a definition of a pseudo-

inverse transform which operates on smooth functions so as

to invert the low pass filter h.

Definition 5 (Inverse Radon transform of functions). The

pseudo-inverse Radon transform R+g of g ∈ D(Ω d) is de-

fined as

R+g = h+ ⋆ (R∗g) (25)

where h+ is defined through ĥ+(ω) = c−1||ω||d−1.

3.2 Radon Transform of Measures

Since R∗ is defined on C0(R
d), the Radon transform is

naturally extended to measures µ ∈ M (Rd) by duality as

follows.

Definition 6 (Radon transform of measures). For all µ ∈

M (Rd), we set ν = R(µ) be defined through, ∀g ∈ C0(Ω
d),

∫

Ω d
g(t,θ)dν(t,θ) =

∫

Rd
(R∗g)(x)dµ(x). (26)

This defines R : M (Rd)→ M (Ω d).

The following proposition shows that the Radon trans-

form of a measure gathers projections of the input measure

along all possible directions.
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Proposition 6. For µ ∈ M (Rd), one has

∀θ ∈ S
d−1, R(µ)θ = Pθ ♯µ

where Pθ : x ∈ R
d 7→ 〈x, θ〉 ∈ R,

and where R(µ)θ ∈ M (R) is defined in (3).

Proof. For all g ∈ C0(Ω
d), one has

∫

Sd−1

∫

R

g(t,θ)d(R(µ)θ )(t)dθ =
∫

Ω d
g(t,θ)d(R(µ))(t,θ)

=
∫

Rd
(R∗g)(x)dµ(x)

=
∫

Rd

∫

Sd−1
g(Pθ (x),θ)dθdµ(x)

=
∫

Sd−1

∫

R

g(y,θ)d(Pθ ♯µ)(y)dθ .

The conditional measure νθ associated to ν ∈ M (Ω d)

is defined for almost all θ , i.e. on a Borel set of θ ∈ S
d−1 of

measure 1. Proposition 6 shows that when ν = R(µ), then

νθ is in fact well defined for all θ ∈ S
d−1, because it is a

push-forward measure.

We define in a way similar to Definition 6 the inverse

Radon transform using the operator R+,∗ = R(R∗R)−1.

Definition 7 (Inverse Radon transform of measures). For

all ν ∈ M (Ω d), we set µ = R+(ν) ∈ D∗(Rd) be defined

through, ∀ f ∈ D(Rd),

∫

Rd
f (x)dµ(x) =

∫

Ω d
(R+,∗ f )(t,θ)dν(t,θ). (27)

This defines R+ : M (Ω d)→ D∗(Rd).

Note that for an arbitrary ν ∈ M (Ω d) (i.e. not neces-

sarily in the range Im(R) of R), R+ν is a distribution and

not necessarily a measure. One can however show that for

ν = R(µ) ∈ Im(R), then R+(ν) = µ ∈ M (Rd) is a measure,

as detailed in the following proposition, see [7] for more

details and connections with the celebrated Cramèr-Wold

Theorem.

Proposition 7. R : M (Rd) → M (Ω d) defined in (26) is

injective, and R+R = Id
M (Rd).

The following lemma recapitulates useful commutation

properties of the Radon transform with respect to translation

and scaling.

Lemma 1. One has, for µ ∈ M
+
1 (Rd) and ν ∈ M

+
1 (Ω d),

and for all (s,u,Φ) ∈ R
+,∗×R

d ×O(Rd),

R(ϕs,u♯µ) = ψs,u♯R(µ) (28)

R+(ψs,u♯ν) = ϕs,u♯R
+(ν) (29)

R(Φ♯µ) = Φ̃♯R(µ). (30)

Proof. Proof of (28): For all g ∈ C0(Ω
d), one has

∫

Rd
gd[R(ϕs,u♯µ)] =

∫

Rd
R∗(g)d[ϕs,u♯µ]

=
∫

Rd

∫

Sd−1
g(〈sx+u, θ〉,θ)dθdµ(x)

=
∫

Rd

∫

Sd−1
(g◦ψs,u)(〈x, θ〉,θ)dθdµ(x)

=
∫

Rd
(g◦ψs,u)d[R(µ)]

=
∫

Rd
gd[ψs,u♯R(µ)]

Proof of (29): First we notice, using (24), that

R( f ◦ϕs,u)(t,θ) =
∫

Rd−1
f (s(tθ +Uθ γ)+u)dγ

=
∫

Rd−1
f
(

stθ +Uθ sγ + 〈u, θ〉θ +Uθ (Uθ )
T u
)

dγ

=
∫

Rd−1
f
(

(st + 〈u, θ〉)θ +Uθ (sγ +(Uθ )
T u)
)

dγ

= s1−d

∫

Rd−1
f
(

ψs,u(t,θ)θ +Uθ γ ′
)

dγ ′

which proves

R( f ◦ϕs,u) = s1−dR( f )◦ψs,u (31)

We write H = (R∗R)−1 the filtering operator with kernel

h+. One has, for smooth functions f ∈ S (Rd), denoting

F ( f ) = f̂ ,

F (H( f ◦ϕs,u)) = c−1||ω||1−d f̂ (sω)e−i〈ω,u〉,

F (H( f )◦ϕs,u) = c−1||sω||1−d f̂ (sω)e−i〈ω,u〉,

and hence

H( f )◦ϕs,u = s1−dH( f ◦ϕs,u). (32)

This shows, using (31) and (32) that for all f ∈ D(Rd),

∫

Rd
f d[R+(ψs,u♯ν)] =

∫

Rd
(RH f )◦ψs,udν

= sd−1
∫

Rd
R(H( f )◦ϕs,u)dν

=
∫

Rd
RH( f ◦ϕs,u)dν

=
∫

Rd
f d[ϕs,u♯R

+(ν)]

Proof of (30): the proof is similar to the one of (28).
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3.3 Radon Barycenter

According to Proposition 7, one has

R : M
+
1 (Rd)→ R(M+

1 (Rd))⊂ M̄
+
1 (Ω d),

although the inclusion on the right hand side is not an equality.

This property allows us to define the Radon barycenter.

Definition 8 (Radon barycenter). Given λ ∈ΛI and (µi)i∈I ∈

M
+
1 (Rd)I , we define

BarR
Rd (µi,λi)i∈I = R+BarW

Ω d (R(µi),λi)i∈I ∈ D
∗(Rd).

Since for ν ∈ BarW
Ω d (R(µi),λi)i∈I one does not have in

general ν ∈ Im(R), BarR
Rd (µi,λi)i∈I is composed of distribu-

tions and not necessarily measures.

The following proposition shows that the Radon barycen-

ter enjoys the same invariance properties to scaling, transla-

tion and rotation as the classical Wasserstein barycenter.

Proposition 8. Proposition 1 holds when replacing BarW
Rd

by BarR
Rd .

