
HAL Id: hal-00881847
https://hal.science/hal-00881847v2

Submitted on 10 Jun 2014 (v2), last revised 6 Nov 2014 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variational Texture Synthesis with Sparsity and
Spectrum Constraints

Guillaume Tartavel, Yann Gousseau, Gabriel Peyré

To cite this version:
Guillaume Tartavel, Yann Gousseau, Gabriel Peyré. Variational Texture Synthesis with Sparsity and
Spectrum Constraints. Journal of Mathematical Imaging and Vision, 2014, 20 p. �hal-00881847v2�

https://hal.science/hal-00881847v2
https://hal.archives-ouvertes.fr

Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

Variational Texture Synthesis with Sparsity and Spectrum Constraints

Guillaume Tartavel · Yann Gousseau · Gabriel Peyré

Received: date / Accepted: date

Abstract This paper introduces a new approach for texture
synthesis. We propose a unified framework that both im-
poses first order statistical constraints on the use of atoms
from an adaptive dictionary, as well as second order con-
straints on pixel values. This is achieved thanks to a varia-
tional approach, the minimization of which yields local ex-
trema, each one being a possible texture synthesis. On the
one hand, the adaptive dictionary is created using a sparse
image representation rationale, and a global constraint is im-
posed on the maximal number of use of each atom from this
dictionary. On the other hand, a constraint on second order
pixel statistics is achieved through the power spectrum of
images. An advantage of the proposed method is its ability
to truly synthesize textures, without verbatim copy of small
pieces from the exemplar. In an extensive experimental sec-
tion, we show that the resulting synthesis achieves state of
the art results, both for structured and small scale textures.

Keywords exemplar-based synthesis · non-convex opti-
mization · statistical image modeling · sparse decomposi-
tion · dictionary learning · random phase textures · Gaussian
random fields

Guillaume TARTAVEL
Telecom ParisTech / LTCI CNRS
46 rue Barrault – F-75634 Paris Cedex 13 – France
Tel.: +33 1 45 81 73 91
E-mail: tartavel@telecom-paristech.fr

Yann GOUSSEAU
Telecom ParisTech / LTCI CNRS
46 rue Barrault – F-75634 Paris Cedex 13 – France
Tel.: +33 1 45 81 78 41
E-mail: gousseau@telecom-paristech.fr

Gabriel PEYRÉ
CNRS / Ceremade, Université Paris-Dauphine
Pl. Maréchal De Lattre De Tassigny – 75775 Paris Cedex 16 – France
Tel.: +33 1 44 05 48 71
E-mail: peyre@ceremade.dauphine.fr

1 Introduction

1.1 Texture Synthesis

Texture synthesis is the process of generating new texture
images from a given image sample. Being able to perform
such a synthesis is of practical interest both for computer
graphics, where it is needed to give a realistic aspect to 3D
models, or for image restoration, where it may help the re-
construction of missing parts through inpainting.

One of the most difficult aspect of texture synthesis is
the ability to deal with the wide variety of texture images.
In particular, it is relatively difficult to synthesize textures
at all observation scales using a given model. Before being
more specific in the next section, we can roughly split tex-
ture synthesis methods in two groups. On the one hand, non-
parametric patch-based methods, initiated by the seminal
works from Efros and Leung [10] and Wei and Levoy [39],
have proven their efficiency to synthesize highly structured
textures, such as brick walls or pebbles seen at a close dis-
tance. On the other hand, methods relying on statistical con-
straints, initiated by the work of Heeger and Bergen [16],
provide efficient methods for the synthesis of textures with
small scales oscillations, or micro-textures, such as sand or
stone.

In this work, we propose to rely on a variational ap-
proach to build a synthesis method that allows at the same
time for the reconstruction of geometric textures, thanks to
the use of sparsity in a patch-based dictionary, and the recon-
struction of small scale oscillations, thanks to constraints on
the spectrum of images. Before presenting in more details
the contributions of this paper, and in order to explain both
its inspiration and its originality, we start with a short pre-
sentation of previous works in this field.

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Author manuscript, published in "Journal of Mathematical Imaging and Vision (2014) ??"

http://hal.archives-ouvertes.fr/hal-00881847
http://hal.archives-ouvertes.fr

2 G. Tartavel, Y. Gousseau, and G. Peyré

1.2 Previous Works

1.2.1 Patch-Based Approaches

The first methods yielding realistic texture synthesis rely on
a Markovian hypothesis: the distribution of a pixel given the
rest of the texture only depends on the values in a (small)
neighborhood. These methods are mostly parametric, fol-
lowing the work in [7]. The law of a pixel given its neigh-
borhood is chosen a priori and its parameters can be learned
from an exemplar using a maximum-likelihood estimation.

Non-parametric approaches [10,39] were introduced la-
ter to handle different kind of textures without designing the
law of each of them by hand. For a given pixel, its value is
sampled directly from an exemplar image, by seeking pix-
els whose square neighborhood (called a patch) is similar to
the one of the pixel to be synthesized. This approach was
a clear breakthrough in the field of texture synthesis, pro-
ducing results that are visually almost perfect on difficult
and structured examples. It was followed by a large body of
works and many extensions were proposed, to perform real-
time [23], dynamic, or volumetric texture synthesis, for in-
stance. In particular, it is common to sample a small square
area (a patch) at a time, instead of a single pixel [9]. The
reader may refer to the state-of-the-art [38] for an overview
of these approaches applied in different contexts.