Proof. Using Lemma 1, one has

BarR
Rd (ϕs,u♯µi,λi)i∈I = R+BarW

Ω d (R(ϕs,u♯µi),λi)i∈I

= R+BarW
Ω d (ψs,u♯(R(µi)),λi)i∈I

= R+ψs,u♯BarW
Ω d (R(µi),λi)i∈I

= ϕs,u♯R
+BarW

Ω d (R(µi),λi)i∈I

= ϕs,u♯BarR
Rd (µi,λi)i∈I .

which proves (7) for BarR
Rd . Property (8) for BarR

Rd is proved

similarly using (30).

The following proposition shows that, similarly to the

usual Wassertstein barycenter, the Radon barycenter of trans-

lated and scaled copies of a given measure is also a translated

and scaled copy.

Proposition 9. Proposition 2 holds when replacing BarW
Rd

by BarR
Rd .

Proof. One has

BarR
Rd (ϕsi,ui

♯µ,λi)i∈I = R+BarW
Ω d (R(ϕsi,ui

♯µ),λi)i∈I

= R+BarW
Ω d (ψsi,ui

♯R(µ),λi)i∈I

= R+ψs⋆,u⋆♯BarW
Ω d (R(µ),λi)i∈I

= ϕs⋆,u⋆♯R
+BarW

Ω d (R(µ),λi)i∈I

= ϕs⋆,u⋆♯BarR
Rd (µ,λi)i∈I ,

which proves (14) for BarR
Rd .

3.4 Approximate Computation with Eulerian Discretization

Discretization grids. We consider here an Eulerian discretiza-

tion of the Radon barycenter. This means that the considered

measures in R
d are assumed to be discrete measures sup-

ported on the same grid of N = nd points in R
d

G = {−n/2+1, . . . ,n/2}d

(we assume for simplicity that n is even). Similarly, measures

on Ω d are also supported on a fixed grid

G̃ = T ×Θ = {(t,θ) ; t ∈ T and θ ∈Θ}

where T ⊂ R and Θ ⊂ (−π,π] are finite sets.

Measures on grids. If X is a discrete set (which in the fol-

lowing will be either G , G̃ or T ), we denote

∀a ∈ R
X , mX

a = ∑
x∈X

axδx ∈ M
+
1 (X). (33)

Following the notation introduced in (4), we denote ΛX the

set of normalized vectors

ΛX =

{

a ∈ R
X ; ∀x ∈ X ,ax > 0 and ∑

x∈X

ax = 1

}

.

One thus has for a ∈ ΛX , mX
a ∈ M

+
1 (X).

Discretized Wasserstein barycenter on T . We first define

approximate 1-D Wasserstein barycenters with an Eulerian

discretization. The cumulative sum of a ∈ ΛT is

∀ t ∈ T , I(a)t = ∑
t ′6t

at ′ .

The cumulative distribution is defined by approximating with

sums and interpolation the formula (17), for µ = mT
a

∀ t ∈ R, C̄µ(t) = Interp(I(a))(t).

Here, Interp : RT → C0(R) is an interpolation operator, that

we take in the following to be piecewise linear. We then

define the approximate barycenter on T of measures (µi =
mT

ai
)i∈I ∈ M (R)I denoted

BarT (µi,λi)i∈I = mT
a⋆

by applying formula (19) on the grid T , i.e.

where ∀ t ∈ T , a⋆t =
d

dx

(

∑
i∈I

λiC̄
+
µi
(x)

)+

(t).

In practice, this formula is computed accurately by comput-

ing the inverse cumulative function on a uniform grid of

[0,1] of the same granularity as the spatial discretization, and

computing the derivative with finite differences on this grid.
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Discretized Wasserstein barycenter on G̃ . One computes

Eulerian barycenters on Ω d by computing 1-D barycenters

of the marginals restricted to the grid G̃ . Indeed, we have for

β ∈ Λ
G̃

, denoting ν = mG̃

β , the disintegration formula on the

grid

∀θ ∈Θ , νθ = mT

β·,θ
where β·,θ = (β(t,θ))t∈T ∈ R

T .

The approximate barycenter on G̃ of measures (νi =mG̃

βi
)i∈I ∈

M (Ω d)I is thus

Bar
G̃
(νi,λi)i∈I = mG̃

β ⋆ = ν⋆

where ∀θ ∈Θ , (ν⋆)θ = BarT (νθ
i ,λi)i∈I .

Discrete Radon transform In the following, we investigate

the use of the Fast Slant Stack Radon transform [2]. It has the

property to faithfully approximate the geometry of the Radon

transform, i.e., it exactly computes integrals over 1-D rays for

band limited functions. Note that other discretizations could

be used as well, see for instance [9]. In the case of a 2-D Fast

Slant Stack transform, the sampling grid G̃ is recto-polar (so

that G̃ is in fact not an exactly equi-spaced grid, but we ignore

this technicality here) and |T |= n, |Θ |= 4n. This Fast Slant

Stack implements both the computation of the Radon trans-

form and its adjoint with fast algorithms. These algorithms

assume that the data is sampled from a band limited function,

faithfully integrated using Shannon interpolation. This can

thus result in negative values in the Radon transform, and in

turn necessitates a careful implementation of the barycenter

computation.

We thus assume that we have at our disposal a discrete

Radon transform (in our case the Fast Slant Stack), which is

a linear map R̃ : RG 7→R
G̃ , and also have access to its adjoint

R̃∗ : RG̃ 7→ R
G . The Moore-Penrose pseudo-inverse

R̃+(β ) = (R̃∗R̃)−1R̃∗(β ) = argmin
α

||R̃α −β ||

is usually computed by a conjugate gradient descent. As

reported in [2], it is possible to introduce a simple pre-con-

ditionner for the Fast Slant Stack inversion that accelerates

convergence of the conjugate descent, and is a major compu-

tational advantage for this approach.

This discrete Radon transform allows one to approximate

the Radon transform of measures defined in (26) as

∀α ∈ R
G , R(mG

α )≈ mG̃

R̃(α).

Although we do not give a more precise statement about

this approximation, it should be understood typically as a

weak-convergence of measures (or equivalently Wasserstein-

distance convergence) of mG̃

R̃(α)
toward R(µ) when mG

α → µ

and (N,P) increases toward +∞.

Approximated Radon Barycenters Making use of these dis-

crete constructions (barycenters on G̃ and Radon transform

on G ), we are now ready to define the approximate Eulerian

barycenter of measures supported on G . We are thus given

as input Eulerian discretized densities

∀ i ∈ I, µi = mG
αi

where αi ∈ R
G .

The algorithm then computes the discretized Radon transform

∀ i ∈ I, βi = R̃(αi) ∈ R
G̃ .

For any λ ∈ ΛI , our Eulerian discretized Radon barycenter

BarR
G (µi,λi)i∈I =mG

α⋆ where

{

α⋆ = R̃+β ⋆,

mG̃

β ⋆ = Bar
G̃
(mG̃

βi
,λi)i∈I .

This barycenter is hence intended to approximate an element

of BarR
Rd (µi)i∈I , with the constraint of being supported on G .

4 Sliced Wasserstein Barycenter

4.1 Sliced Wasserstein Barycenter

Following [27] which defines a sliced barycenter of dis-

crete measures, we consider here a similar sliced variational

formulation for arbitrary measures. We first define the sliced

Wasserstein distance as

SW
Rd (µ1,µ2)

2 = WΩ d (Rµ1,Rµ2)
2 (34)

=
∫

Sd−1
WR(Pθ ♯µ1,Pθ ♯µ2)

2dθ . (35)

where we remind that dθ is the uniform measure on S
d−1,

normalized so that
∫

Sd−1 dθ = 1.

Definition 9 (Sliced Wasserstein Barycenter). Given λ ∈ ΛI

and (µi)i∈I ∈ M
+
1 (Rd)I we define

BarS
Rd (µi,λi)i∈I = argmin

µ∈M
+
1 (Rd)

∑
i

λiSW
Rd (µi,µ)

2. (36)

4.2 Comparison of Radon and Sliced Barycenters

The following proposition compares the variational for-

mulations of the Radon and sliced Wasserstein barycenters.

Proposition 10. Denoting

E (ν) = ∑
i∈I

λiWΩ d (Rµi,ν)
2, (37)

one has

BarR
Rd (µi,λi)i∈I = R+ argmin

M̄
+
1 (Ω d)

E , (38)

BarS
Rd (µi,λi)i∈I = R+ argmin

M̄
+
1 (Ω d)∩Im(R)

E . (39)
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Proof. Property (38) is a re-statement of Proposition (20).

Property (39) corresponds to the change of variable ν =Rµ ∈
Im(R) in (36), which is a bijection thanks to the injectivity

of R, see proposition 7.

The following proposition shows that the sliced barycen-

ter enjoys the same invariance properties as the Radon barycen-

ter.

Proposition 11. Proposition 1 holds when replacing BarW
Rd

by BarS
Rd .

Proof. The proof is the same as Proposition 1, replacing the

invariance (13) by

SW
Rd (ϕs,u♯µ1,ϕs,u♯µ2) = WΩ d (R(ϕs,u♯µ1),R(ϕs,u♯µ2))

= WΩ d (ψs,u♯R(µ1),ψs,u♯R(µ1))

= WΩ d (R(µ1),R(µ1))

= SW
Rd (µ1,µ2),

where we have used the invariance (23) of the Wasserstein

distance on Ω d .

Proposition 12. Proposition 2 holds when replacing BarW
Rd

by BarS
Rd .

Proof. One has,

∀θ ∈ S
d−1, Pθ ♯ϕs,u♯µ = ϕs,〈u,θ〉♯Pθ ♯µ.

Thus, for an arbitrary µ̃ ∈ M
+
1 (Rd), one has

∑
i∈I

λiWR(Pθ ♯(ϕsi,ui
♯µ),Pθ ♯µ̃)

2

= ∑
i∈I

λiWR(ϕsi,〈ui,θ〉♯(Pθ ♯µ),Pθ ♯µ̃)
2

> ∑
i∈I

λiWR(ϕsi,〈ui,θ〉♯(Pθ ♯µ),ϕs⋆,〈u⋆,θ〉♯(Pθ ♯µ))
2

= ∑
i∈I

λiWR(Pθ ♯(ϕsi,ui
♯µ),Pθ ♯(ϕs⋆,u⋆♯µ))

2

where the inequality comes from the properties of 1-D Wasser-

stein barycenters. Integrating the resulting inequality with

respect to θ ∈ S
d−1 gives

∑
i

λiSW
Rd (ϕsi,ui

♯µ, µ̃)2
> ∑

i

λiSW
Rd (ϕsi,ui

♯µ,ϕs⋆,u⋆♯µ)
2.

This inequality is an equality if and only for almost all θ ∈

S
d−1, one has

Pθ ♯µ̃ = Pθ ♯(ϕs⋆,u⋆♯µ)

so that, using Proposition (7), this corresponds to µ̃ =ϕs⋆,u⋆♯µ .

Since the measure µ̃ is arbitrary, this gives the desired result.

This proves (14) in the case BarS
Rd .

4.3 Sliced Barycenter with Lagrangian Discretization

Directly solving the variational problem (36) is intrac-

table for any realistic application. Indeed, even for discrete

input measures, the barycenter might not be in general dis-

crete. Instead, we consider a numerical scheme that performs

the optimization of (36) over the (non-convex) set of discrete

sums of Diracs. We parameterize a discrete measure with

equal weights as

µX =
1

N

N

∑
k=1

δXk
(40)

where X = (Xk)
N
k=1 ∈ R

d×N and Xk ∈ R
d .

Given a set (µi)i∈I of discrete input measures, i.e. µi =

µ
X(i) for X (i) ∈ R

d×N , we consider the following non-linear

program to approximate solutions of (36)

min
X∈Rd×N

E (X) = ∑
i∈I

λi

2
SW

Rd (µX(i) ,µX )
2. (41)

The following theorem shows that this energy is smooth,

which contrasts with the same energy defined with the usual

Wasserstein distance W
Rd instead of SW

Rd .

Theorem 1. E :Rd →R is a C 1 function with a uniformly κ-

Lipschtiz gradient for some κ > 0. This gradient at X ∈R
d×N

with distinct points. Its gradient reads

∇E (X) = ∑
i∈I

λi

∫

Sd−1
(Xθ −X

(i)
θ ◦σ

X
(i)
θ

◦σXθ
)θ dθ (42)

where Xθ = (〈Xi, θ〉)N
i=1 ∈R

N and for any Y ∈R
N , σY is any

permutation (which is not necessarily unique) of {1, . . . ,N}

which orders the values in Y , i.e.

Yσ(1) 6 Yσ(2) 6 . . .6 Yσ(N).

The proof of this theorem can be found in Appendix A.

Problem (41) is non-convex, and one computes a station-

ary point (in practice a local minimum) through a gradient

descent

X [ℓ+1] = X [ℓ]− τℓ∇E (X [ℓ]) (43)

with a given initialization X [0], and where ∇E (X [ℓ]) is com-

puted using (42), and τℓ is a gradient step size. Choosing 0 <

τ < τℓ < 2/κ ensures convergence since ∇E is κ-Lipschitz.

Note that the constant κ depends on the input point clouds

(X (i))i∈I , and we found in practice that κ is close to 1, see

also the proof in Appendix A for more insights about this.