One common drawback of these approaches, however,
is that the resulting texture is often a plain juxtaposition of
small pieces from the exemplar, even when sampling pixels
one at a time [1]. In this sense they have a limited innova-
tion capacity. An efficient way to avoid this drawback is to
perform the synthesis from a dictionary of patches that is
learned from the exemplar. Sparse decomposition methods
such as [11] are classically applied to image denoising or
enhancement. They rely on the assumption that each patch
of an image can be decomposed as a sum of a small num-
ber of elements from a dictionary. The dictionary is usually
learned from the image to be restored. These approaches
were introduced in [28] as an efficient coding of natural
images, inspired by the human vision system. More effi-
cient algorithms for dictionary learning were proposed later:
for instance the Method of Optimal Direction (MOD) [12],
and the K-SVD algorithm [2]. Recently, one author of the
present paper has shown that this framework is well suited to
texture modeling [30]. In particular, sparse dictionary learn-
ing has the remarkable ability to adaptively extract basic el-
ements, or textons, from a texture. In [30], it is shown that
new texture patches can be created from a learned dictio-
nary, simply by imposing a sparsity constraint on their use
of the dictionary atoms.

1.2.2 Statistical Approaches

Another set of approaches is based on statistical constraints.
A set of statistics is identified and the synthesis process con-
sists in generating a new image whose selected statistics
match those of the original texture. The basic principle of
the approach is in agreement with early works on texture
discrimination [18], that spotted statistical constraints as a
fruitful tool to investigate the human perception of textures.

In 1995, Heeger and Bergen [16] also proposed to rely
on some statistical constraints to perform texture synthesis.
Starting from an exemplar image, a new image is gener-
ated by imposing the marginal of wavelet coefficients, sep-
arately at each scale and orientation, as well as the image
color distribution. The resulting method, although limited
to relatively weakly structured textures, has the ability to
produce realistic results in a computationally efficient man-
ner. Later, it has been proposed [33] to impose some sec-
ond order statistics on wavelet coefficients. More precisely,
the constraints are based on the correlations between coeffi-
cients of atoms that are neighbor, either at a given scale or
across scales. This allows for a better preservation of struc-
tured textures. To the best of our knowledge, this relatively
old method is the one permitting to synthesize the largest
class of textures, without simply copy-pasting pieces from
an exemplar.

In a different direction, one may synthesize a texture by
imposing constraints on its Fourier transform. In [14], it is
shown that an efficient synthesis method is achieved by im-
posing the spectrum of synthesized images, through random

phase textures. The resulting synthesis is fast and reliable,
but limited to non-structured textures with small scales os-
cillations. Several works have extended this approach, either
simplifying the reference from which the synthesis is per-
formed [8,15] or developing video-texture synthesis meth-
ods [41].

In the field of computer graphics, procedural noises are
widely used to yield a realistic aspect for materials. Con-
trary to other methods, a procedural noise is generated on-
the-fly in any point of Rn, and thus has a very low memory
requirement and can be evaluated at any scales with any res-
olution. The Perlin noise [29] is the most classical example
of such a noise. It is obtained as a linear combination of
colored noises at different scales, resulting in a multi-scale
noise whose spectrum is controlled by the weights of the
combination. Sparse convolutive noise is another class of
procedural noise, defined as the convolution of a compact
kernel with a sparse convolution map. The Gabor noise is
a particular case, using Gabor kernels: the distribution of
scales and frequencies of the kernels can be either imposed
by hand [22] or learned from a sample texture [15]. The
state-of-the-art [21] provides a complete review of proce-
dural noise functions.

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 3

1.2.3 Variational Formulation for Texture Synthesis

In this work, we advocate a generic variational approach to
texture synthesis, as presented in detail in Sect. 2. This is
not the first such approach in the context of texture manip-
ulations. Some variational approaches define a function to
measure the similarity between the patches of two images.
This similarity measure is used in [20] to optimize an image
so that all its patches look similar to a texture given as an ex-
ample. Other variational approaches like [34] aim at trans-
ferring the texture of an image onto the content of another
image. In this case, the functional to be minimized takes into
account both the fidelity to the texture image and the fidelity
to the content image.

1.3 Contributions of the Paper

In this paper, we introduce a generic texture synthesis me-
thod that is both suited to highly structured textures and tex-
tures that exhibit small scale oscillations.

First, we rely on adaptive sparse dictionary for the syn-
thesis, following the ideas presented in [30]. As in this orig-
inal approach, we impose a sparsity constraint on a decom-
position of the patches into a dictionary. In addition, we
also impose that atoms from the dictionary are used in the
same proportions as in the original texture samples. This al-
lows for a faithful reproduction of the structured parts (ed-
ges, corners, etc.) of the input texture. Second, we impose
spectrum constraints on the synthesis, in the manner of [14].
This allows for the reproduction of high frequency compo-
nents of the texture, but also, more surprisingly, for the low
frequency regularity of the texture, as demonstrated in the
experimental section. We also impose a constraint on the
global color content of the image, that has a strong visual
impact on the results. In order to combine the strength of
the adaptive patch dictionary to reproduce geometry and the
fidelity of frequency reproduction offered by spectrum con-
straints, we rely on a variational approach. Each constraint
is enforced by controlling the distance of the synthesis to
a set of compatible images. The minimization of the corre-
sponding energy is performed using an averaged projections
method. The approach is compared to the more classical al-
ternating projection method proposed in [33], and the bene-
fit of the proposed constraints is demonstrated. The resulting
synthesis approach achieves, to the best of our knowledge,
the best results obtained so far that truly generate a new tex-
ture without performing copy-pasting of the input. Another
interesting asset of the proposed approach is that it only re-
lies on first order statistical constraints between atoms from
a dictionary. On the contrary, methods relying on a fixed
dictionary necessitates second order statistics to synthesize
structured textures [33]. This somehow accredits the second
psychophysical theory proposed by B. Julesz [18], stating

that texture discrimination is related to first order statistics
of textons (in the presented work, textons may be identified
with atoms from the dictionary). Observe nevertheless that
the synthesis also relies on second order statistics between
pixel values (through the power spectrum), therefore estab-
lishing a link between Julesz first [17] and second [18] the-
ory for texture discrimination.

The plan of the paper is as follows. We define in Sect. 2
the energy function whose minimization leads our synthesis
method and present in details the three constraints we im-
pose for the synthesis: on the histogram, on the spectrum,
and on the sparse decomposition of image patches. We then
propose in Sect. 3 an algorithm to find a critical point of
this energy function. Numerical results are shown, parame-
ters are discussed and comparisons with the state of the art
are provided in Sect. 4. Preliminary results of our work were
presented in the conference paper [36]. More results can be
found at:
http://perso.enst.fr/~gousseau/jmiv2014synthesis/,
and the Matlab code used for the experiments is publicly
available at:
https://bitbucket.org/gtartavel/variational_synthesis/.

1.4 Notations

A matrix A = (Ai
j)i, j is made of columns A j and rows Ai;

its 2-norm is ‖A‖2,2 and its Frobenius norm is ‖A‖F . The ℓ0

pseudo-norm of a vector b is ‖b‖0 = #{i \ bi 6= 0} and its ℓp

norm is ‖b‖p for p > 0.
The indicator function ιC of a set C is equal to 0 on C

and +∞ outside. The distance of a point x∈Rm to a compact
set C is D(x,C) = miny∈C ‖x− y‖2 and a projection PC(x)
of x on C is a minimizer of this distance.

The orthogonal discrete Fourier transform of an image u

defined on a rectangular domain Ω ⊂ Z2 of size M1×M2 is
the image û made of the coefficients

û(m) =
1√

M1M2
∑

x∈Ω

u(x) exp
{

−2iπ
(x1m1

M1
+

x2m2

M2

)

}

. (1)

The patches of size τ× τ in u are defined as

pk =
(

u(xk + t)
)

t
for t ∈ {0, . . . ,τ− 1}2 . (2)

Their locations xk lie on a regular grid xk ∈ ∆Z
2 of step ∆ ∈

N∗. We denote by Π(u) =
(

pk

)

k
∈ RL×K the matrix, made

of the K patches of u, where L = dτ2 is their dimension,
with d = 1 for gray images and d = 3 for color. The adjoint
operator of Π is denoted by Π ∗.

2 Variational Formulation

As explained above, we define an energy functional E to
assert the quality of a synthesis. The synthesis process then

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

http://perso.enst.fr/~gousseau/jmiv2014synthesis/
https://bitbucket.org/gtartavel/variational_synthesis/

4 G. Tartavel, Y. Gousseau, and G. Peyré

consists in finding local minima with low values of this func-
tional.

The functional E is designed to account for three con-
straints: one on the first order statistics on the use of atoms
from an adaptive, sparse dictionary, one on the spectrum of
images, that is on second order pixel values statistics, and
one on color histograms, that is on first order pixel values
statistics. This is achieved through the distances to 3 sets:
the set Cp of patches being sparse in a dictionary D0 learned
from u0 and whose atoms frequency matches the ones of the
decomposition of u0 in this dictionary, the set Cs of images
whose Fourier power spectrum is the same as in u0, and the
set Ch of images whose color histogram is the same as u0.

We therefore define E(u) equals to

αp

2
D

2(Π(u),Cp)+
αs

2
D

2(u,Cs)+
αh

2
D

2(u,Ch), (3)

where (αp,αs,αh) are weighting terms. The adjoint operator
Π ∗, involved in the optimization process, reverberates the
constraints on the patches to the image. The sets (Cp,Cs,Ch)
are detailed hereafter. The projection operators PC on these
sets are also defined and presented in the following para-
graphs since they are involved in the iterative optimization
process detailed in Sect. 3. We start with the most straight-
forward histogram constraint, then proceed with the Fourier
constraint, and eventually present the most involved, dictio-
nary-based constraint.

2.1 Histogram Constraint

The constraint Ch imposes the histogram to match the one of
the exemplar. In other words, we want to preserve the gray-
level or color distribution of the texture. This requirement
is common in texture synthesis: it is used in [16] or [30] to
ensure that the synthesized image has a similar dynamic and
color distribution as the original image.

2.1.1 Definition

We define the set of images whose color histogram is the
same as the one of u0 as:

Ch = u0
(

Σ|Ω |
)

=
{

u0 ◦σ
∖

σ ∈ Σ|Ω |
}

, (4)

where Σ|Ω | is the set of permutations of Ω . Two images have
the same histogram if they only differ by a permutation of
their pixels.