In order to implement numerically the iterations (43), one

discretizes the set of directions. It corresponds to the use of a

finite set Θ ⊂ S
d−1, and a minimization of the energy

min
X∈Rd×N

EΘ (X) = ∑
i∈I

λi

2|Θ | ∑
θ∈Θ

WR(Pθ ♯µX(i) ,Pθ ♯µX )
2.
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While this function is not C 1 on the whole space R
d×N , it is

differentiable (and in fact quadratic) almost everywhere. At

a point where it is differentiable, one can use formula (42),

where the integral
∫

Sd−1 is replaced by a finite sum ∑Θ . The

gradient descent (43) is advantageously replaced by a Newton

descent

X [ℓ+1] = X [ℓ]−H−1
ℓ ∇E (X [ℓ]) (44)

where

Hℓ = ∇2
E (X [ℓ]) =

1

|Θ | ∑
θ∈Θ

θθ ∗ ∈ R
d×d

is the Hessian matrix of E (which thus does not depends

on ℓ). In 2-D, we use a set of |Θ | directions equi-spaced on

the circle, in which case Hℓ =
1
2
Id2×2. In higher dimensions

d > 2, we use random directions drawn uniformly on S
d−1,

and one can show that Hℓ converges almost surely to 1
d

Idd×d ,

so that in practice one can use this matrix in place of Hℓ in

(44).

4.4 Sliced Transport with Lagrangian Discretization

Beside the computation of barycenters, the sliced Wasser-

stein distance (34) can be used to approximate the transporta-

tion map from a given density µ
X [0] toward a second density

µY , for (X [0],Y ) ∈ (Rd×N)2. This application was initially

introduced by Marc Bernot and first presented in [27] for

applications to texture synthesis.

We obtain this map by following the descent flow of the

energy

∀X ∈ R
d×N , FY (X) =

1

2
SW

Rd (µX ,µY )
2

initialized from X [0], which can be formally written as the

flow t 7→ Xt ∈ R
d×N defined by the PDE

∀ t > 0,
∂Xt

∂ t
=−∇FY (Xt) (45)

with X0 = X [0] at time t = 0. Note that the gradient of FY is

given by Theorem 1 in the case of a single input density, i.e.,

|I|= 1.

In order to numerically approximate the flow (45), we

discretize the time dimension using an explicit Euler scheme

(which corresponds to a gradient descent) and the set of di-

rections used in the definition of SW
Rd . In order for the flow

to converge to a stationary point of FY , we use a stochastic

gradient descent. At each iteration ℓ, we consider a finite num-

ber of orientations Θℓ ⊂ S
d−1 drawn uniformly at random.

Defining the partial energy

F
ℓ
Y (X) =

1

|Θℓ|
∑

θ∈Θk

WR(Pθ ♯µX(i) ,Pθ ♯µX )
2,

one step of the stochastic gradient descent is defined as

X [ℓ+1] = X [ℓ]− τℓ∇F
ℓ
Y (X

[ℓ]) (46)

where τℓ > 0 is a step size.

We denote

X⋆ ∈ lim
ℓ→+∞

X [ℓ] (47)

any limiting point cloud in the adherence of the sequence of

iterates. Since this sequence is bounded by coercivity of FX ,

such a point cloud always exists.

Note that the color transfer method introduced by Pitié et

al. [25] corresponds to the iterations (46) when using |Θℓ|= 3

randomized orthogonal directions at each step. Section 5.5

and in particular Figure 11 shows that using more directions

improves the visual quality of the result.

Experimentally, as detailed in Section 5.3, we make the

following crucial observations.

Remark 1. The step size τℓ can be set constant, i.e. ∀ℓ,τℓ = τ ,

and the iterates always converge toward a local minimum of

FY . A heuristic explanation for this observed property is that,

at a global minimum X of EY (X), for all θ ∈ S
d−1, each term

WR(Pθ ♯µX(i) ,Pθ ♯µX )
2 also reaches its global minimum. For

a convex energy, this property is known to imply convergence

of stochastic gradient descent with a fixed step size, see [30].

Remark 2. All local minima of FY appear to be global min-

ima. Although we have no formal proof of this phenomenon,

it is illustrated on measures made of two Diracs in Section 5.1.

This implies that X⋆ is a global minimum of FY , hence

FY (X
⋆) = 0 and

µX⋆ = µY (48)

i.e. the measure µ
X [ℓ] converges (in the weak-* topology of

Radon measures) toward µY .

The sliced transport map T S : Rd 7→ R
d is defined on the

support of µ
X [0] as

∀k ∈ {1, . . . ,N}, T S(X
[0]
k ) = X⋆

k . (49)

The (empirically observed) property (48) ensures that T S sat-

isfies T S♯µ
X [0] = µY , i.e., T S is a valid transport plan between

the measures.

5 Numerical Illustrations

We emphasize that this paper introduces two different

approaches (Sliced and Radon) together with their corre-

sponding discretization (Lagrangian and Eulerian) to cope

with the variety of image processing and computer graphics

applications that optimal transport is targeting. This section

compares these two methods on synthetic examples and ex-

plores a few of these applications in order to illustrate the

relative benefit of each method.
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5.1 A Case Study: Sliced Wasserstein Distance for Pairs of

Diracs

As discussed in Section 4.4, we empirically found that the

sliced Wasserstein distance X 7→ SW
Rd (µX ,µY ) to a given

measure µY for Y ∈ R
N×d has no local minimum, i.e., only

has global minima satisfying µX = µY , saddle points, and

local maxima. This is of primary importance because this

ensures that the gradient flow (45) converges to a global

minimum, defining an assignment.

While we do not give a formal proof of this statement, we

illustrate this point on a simple example in 2-D (i.e. d = 2)

with point clouds having two masses (i.e. N = 2). We fix

{

Y = {Y1,Y2}= {(0,−1),(0,+1)} and

X(u) = {X1,X2}= {u,−u},

and only let u = (x,y) ∈ R
2 varies (see Figure 2 for an il-

lustration). We then compare the Wasserstein and Sliced

Wasserstein distances

∀u ∈ R
2,







E W (u) = W
R2(µX(u),µY )

2,

E S(u) = SW
R2(µX(u),µY )

2,

E S
Θ (u) = 1

|Θ | ∑θ∈Θ WR(Pθ ♯µX(u),Pθ ♯µY )
2.

After some calculations, we get the following expressions for

E W and E S

∀(x,y)∈R
2,

{

E W (x,y) = 2
(

x2 +(|y|−1)2
)

,

E S(x,y) = x2 + y2 +1− 4
π

(

x+ y · atan
(

y
x

))

while E S
Θ (u) is evaluated numerically using a discrete set of

orientations Θ . Figure 2 shows a comparison of these two

distances. We can see that the Sliced Wasserstein distance

(as well as the Wasserstein distance) has no local minimum,

although there are three saddle points at u = (0,0) and u =
±( 2

π ,0), which separate two basins of attraction associated

to the two global minima.

5.2 Numerical Considerations for the Sliced Transport

Influence of the number of directions. We first illustrate the

special case discussed in Section 4.4 of the transport of a

discrete distribution (a sum of Dirac masses) µ0 toward an-

other, µ1. This boils down to an assignment problem. We

resort to the stochastic gradient descent detailed in (46) to

compute a Sliced Wasserstein transport T S. This map T S

always numerically verifies T S#µ0 = µ1. Nevertheless, it can

be far from the optimal Wasserstein transport map TW when

using a small number of directions at each iteration. We il-

lustrate this in Figure 3, that shows the distributions obtained

when interpolating the transport map T S, that is, we compute

µS
λ = [(1−λ )Id+λT S]♯µ0 for λ ∈ [0,1], when varying the

number of directions Θℓ used at each iteration. Using more

sampling directions tends to provide more regular transport

Ref.

µ0 µW
1
2

µ1

µS
1
2

|Θℓ|= 2 |Θℓ|= 20 |Θℓ|= 200 |Θℓ|= 2000

Ref.

µ0 µW
1
2

µ1

µS
1
2

|Θℓ|= 2 |Θℓ|= 20 |Θℓ|= 200 |Θℓ|= 2000

Ref.

µ0 µW
1
2

µ1

µS
1
2

|Θℓ|= 2 |Θℓ|= 20 |Θℓ|= 200 |Θℓ|= 2000

Fig. 3 We consider the optimal Wasserstein barycenter µW
1
2

between

µ0 and µ1. We show the Sliced Wasserstein interpolation µS
1
2

using our

stochastic Newton descent (46) with different number of directions |Θℓ|.
The density is displayed using a Parzen density estimation.

maps. However, we note that the Sliced Wasserstein transport

can provide a different assignment from the optimal Wasser-

stein map, even when using a large set of directions (Fig. 3,

third example).

Influence of local minima. Since the algorithm detailed in

Section 4.3 performs a non-convex energy minimization

(see (41)), it is important to understand the influence of the

initialization of the descent. Figure 4 analyzes on a simple

example the effect of the presence of local minima. The

center plots (b) and (c) each show two results (blue and

red dots) approximating the sliced iso-barycenter µS
1/2

using

our non-convex gradient descent, as well as the Wasserstein

barycenter µW
1/2

(black dots) computed via linear program-

ming since there are only two distributions. Each result is

obtained using a random initialization with samples indepen-
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Θ (x,y) with |Θ |= 10.

Fig. 2 Comparison of SW2
R2 and SW2

R2 , and its numerical approximation using 10 directions, as an elevation surface (top row) and its corresponding

2d map (bottom row).

dently drawn from an isotropic Gaussian having the same

mean and variance as µ0. While this clearly shows that differ-

ent initializations lead to different estimates, this also shows

that the impact of the initialization is quite modest.

5.3 Numerical Comparison of the Barycenters

This section compares the following barycenters in a 2-D

(d = 2) setting:

– The original Wasserstein barycenter BarW
Rd (see Defini-

tion 1), which can only be computed numerically for

2 distributions, i.e. |I| = 2, and thus corresponds to the

Wasserstein geodesic between the two measures. We use

the proximal splitting method of [24] to estimate this

barycenter with a Eulerian discretization on a fixed grid.

– The Radon barycenter BarR
Rd (see Definition 8). It is ap-

proximated with the numerical scheme presented in Sec-

tion 3.4 with an Eulerian discretization.

– The sliced barycenter BarS
Rd (see Definition 9). It is ap-

proximated with the numerical scheme presented in Sec-

tion 4.3 with a Lagrangian discretization. If not stated

otherwise, we use |Θ |= 10 directions uniformly sampled

on the half circle.

Comparison of the Sliced, Radon and Wasserstein Geodesics.

In general, the sliced and Radon barycenters differ from

the original Wasserstein barycenter. While the Wasserstein

barycenter of Gaussian distributions is always a Gaussian

distribution [1], Figure 5 shows that this is not the case for

the Radon barycenter when the Gaussians are not isotropic.

t = 0 t = 1/4 t = 1/2 t = 3/4 t = 1

Fig. 5 The Radon geodesic µt = BarR
Rd ((µ0,µ1),(t,1− t)) between

two anisotropic Gaussians is not Gaussian.

Figure 6 shows a more detailed comparison of both

smooth (Gaussian mixture) and non-smooth (characteristic

function of animal-like shapes) densities. Only the edge of the

barycentric triangle is available for the Wasserstein barycen-

ter, since there is no efficient algorithm to approximate the

Wasserstein barycenter of more than two measures.

Comparison of the Sliced and Radon barycenters. As em-

phasized by Proposition 10, while BarR
Rd and BarS

Rd are math-

ematically different, this difference is rather small, and is

solely due to the lack of surjectivity of the Radon transform.

We numerically evaluated this difference by computing

||R(BarR
Rd (µi,λi)i∈I)−BarW

Ω d (R(µi),λi)i∈I ||TV,

where || · ||TV is the total variation of the measure defined

in (1) and corresponds to the L1 norm of the density in the

case of an absolutely continuous measure. This measures

the relative error due to the lack of surjectivity of R. Among

several sets of discretized measures µi and weights λi, this

relative error remained at approximately 0.15%. This said,

the main difference between the sliced and Radon barycenter

lies in their discretizations: BarR
Rd is approximated with an

Eulerian scheme and BarS
Rd with a Lagrangian scheme.
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(a) µ0 (b) µS
1/2

(uniform Θ ) (c) µS
1/2

(random Θ ) (d) µ1

Fig. 4 Influence of the initialization X [0] and the directions set Θ (here |Θ |= 103) on our Lagrangian discretization of the sliced barycenter. The

black point cloud corresponds to the Wasserstein interpolation µW
1/2

of the two distributions µ0 and µ1. The red and blue point clouds correspond to

the sliced Wasserstein barycenters obtained with different settings: (b) using two random point clouds initializations for X [0] with the same set of

directions Θ (equi-spaced on the circle); (c) using the same initializations µ
X [0] = µ0 but with different uniformly sampled random directions Θ .

Radon barycenter Sliced barycenter Wasserstein barycenter

Fig. 6 Comparison of BarR
Rd ,BarS

Rd and BarW
Rd (computed using the method detailed in [24]).

Figure 6 shows that the discretized barycenters are quite

similar when computing the barycenter of three measures.

Figure 8 shows a similar comparison for the iso-barycenter of

four measures. Figure 7 shows what could be considered as a

failure of the method to adapt to the computation of complex

image barycenters.

Comparison of computational complexity. A typical Radon

barycenter of three two-dimensional pdfs discretized on a

1024×1024 pixel grid, and the principled Fast Slant Stack

Radon transform with 2048 slices, requires 11 seconds to

precompute the initial Radon transforms, and 170 seconds

to compute 32 Radon barycenters, with unoptimized parallel

Matlab code. It is possible to accelerate this timing using less

precise Radon transform. For instance, using Matlab’s imple-

mentation of the Radon transform with 180 slices requires 14

seconds to compute these 32 barycenters on a single core. In
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Fig. 7 Image warping using the Radon barycenter exhibits artifacts.