2.1.2 Projection

The projection on Ch is called “histogram transfer” [32]. In
the case of grey-level images (d = 1), the projection u0 ◦σ∗

of an image u on the set Ch is given by

σ∗ = σu0 ◦σ−1
u (5)

where we denote by σv the permutation sorting the pixel
values of an image v:

vσv(0) ≤ ·· · ≤ vσv(i) ≤ vσv(i+1) ≤ . . .

When u and u0 have different numbers of pixels, the
sorted sequence of values u0 ◦ σu0 is oversampled using a
nearest-neighbor approximation. Note that a linear or cubic
interpolation is not adapted since it creates new gray level
values. This may create artifacts if the histogram to be inter-
polated has a gap (as for example with a mixture of Gaus-
sians).

The color case is more involved: algorithms to compute
the exact optimal assignment (such as the Hungarian method
of [19]) have roughly cubic complexity, and can thus not
be used for our problem. [5] proposes to replace the multi-
dimensional Wasserstein distance by a summation of 1D
Wasserstein distances of projections of the distributions. We
follow this approach but with only 3 fixed projection direc-
tions. For i = 1 . . .3, let c(i) ∈ R3 be the colors obtained by
a PCA on the RGB components of u0. Such a transform is

adequate for our purpose. We denote respectively by u
(i)
0 and

u(i) the components of u0 and u in this color basis. We re-
place the set Ch by Ch

′ by allowing a different permutation
for each component:

Ch
′ =

{

u

∖

∀i,∃σi ∈ Σ|Ω | : u(i) = u
(i)
0 ◦σi

}

. (6)

The projection is thus obtained by solving 3 independent

histogram transfers between each u
(i)
0 and u(i).

2.2 Fourier Spectrum Constraint

The Fourier transform of the empirical covariance of the im-
age u0 is |û0|2, where û0 denotes the discrete Fourier trans-
form of u0, defined in (1). The Fourier spectrum thus en-
codes the correlations between the pixels in the image. As
explained in the introduction, these correlations are an im-
portant characteristic of textures [18,14], which motivates
their inclusion in the functional (3).

2.2.1 Definition

The set of images whose spectrum is the same as u0 is

Cs =
{

u ∈R
Ω×d

∖

∀m,∃ϕ(m) : û(m) = eiϕ(m)û0(m)
}

(7)

where the multiplication by eiϕ(m) preserves the amplitude
but changes by ϕ(m) the phase of the coefficient û0(m) ∈
Rd . Note that ϕ must be antisymmetric modulo 2π since u

and u0 are real images. In the gray-level case (d = 1), the
condition can be rewritten as |û(m)| = |û0(m)|. In the color
case (d = 3), it is important for color coherency that the
multiplication of û0(m) ∈ C3 by eiϕ(m) preserves the phase

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 5

differences between the R, G, and B channels [14]. There-
fore, texture synthesis is performed in [14] by preserving the
spectrum of u0 while generating phases ϕ(m) randomly. It
is equivalent to draw at random an element from Cs.

To reduce the boundary artifacts caused by the inherent
periodicity assumption of the discrete Fourier transform, we
use the periodic decomposition of [27], so that the image u0

is decomposed as the sum of a smooth image and a (circu-
larly) periodic image. We drop the smooth component and
only keep the periodic one, which is well suited to the dis-
crete Fourier transform.

2.2.2 Projection

The projection of an image u on the set Cs consists in putting
together the modulus of û0 and the phases of û. The solution,
as detailed in Appendix A.1, is the image us defined by

ûs(m) =
û(m) · û0(m)

|û(m) · û0(m)| û0(m) ∀m (8)

where x ·y = xy∗ denotes the hermitian product of Cd (d = 1
for gray level images and d = 3 for color images). The case
where u and u0 have not the same dimensions is treated by
windowing and padding u0 as presented in [14].

Remark. As shown in the experimental section (Sect. 4),
the spectrum constraint Cs handles a drawback of the patch
sparsity constraint Cp described in the following paragraph:
patches cannot handle the low frequencies of the image be-
cause they are too small to capture them. Patches also re-
duce high frequencies because of the sparse decomposition
based on the ℓ2 norm which promotes smooth approxima-
tions. The spectrum constraint is thus a good candidate to
go along with the patch constraint.

2.3 Sparse Decomposition of the Patches

Decomposing the patches Π(u) of an image u as a sparse
linear combination D0W of elements in an adaptive dictio-
nary D0 has first been proposed by [30] in the context of tex-
ture synthesis. As explained in the introduction, this frame-
work enables us to efficiently synthesize highly structured
aspects of textures, such as edges or regular patterns.

The set of patches Π(u0) of u0 is first factorized into
a dictionary D0 and a sparse matrix W0 of coefficients. In
this first case, both the dictionary and the coefficients are
unknown: the K-SVD algorithm [11] computes these two
matrices D0 and W0. Then, during the synthesis, any set of
patches P is decomposed into this fixed dictionary D0 and
leads to a weight matrix W . The weights of this decomposi-
tion must satisfy two constraints: each patch can use only a
few number of atoms from D0, and each atom of D0 must be
used as often in W as it is in W0.

2.3.1 Learning Stage

The learning stage consists in building an over-complete dic-
tionary D0 from the exemplar u0. This stage is performed
only once before the synthesis process.