Fig. 8 Top: Radon barycenter BarR
Rd of four 2-D distributions with

equal weights. Bottom : Same experiment with SW2, using N = 4104

points samples, |Θ |= 100 directions and a gaussian kernel with standard

deviation σ = 20/512 to estimate the corresponding densities. .

comparison with the Eulerian proximal splitting method of

Papadakis et al. [24], the Wasserstein barycenter between two

1024× 1024 distributions with 32 time steps and 100,000

iterations to achieve an acceptable convergence requires on

average 72 hours, using an optimized C++ vectorized and par-

allel implementation (see Fig. 6 for a display of the resulting

barycenters).

A sliced barycenter of three distributions, each approx-

imated with 40k Dirac masses and 100 directions, requires

140 seconds using 100 iterations of Newton descent or 18

seconds using the stochastic Newton descent with subsets

of 10 directions. With a finer set of 1000 directions and the

same setup, the stochastic Newton descent with subsets of

100 directions requires 168 seconds.

5.4 Application to Texture Mixing

To illustrate the usefulness of the Radon barycenter, we

apply it to the problem of texture mixing. The Radon barycen-

ter is well suited to this application which requires an Eu-

lerian discretization in order to interpolate power-spectra

computed on the uniform grid of Fourier frequencies. This

would be hardly feasible using the Lagrangian discretization

of the Sliced barycenter.

Texture mixing. Given a set of input texture images { f [i]}i∈I ,

where each f [i] ∈R
N is a grayscale image of N = n×n pixels,

the goal of texture mixing is to produce a set of random

vectors {F [i]}i∈I , and an interpolation method λ ∈ ΛI 7→

Fλ . In particular, it means that if λ is 0 excepted at the ith

coordinate, then Fλ = F [i] (interpolation at the vertices of the

simplex indexed by I). Texture mixing is a generalization

of texture synthesis (which simply corresponds to the case

|I|= 1), in the sense that any realization f̃ [i] of the random

vector F [i] should look both “random” and visually similar

(but not equal) to the input f [i].

Spot-noise (SN) texture model. Following the work of [15]

(which introduces the name “spot noise” model), we consider

stationary Gaussian random vectors F which take values in

R
N . These vectors are indexed on the image grid

F = (Fk)k∈G where G = {−n/2+1, . . . ,n/2}2,

(for simplicity we assume that n is even) and we use periodic

boundary conditions. Without loss of generality, we assume

that they have zero mean E(F) = 0. Such a random vec-

tor is thus entirely characterized by its (square root) power

spectrum density (PSD)

∀ω ∈ G , PF(ω) = E(|F̂(ω)|2)1/2

where we define the Fourier transform of a vector or a random

vector as

∀ω ∈ G , F̂(ω) = ∑
k∈G

Fke
2iπ
n 〈k,ω〉

where 〈k, ω〉= k1ω1 + k2ω2.

We remind that once the power-spectrum PF of F is known,

F is recovered by

F̂(ω) = PF(ω) ·Ŵ (ω) where W ∼ N (0, IdN). (50)

It is thus easy to draw a realization f of the vector F by

convolving the inverse Fourier transform of PF (the so-called

texton, see [12]) by a realization w of the white noise W , i.e.,

computing f̂ = PF · ŵ, where · denotes entry-wise multiplica-

tion.

In this spot noise model, it is customary (see [15]) to learn

the input Gaussian models {F [i]}i∈I by estimating their PSD

with a maximum likelihood estimation, which corresponds

to estimating the covariance using the empirical periodogram

∀ i ∈ I, ∀ω ∈ G , P
F [i](ω) = | f̂ [i](ω)|.

We also use this estimation, which, despite its simplicity,

gives good visual performances, see [14].
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Optimal transport barycenter of SN models. We introduce a

texture mixing method that performs the interpolation of the

PSD using optimal transport. The rational of this method is

to operate the mixing with geometric warpings of the spectral

modes of the textures. The method is thus adapted to deal

with micro-textures which exhibit a high degree of sparsity

in the Fourier domain, i.e., which PSD are composed of a

few localized spikes. This class of sparse spectral textures

has been shown in [16] to be a powerful way to approximate

more complicated textures for procedural texture synthesis.

We define the measure associated to the PSD of the Gaus-

sian model F [i]

∀ i ∈ I, µi =
1

∑ω∈G P
F [i](ω) ∑

ω∈G

P
F [i](ω)δω ∈ M

+
1 (R2).

The barycenter measure is defined as

∀λ ∈ ΛI , µ(λ ) = BarR
R2(µi,λi)i∈I .

Note that this measure exhibits central symmetry because

of (11) and Proposition (8).

This barycenter measure is approximated using the Eule-

rian discretized Radon barycenter described in Section 3.4,

to obtain a resulting measure

µ̄(λ ) = BarR
G (µi,λi)i∈I .

By construction of this algorithm, this measure is supported

on the grid G and also exhibits central symmetry. It can thus

be written as

µ̄(λ ) = ∑
ω∈G

PFλ
(ω)δω .

This thus defines a stationary Gaussian random vector Fλ

through its PSD PFλ
. This Gaussian vector is our interpolated

model, which can be synthesized following (50).

Examples. We demonstrate our Radon barycenter of power

spectrum densities on several examples. A sparse hand-de-

signed power spectrum is interpolated in Fig. 9 and a more

natural, less sparse, power spectrum is used in Fig. 10. We

handle colors by convolving the interpolated power spectrum

of each color channel by the same white noise. Although

the decoupling of color channels could occasionally lead to

color artifacts, we did not observe such effects on our set

of examples (further examples can be see in the additional

material). We hence leave the investigation of perceptually

decoupled color spaces or the joint transportation of color

channels for future work.

Comparison with linear interpolation. In [14], the authors

also use optimal transport to perform SN model interpolation.

Their approach is however radically different since they com-

pute optimal transport geodesics in the space of Gaussian

distributions in R
N , which has a closed form solution. In con-

trast, we propose to compute the transportation of PSD in R
2,

viewed as discrete distributions of N Diracs. For grayscale

textures, the method detailed in [14] thus boils down to a

linear interpolation of the PSD, i.e., they define the PSD of

the barycentric model F̃λ as

∀λ ∈ ΛI , PF̃λ
= ∑

i∈I

λiPF [i] . (51)

The effect achieved by our Radon barycenter differs from [14].

As shown in Figure 9 and 10, we believe our method is geo-

metrically more meaningful when dealing with textures that

have a sparse Fourier expansion, while [14] deal with denser

spectra more appropriately. Sparse spectra can occur, for

instance, for textures with approximately periodic tiling of

repetitive patterns.

5.5 Application to Color Palette Manipulation

In this section we investigate the benefit of our Sliced

Wasserstein barycenter for two applications: harmonizing

colors in an image sequence, and grading colors of a sin-

gle image. Color harmonization is the process of bringing

the colors of input images to an average color distribution

such that the images end up looking more similar. This has

several applications such as, for instance, image stitching

or enforcing temporal coherence of colors in movies. The

second application allows for the editing of a single image by

bringing its colors closer to a set of photographs exhibiting

particular color palettes. This process is called color grading,

and finds applications in photograph enhancement.