A dictionary D0 of N atoms is obtained by minimizing

(D0,W0) = argmin
D,W

‖Π(u0)−DW‖2
F

s.t.

{

‖Dn‖2 ≤ 1 ∀n = 1 . . .N,

‖Wk‖0 ≤ S ∀k.
(9)

This non-convex combinatorial problem is NP-hard [37].
An approximated solution can be computed using the K-
SVD [2] algorithm for instance, or the MOD [12] algorithm.

The number N of elements of the dictionary must be
chosen so that D0 has some redundancy. We choose, for in-
stance, N to be approximately equal to 2τ2 to have a redun-
dancy factor of 2.

The sparsity constraint ‖Wk‖0 ≤ S imposes to each patch
pk to be approximated using at most S atoms from the dic-
tionary. This constraint enforces the dictionary to represent
the patterns and features of the texture, as shown in [30].

2.3.2 Definition of the Constraint

The dictionary D0 being learned, we control both the spar-
sity of the decomposition and the number of occurrences of
the atoms. As explained in the introduction, this is an algo-
rithmic interpretation of the second Julesz principle, stating
that first order statistics of textons (in the present context,
of atoms) are important for the visual discrimination of tex-
tures. Precisely, the second constraint is that each atom dn

should be used at most Fn times. The bound Fn = K
K0
‖Wn

0 ‖0

is learned from the decompositionW0 of the exemplar u0 and
is normalized according to the numbers K and K0 of patches
in u and u0 respectively (the exemplar and the synthesis may
have different dimensions).

The resulting set of image patches satisfying these con-
straints is

Cp = {D0W \ ‖Wk‖0 ≤ S and ‖W n‖0 ≤ Fn ∀k,n} . (10)

Observe that this constraint results in a constraint on the
number of non-zero coefficients both on the rows and the
columns of the weight matrix W .

2.3.3 Projection

Computing the projection D0W on Cp is a combinatorial
problem quite similar to [11] which is known to be a NP-
hard problem [37]. We approximate a solution of this prob-
lem using the greedy Algorithm 1. The result is then im-
proved using a back-projection step, as detailed hereafter.
This algorithm is inspired from the Matching Pursuit (MP)
algorithm [26].

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

6 G. Tartavel, Y. Gousseau, and G. Peyré

Algorithm 1: approximation of the projection on Cp

Data: patches P = Π(u), dictionary D0.
Input: sparsity S, # of occurrences Fn, iteration factor λ ≈ 1.5.
Output: coefficients W .
Initialization: set W = 0 and R = P; compute Φ = DT

0 P.
for ℓ= 1 to λ SK do

– find the best indices (k∗ ,n∗) defined by (14).
– compute the best weight w∗ using (15).
– update W , R, and Φ using (13), (18), and (19).

Back-projection: update W by solving the linear systems (21).

2.3.4 Algorithm Details

The algorithm is iterative. The coefficients W n
k are updated

one by one until the constraints Cp detailed in (10) are sat-
urated. At each step, the choice of the couple patch/atom
(k,n) to be updated is optimal. The non-zero coefficients of
the resulting weight matrix W are then refined (during the
back-projection step).

Greedy algorithm. We denote by En,k the elementary matrix
whose only non-zero coefficient is 1 at position (n,k). At
step ℓ of Algorithm 1, the current estimation of W is denoted
by W (ℓ). Both a patch index k∗ and an atom index n∗ are
chosen according to

(k∗,n∗,w∗) = argmin
k,n,w

∥

∥

∥
P−D0

(

W (ℓ)+wEn,k

)

∥

∥

∥

2
(11)

under the constraint

W (ℓ)+wEn,k ∈ Cp. (12)

The coefficient (k∗,n∗) of W (ℓ) is updated while the others
are left unchanged:

W (ℓ+1) =W (ℓ)+w∗En∗,k∗ . (13)

As shown in Appendix A.2, the solution of (11) is

(k∗,n∗) = argmax
(k,n)∈I

W(ℓ)

∣

∣

∣
〈R(ℓ)

k ,Dn〉
∣

∣

∣
(14)

w∗ = 〈R(ℓ)
k ,Dn〉 (15)

where R
(ℓ)
k is the kth column of the residual R(ℓ) defined at

step ℓ by

R(ℓ) = P−D0W (ℓ), (16)

and the set I
W (ℓ) of available indices is

IW =
{

(k,n)
∖

‖W ~n
k ‖0 < S and ‖W n

~k‖0 < Fn
}

, (17)

where we denote W ~n
k =

(

W n′
k

)

n′ 6=n
and W n

~k =
(

W n
k′
)

k′ 6=k
.

In the very particular case where D0 is orthogonal, this
algorithm converges in at most KS iterations because the
resulting (k∗,n∗) are different at each iteration: the K con-
straints ‖Wk‖0 ≤ S are saturated after KS iterations. In gen-
eral, the algorithm does not converge in a finite number of
iterations. Nevertheless we decide to stop after λ KS itera-
tions with λ = 1.5.

Efficient computation. To save computation time, residuals

R(ℓ) and inner products Φ(ℓ) =
(

〈R(ℓ)
k ,Dn〉

)

n,k
can be pre-

computed and updated by

R(ℓ+1) = R(ℓ)−w∗D0En∗,k∗ (18)

Φ(ℓ+1) = Φ(ℓ)−w∗DT
0 D0En∗,k∗ . (19)

Using a max-heap search for (14), precomputing DT
0 D0,

and assuming that S≪ L ≤ N≪ K, the time complexity of
this algorithm is in O

(

KN(L+λ S logK)
)

, as shown in Ap-
pendix A.3. Note as a reference that the computation of all
the inner products 〈Pk,Dn〉 already requires Θ(KNL) opera-
tions.

Back-projection. The iterative greedy algorithm described
above provides weights W̃ to decompose P as D0W ∈ Cp.
A drawback of the greedy approach is that the weights are
estimated one by one: the approximation error may be quite
large. The back-projection step —as introduced in [26]—
improves this solution by refining all the non-zeros coeffi-
cients of W̃ while the constraints from Cp are still satisfied.

The support of W̃k is denoted by

Ik =
{

n
∖

W̃ n
k 6= 0

}

. (20)

Its cardinal satisfies #(Ik)≤ S since W̃ ∈ Cp. The back-pro-
jection step consists in computing the projection of Pk on
Span

(

(Dn)n∈Ik

)

. This is done by solving a linear system in
dimension at most S: the back-projected weights Wk are

W
Ik
k = argmin

w

∥

∥Pk−DIk w
∥

∥

2
F

(21)

and 0 elsewhere, where W I
k =

(

W n
k

)

n∈I
and DI =

(

Dn

)

n∈I
.

Patch extraction and image reconstruction. The patch ex-
tracting operator Π involved in the function (3) extracts the
patches P = Π(u) from any image u.

Its adjoint operator Π ∗ is involved in the optimization
process described in Sect. 3. The effect of Π ∗ on a set of
patches P is to merge all of them into an image ũ = Π ∗(P)
by summing the overlapping parts of the patches.

In our previous work [36], we replaced this operator by a
non-linear operator ΠNL, because the linear operator Π ∗ in-
troduced some blur when summing the overlapping parts of
the patches. In the current paper, we introduced the spectrum
constraint Cs which ensures the synthesized image to be
sharp enough. As a result, we do not need the non-linear op-
erator any longer. During the optimization process in Sect. 3,
we use the true adjoint operator Π ∗ involved in the gradient
of the function (3).

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 7

3 Optimization

In the previous section, we have defined and justified the
variational framework we propose for texture synthesis. The
corresponding energy is expressed as a weighted sum of dis-
tances to constraint sets. For each of these sets, a projection
operator has been defined. In this section, we present a gen-
eral optimization procedure that is suited to such an energy,
resulting in a texture synthesis algorithm. Before proceed-
ing, let us observe that the presented algorithm only yields
local and non unique solutions to the proposed non-convex
variational approach. From an optimization point of view,
this is a pain. But from a synthesis point of view, this is good
news: several (local) minimizers correspond to as many pos-
sible texture syntheses.

3.1 General Formulation

The penalty function E defined by (3) can be rewritten as

E(u) =
1
2 ∑

i

αiD
2(Aiu,Ci) (22)

where the indices i of the sum are (p,s,h), the linear oper-
ators Ai are (Π , Id, Id), and Ci and αi are respectively the
constraints and the weighting terms defined in Sect. 2.

This function measures how close some linear measure-
ments Aiu are to the subsets Ci. We want these distances to
be as small as possible and therefore look for a local mini-
mizer of the energy E .

3.2 Minimization

We use a gradient descent scheme to minimize the energy E .
As explained in the following paragraph, there is no theoret-
ical guaranty about the convergence of this algorithm. How-
ever, local properties of the gradient are favorable for the
cluster points of the algorithm to be critical points of the
functional E , as desired.

Let Ki be the cut locus of Ci, that is, the points on which
the distance DC i

is not differentiable. Apart from certain
of these points, the projection PCi

is uniquely defined. Let
K =

⋃

i A−1
i

(

Kp
)

be the union of their reciprocal images.
In any u /∈K , the functional E is C 1. Its gradient is

∇E(u) = ∑
i

αiA
∗
i

(

Aiu−PCi
(Aiu)

)

, (23)

where the projectors PCi
are given in Sect. 2. On the con-

trary, for u ∈K , the projections and thus the gradient are
not uniquely defined; however, any projection provides a de-
scent direction for such u. Observe also that K is a measure-
zero set.

In order to find a local minimum of (22), we perform
a gradient descent from a random point u(0). The resulting
sequence is defined by

u(ℓ+1) = u(ℓ)− τ∇E(u(ℓ)) (24)

where ∇E is the gradient (23) of E . This gradient is not glob-
ally nor locally Lipschitz, mainly because of the spectrum
constraint Cs. The same problem is encountered in phase
retrieval problems [4]. In order for the gradient descent to
converge, we should decrease the step size to 0 or choose it
adaptively by line-search. In practice, we choose a constant
step size τ = 1/c with c = ∑i αi ‖A∗i Ai‖2,2 and motivate this
choice in the next paragraph. Even if there is no theoretical
convergence guaranty, numerical experiments show that the
gradient descent converges in practice to a stationary point
of E (see Sect. 4).

3.3 Averaged Projections

This paragraph points out that the averaged projection algo-
rithm is a particular case of the proposed gradient descent
scheme.