Lagrangian color palette. We consider a color image rep-

resented as a vector X ∈ R
N×3 of N pixels, so that X =

(Xk)k=1,...,N where each pixel Xk ∈ R
3 stores the value of a

pixel indexed by k. In the following, we use the YCbCr color

space because of its ability to decorrelate color channels,

although other color spaces may be used (e.g., the CIE-Lab

advocated in [28]). The color distribution of this image is a

measure µX defined in R
3, and describes the color palette. We

naturally represent this color distribution using a Lagrangian

discretization, as defined in (40)), by essentially storing pixel

colors as a point cloud in the space of colors. We hence

compute the average distribution of multiple images using

our (Lagrangian) Sliced Wasserstein Barycenter detailed in

Section 4.3.
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(a) Radon barycenter (our approach) (b) Linear interpolation [14]

Fig. 9 (a) Eulerian Radon barycenter interpolates sparse amplitude spectra. (b) linear interpolation of the amplitude spectrum (51), as performed in

[14]. The top row shows the interpolated spectra PFλ
.

Color palette transfer. Before detailing our main applica-

tion to color palette barycenters, we illustrate our stochastic

gradient descent (Section 4.4). This descent allows for the

computation of an approximate Sliced transport map T S be-

tween the color palette µ
X [0] of an input image X [0] and the

model palette µY of an image Y , where X [0],Y ∈ R
N×3. The

resulting image X⋆ is obtained as the limit of the stochastic

gradient descent steps (46) until convergence

X [ℓ] ℓ→+∞
−→ X⋆, (52)

as described in (47).

We illustrate our technique in Fig. 11. This process gen-

eralizes the algorithm introduced in [25] that uses |Θℓ|= 3

orthogonal directions at each step. While we make use of

an exact Lagrangian method by sorting pixel values, Pitié et

al. discretize histograms and use the cumulative histogram

and pseudo-inverse approach (Eqs. 17 and 18). The lower

complexity of [25] comes at the expense of a discretization

which can lead to quantization errors and limits convergence.

Color palette barycenter. We consider a set {X (i)}i∈I of color

images, as well as a particular input color image X [0]. Us-

ing (41), we define the color palette µX⋆ , the barycenter of

the input palettes µ
X(i) , as the Sliced Wasserstein barycenter

µX⋆ ≈ BarS
Rd

(

µ
X(i) ,λi

)

i∈I
with weights λ ∈ ΛI .

Color image harmonization and color grading. In order to

adjust colors in an image, we are interested in an image X⋆

visually similar to X [0], but whose palette closely matches the

palette barycentre µX⋆ . Similarly to the simple color transfer

application (see (52)), we obtain this image by performing

the gradient descent iterations (43) with initialization X [0],

and define X⋆ as the limit image X [ℓ] ℓ→+∞
−→ X⋆.
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Fig. 10 Eulerian Radon barycenter applied to the mixing of natural textures.

(a) input image X [0] (b) input model Y

(c) our result X⋆

Fig. 11 Our stochastic gradient descent (c) can be used to transfer the

colors of a model image (b) to an input image (a). We generalize the

method of Pitié et al. [25] as described in Sec. 5.5

However, highly non-linear color transformations can cre-

ate undesirable visual artifacts. We therefore use an iterative

post-processing technique introduced in [26] to regularize

the transportation map X
[0]
k 7→ X⋆

k . We refer the interested

reader to [26] for further details.

For color harmonization, we apply this process succes-

sively to each image in an input sequence {X (i)}i∈I , by initial-

izing X [0] with X (i) for each i. For color grading, we instead

apply the palette barycenter to an arbitrary input image X [0].

Examples. Figure 13 shows an example of harmonization,

where the color palette is defined as the iso-barycenter of

three input color palettes. In Figure 12, the image X [0] to be

Original images (X (i))i∈I .

Harmonized images {X (i,⋆)}i∈I .

Fig. 13 Color harmonization of an image sequence, using λi = 1/|I| to

compute the iso-barycenter (here |I|= 3).

Table 1 Coordinates w used to define the weights λ = w/(∑i wi) for

the color transfer in Figure 12.

(0,0,1)
(1,0,3) (0,1,3)

(1,0,1) (1,1,2) (0,1,1)
(0, (3,0,1) (2,1,1) (1,2,1) (0,3,1)
(1,0,0) (3,1,0) (1,1,0) (1,3,0) (0,1,0)

modified is not contained in the set of input pictures {X (i)}i∈I .

This allows for the user to navigate over the simplex of color

palettes to select the desired one. Table 1 provides the corre-

sponding weights for Figure 12.
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Fig. 12 Color manipulation by transferring the colors of |I| = 3 photographs {Xi}i∈I (shown at the vertices of the triangle, right) to the initial

photograph X [0] (left) to obtain X⋆ which varies in the triangle as a function of the convex weights λ ∈ ΛI . Additional results can be seen in

supplemental material.

6 Conclusion

We introduce two novel different definitions of barycen-

ters of multi-dimensional measures based on one-dimensional

optimal transport. We show that these Radon and Sliced

Wasserstein Barycenters enjoy the same invariance proper-

ties as the usual Wasserstein barycenter. They both minimize

variational problems, which are almost identical, up to the

lack of surjectivity of the Radon transform. We estimate this

deviation to be negligible on a set of examples. We intro-
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duce Lagrangian and Eulerian discretization schemes, which

enable the approximation of these barycenters with fast algo-

rithms. The computational time is orders of magnitude faster

than the Wasserstein barycenter counterpart for two input

measures. Furthermore, they can be applied to more than

two input densities. We show on several numerical examples

that, while these barycenters exhibit significant geometrical

differences with respect to the Wasserstein barycenter, they

appear to be very well suited to several applications in image

processing and computer graphics.
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A Proof of Theorem 1

Notations. Without loss of generality, for a fixed Y ∈ R
d×N , we study

the smoothness of

∀X ∈ R
d×N , E (X) =

1

2
SW

Rd (µX ,µY )
2 =

∫

Sd−1
Eθ (X)dx

where Eθ (X) =
1

2
W (Xθ ,Yθ )

2.

We have used, for x,y ∈ R
N , the shorthand notation

W (x,y) = WR(µx,µy).

The result of Theorem 1 then follows by summations of such function-

als.

We define U(N,d) to be vectors of Rd×N with distinct entries. The

hypothesis is that X ∈ U(N,d).
One has

Eθ (X) =
1

2
||Xθ −Yθ ◦σθ ||

2 where σθ = σθ
X ◦ (σθ

Y )−1

is a permutation depending on both X and Y . Note that the permutation

involved are not necessarily unique, and are assumed to be arbitrary

valid sorting permutations.

For X ∈ R
N×d and ε > 0 we introduce

Θε (X) =
{

θ ∈ S
d−1 ; ∀||δ ||

RN×d 6 ε, Xθ +δθ ∈ U(N,1)
}

.