We consider the case of a perfect tiling, i.e. when all
the pixels belong to Z patches exactly where Z , ⌈τ/∆⌉2 =
‖Π ∗Π‖2,2, which is the case for integer ratio τ/∆ ∈ N∗ of
patch size over spacing. In this case, Π ∗Π = Z · Id. Gradient
descent step (24) becomes in this case

u(ℓ+1) = c−1 ∑
i

αiA
∗
i PCi

(Aiu
(ℓ)), (25)

where the constant c previously defined is simply c = α̃p +

αs +αh with α̃p = αpZ. Relation (25) is a step of averaged
projections: the transforms Aiu

(ℓ) are projected on the re-
spective sets Ci and are then averaged together.

A cluster point ũ of the iterates (25) is a stationary point
of the energy (22) and satisfies

ũ = c−1 ∑
i

αiA
∗
i PCi

(Aiũ). (26)

This provides a geometrical interpretation of the solutions:
each solution is the barycenter of the projections of its trans-
forms on the sets Ci weighted by αi.

Alternated projections. Instead of using averaged projec-
tions (25), it is possible to use alternated projections, which
gives the following iterations:

u(3ℓ+1) = Z−1Π ∗PCp(Πu(3ℓ)),

u(3ℓ+2) = PCs(u
(3ℓ+1)),

u(3ℓ+3) = PCh(u
(3ℓ+2)),

in the case of α̃p =αs =αh = 1. The convergence properties
of both averaged and alternated non-convex projections on
smooth manifolds are analyzed in [24].

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

8 G. Tartavel, Y. Gousseau, and G. Peyré

Observe however that this scheme has no chance to con-
verge since the sets Ci are distinct in general. It leads to 3
cluster points, namely 1 point in each set Ci. Recall that av-
eraged projections lead to a cluster point ũ (26), which is a
compromise between the 3 constraints Ci.

The experimental results in the next section (Fig. 11 in
particular) show that the alternated projections algorithm is
more likely to produce artifacts than the averaged projec-
tions algorithm. Note that several texture synthesis methods,
like [16] and [33], are implicitly based on an alternated pro-
jections scheme. As explained in [16], it is better not to iter-
ate alternated projections too many times because the results
may suffer from artifacts.

3.4 Multi-scale Procedure

Since the energy (3) is non-convex, the choice of the ini-
tialization u(0) has a strong influence on the result. In or-
der to avoid visually unsatisfying local minima, we perform
the synthesis through J scales using a classical multi-scale
scheme.

At scale j ∈ {J− 1, . . . ,0}, the original image u0 is dec-
imated by a factor 2 j to give an image u j. The synthesis
is performed using u j as an exemplar and a dictionary D j

learned on it. The result u
(∞)
j is oversampled by a factor 2

and used as initialization u
(0)
j−1 for the next scale. The rough-

est scale is initialized with a uniform white noise1 u
(0)
J−1. The

resulting image is the synthesis u
(∞)
0 obtained at the finest

scale.

Decimation and oversampling operations are performed as
follows. The image to be decimated is first filtered by a 2×2
box kernel and then decimated by a factor 2. The oversam-
pling step is performed with a bi-cubic interpolation. The
shift of half a pixel is obtained using the cubic convolution
kernel h = (−1,9,9,−1)/16.

3.5 Implementation Details

Periodicity of the synthesis. During the synthesis process,
because of the spectrum constraint, the image is assumed to
be periodic. The histogram constraint and the white noise
initialization are consistent with this assumption since all
pixels are considered independent. The oversampling step
is made periodic by using a circular convolution. The patch
processing is made consistent by defining the patch extract-
ing operator Π : u 7→ Π(u) on the periodic image. Some
patches thus contain pixels both on the very left side and on
the very right side of the image. As a result, the synthesized
image is also periodic. It can be tiled or shifted circularly.

1 Whose range is the range of the pixels’ values

Spacing between patches. As defined in the notation section
(Sect. 1.4), the patches are located on a grid of step ∆ . To
avoid mosaic artifacts, the value of ∆ must be as small as
possible, 1 or 2 pixels for instance. But the lower the slower.
A higher value, for instance 4 pixels, provides a trade-off
between synthesis quality and computation time.

Note that the offset of the grid of patches can be freely
chosen (recall that the image is assumed periodic). Choosing
a random offset for each iteration reduces the mosaic artifact
caused by a large ∆ . In practice, a step size of ∆ = 4 pixels
with patches of size τ = 12 pixels does not produce mosaic
artifacts with this technique and increases the speed of the
algorithm (a few minutes for a 256× 256 px image).

Post processing. To increase the grain of the resulting tex-
ture, we add an extra projection step at the very end of the

synthesis process. The image u
(∞)
0 synthesized at the finest

step is projected on the spectrum constraint and then on
the histogram constraint. The final image is u(∞) = PCh ◦
PCs

(

u
(∞)
0

)

.

4 Numerical Results

This section provides numerical results of our synthesis al-
gorithm. We illustrate the influence of each term of the en-
ergy function (3) and of the parameters. We compare our
results to the most classical synthesis methods relying on
statistical constraints. We also compare the innovation ca-
pacity of the approach to that of exemplar-based methods.

When not explicitly specified, the extracted patches are
of size τ = 12 and are centered on a grid with a step size of
∆ = 4 pixels. The synthesis is performed over J = 3 scales
and the terms of the functional are given the same weight2

αh =αs = α̃p = 1. The dictionary is made of N = 384 atoms
and the sparsity is set to S = 4 coefficients per patch.