This is the set of directions for which any perturbation of X of amplitude

smaller than ε has a projection with disjoint points.

In the following, we thus aim at proving that E is C1, that

∇̃E (X) =
∫

Sd−1
∇̃Eθ (X)dθ where ∇̃Eθ (X) = (Xθ −Yθ ◦σθ )θ

is indeed equal to ∇E (X), and that this gradient is Lipschitz continuous.

Preparatory results. The following lemma shows that if θ ∈ Θε (X)
the permutations σθ

X is stable to small perturbations of X .

Lemma 2. Let X ∈U(N,d). For all θ ∈Θε (X), for all δ with ||δ ||
RN×d 6

ε , the permutation σθ
X+δ that sorts (〈Xi + δi, θ〉)i is uniquely defined

and satisfies σθ
X+δ = σθ

X .

Proof. If one has σθ
X+δ 6= σθ

X , then necessarily there exists some t ∈

[0,1] such that σθ
X+tδ is not uniquely defined, which is equivalent to

Xθ + tδθ not being in U(N,1). Since ||tδ ||
RN×d 6 ε , this shows that

θ /∈Θε (X).

In order to prove Theorem 1, we need the following lemma.

Lemma 3. For X ∈ U(N,d), one has

Vol(Θε (X)c) =
∫

Θε (X)c
dθ = O(ε). (53)

Proof. One has Xθ + δθ /∈ U(N,1) if and only there exists a pair of

points u = Xi +δi and v = X j +δ j with i 6= j such that

θ ∈ A(u,v) where A(u,v) =
{

ξ ∈ S
d−1 ; 〈ξ , u− v〉= 0

}

Note that A(u,v) is a great circle of the sphere S
d−1.

One can thus covers Θε (X)c using the union of all such circles

A(u,v), which shows

Θε (X)c ⊂
⋃

i 6= j

Aε (Xi,X j) where Aε (x,y) =
⋃

||u− x||6 ε
||v− y||6 ε

A(u,v)

Note that the geodesic distance d on the sphere S
d−1 between two

circles is equal to the angle between the normal to the planes of the

circles

d(A(u,v),A(x,y)) = Angle(u− v,x− y) = Angle(x− y+ εw,x− y)

where ||w||6 2. As ε → 0, after some computations, one has the follow-

ing asymptotic decay of the angle

Angle(x− y+ εw,x− y) = O(ε/||x− y||)

and thus d(A(u,v),A(x,y))6Cε for some constant C. This proves that

∀u,v, one has

{

||u− x||6 ε
||v− y||6 ε

=⇒ A(u,v)⊂ BCε (x,y)

for some constant C > 0, where

Bε (x,y) =
{

ξ ∈ S
d−1 ; d(ξ ,A(x,y))6 ε

}

One thus has

Aε (x,y)⊂ BCε (x,y).

The volume of the spherical band BCε (x,y) of width Cε is proportional

to ε , and thus Vol(Aε (x,y)) = O(ε). Since Θε (X)c is a finite union of

such sets, one obtains the result.

Proof of continuity. For each θ , the function Eθ is continuous as a

minimum of continuous functions. The function E being an integral of

Eθ on a compact set Sd−1, it is thus continuous.

Proof of differentiability. Let δ ∈ R
N×d and ε = ||δ ||

RN×d . The defini-

tion of the Wasserstein distance reads

W ((X +δ )θ ,Yθ )
2 = ||(Xθ +δθ )◦σθ

X+δ −Yθ ◦σθ
Y ||2.
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For all θ ∈ Θε (X), thanks to Lemma 2, σθ
X+δ = σθ

X . One can thus

compute the variation of the 1-D Wasserstein distance with respect to δ
as

W ((X +δ )θ ,Yθ )
2 = ||Xθ +δθ −Yθ ◦σθ ||

2 (54)

= W (Xθ ,Yθ )
2 + 〈∇̃Eθ (X), δ 〉

RN×d + ||δθ ||
2. (55)

Note that the fact that σθ
Y might not be uniquely defined has no impact

on the value of (55). One thus has

E (X +δ )−E (X)−〈∇̃E (X), δ 〉
RN×d = A(δ )+B(δ )+O(||δ ||2

RN×d )

where

A(δ ) =
∫

Θε (X)c

(

W (Xθ +δθ ,Yθ )
2 −W (Xθ ,Yθ )

2
)

dθ

and B(δ ) =−
∫

Θε (X)c
〈∇̃Eθ (X), δ 〉

RN×d dθ

Note that in the expression of B(δ ) the permutation σθ involved in

∇̃Eθ (X) is not necessary unique, and can be chosen arbitrarily.

One has,

|〈∇̃Eθ (X), δ 〉
RN×d |6 ||X −Y ◦σθ ||

RN×d ||δ ||RN×d

which implies, using Lemma 3

|B(δ )|6 O(Vol(Θε (X)c)||δ ||
RN×d ) = O(||δ ||2

RN×d ) = o(||δ ||
RN×d ). (56)

Since (θ ,X) 7→ Eθ (X) is continuous and defined on a compact set,

it is uniformly continuous, and thus

|W (Xθ +δθ ,Yθ )
2 −W (Xθ ,Yθ )

2|6C(δ )

where C(δ )→ 0 where δ → 0. This shows that

|A(δ )|6 Vol(Θε (X)c)C(δ ) = o(||δ ||
RN×d ). (57)

Putting together (56) and (57) leads to

|E (X +δ )−E (X)−〈∇̃E (X), δ 〉|= o(||δ ||
RN×d )

which shows that E is differentiable with ∇E = ∇̃E .

Proof of Lipschitzianity of the gradient. For all θ ∈Θ0(X), ∇Eθ (X)
is continuous and uniformly bounded, and thus ∇E is continuous. One

has, for δ ∈ R
N×d , and denoting ε = ||δ ||,

∇E (X +δ )−∇E (X) = M(Θε (X))+M(Θε (X)c)

where M(U) =
∫

U
(∇Eθ (X +δ )−∇Eθ (X))dθ .

One has

M(Θε (X)) =
∫

Θε (X)
δθ θdθ

whereas

M(Θε (X)c) =
∫

Θε (X)c
δθ θdθ +

∫

Θε (X)c
(Y ◦ σ̃θ −Y ◦σθ )θdθ

where σ̃θ = σYθ
◦σ−1

Xθ+δθ
. Using Lemma (3), one has for some constant

C > 0, Vol(Θε (X)c)6C||δ ||
RN×d and hence

||∇E (X +δ )−∇E (X)||
RN×d 6 (1+2C||Y ||

RN×d )||δ ||RN×d

which shows that ∇E is (1+2C||Y ||
RN×d )-Lipschitz continuous.
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24. Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with prox-

imal splitting. to appear in SIAM Journal on Imaging Sciences

(2013)



22 Nicolas Bonneel et al.
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