Under these settings with images of size 256× 256 us-
ing a quad-core CPU at 2.3 GHz, the preliminary learning
stage performed by the SPAMS toolbox [25] takes roughly
a minute, and the synthesis using our unoptimized Matlab
code also takes about a minute. As a comparison, exhaustive
patch-searching algorithms such as the one from [10] take
several minutes, while fast improvements like those from
[23] or [3] run in a couple of seconds.

Figure 1 shows several results of our algorithm for tex-
tures from the VisTex [31] database. The sand and water
textures are well reproduced thanks to the spectrum con-
straints. The regularity of quasi-periodic textures is ensured
by both the spectrum constraint and the multi-scale scheme.
The sharpness of the edges and the geometrical patterns are
handled by the sparse decomposition of the patches into the
adaptive dictionary.

2 We recall the normalization α̃p = αpZ with Z = ⌈τ/∆⌉2

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 9

The last row of Fig. 1 shows difficult examples to illus-
trate the limitations and the failure cases of our algorithm.
Repetition of small sharp objects —like the pills texture—
cannot be represented by our approach: the sparsity of the
patches cannot handle several objects in a patch, and the
spectrum constraint is not able to create sharp objects. A
mixture of large scale patterns and small details —like the
tiles or the pumpkins— are also difficult to generate because
of the patch constraint: small patches cannot deal with large
structures, whereas large patches cannot handle small details
because of the sparsity constraint.

4.1 Comparison

4.1.1 Statistical Methods

We first show a comparison with other statistical methods
that we now recall.

The approach of Heeger and Bergen [16] imposes the
histogram of the image and also the distributions of the co-
efficient of a multi-scale decomposition [35], scale by scale.
An alternated projection method is used: the constraints are
imposed turn by turn. As explained in [16], this should not
be iterated more than 4 or 5 times because of convergence
issues. The decomposition being based on gabor-like filters,
this method is not adapted to synthesize edges or structures.
This method may be tested online using the IPOL demo
from [6].

The method from Portilla and Simoncelli [33] is the state
of the art among statistical methods, to the best of our know-
ledge. Several constraints on the coefficients of the multi-
scale decomposition [35] are imposed: mean, variance, and
other moments. The main difference with [16] is that cor-
relations are imposed between neighbor coefficients, where-
as [16] only considers marginals at each scale and orienta-
tion. Some edges and sharp structures can be synthesized
thanks to these dependencies. Let us emphasize that, in con-
trast, the method presented in this paper does not impose
dependency between coefficients corresponding to different
atoms in the dictionary. However, we used an adaptive dic-
tionary learned on the exemplar, whereas [16,33] use a non-
adaptive pyramid transform.

In [14], synthesis is performed by preserving the ampli-
tude of the Fourier spectrum and by randomly shuffling the
phases of the Fourier Transform. This is strictly equivalent
to generating a white noise and projecting it on our spec-
trum constraint Cs. This approach is fast and is well adapted
to smooth textures such as sand or a cloudy sky, but cannot
produce edges. This method may be tested online using the
IPOL demo from [13].

The algorithm of [30] is the first applying sparse decom-
position of patches to texture synthesis. A redundant dictio-
nary is learned beforehand on an exemplar of the texture.

The synthesis is then performed from a white noise image
by alternating histogram transfer and sparse coding into the
dictionary. This is equivalent to alternated projection on our
sets Ch and Cp

′ where Cp
′ has no constraint on the number

of usage Fn of the elements in the dictionary.
In Fig. 2, we show several synthesis examples using our

approach and the statistical methods recalled in this section.
As we can see, the proposed approach has the best ability to
reproduce both structures and fine details of textures.

4.1.2 Copy-Paste Methods

Figure 3 shows two synthesis results obtained with the Efros
and Leung algorithm [10], using the IPOL accelerated im-
plementation [1]. The synthesis is performed by choosing
and copying pixels one by one from the exemplar. The key
idea of this algorithm may be encountered in a large num-
ber of more recent algorithms detailed in the start-of-the-
art [38], including [20] illustrated on Fig. 4.

Figure 3 also displays on the bottom the map of coor-
dinates provided by the IPOL implementation [1]. Figure 4
shows a map of coordinates computed a posteriori from a
result of [20]. This map represents the location in the exem-
plar of the synthesized pixels: pure black (resp. red, blue,
white) means that the synthesized pixel comes from the top-
left (resp. top-right, bottom-left, bottom-right) corner of the
exemplar image. The structure of the synthesized image is
clearly visible on these maps: the synthesis is made of a
tiling from the exemplar even if pixels are copied one by
one. The results of such copy-paste methods are often visu-
ally better than those obtained using statistical methods, but
their innovation capacity is much lower. In contrast, results
from our approach (see Fig. 1) include no repetition from
the input image.

The next subsection provides experiments about the in-
novation properties of synthesis algorithms.

4.1.3 Innovation Capacity

We carried out the following experiment to demonstrate the
innovation capacity of several texture synthesis algorithms
including the proposed one.

Given an input image u0 and a corresponding synthesis
u using any algorithm, we find the closest neighbor in u0

of each patch of u. Figure 5 shows, from left to right: the
synthesized images using different algorithms, the locations
of the nearest-neighbor of each 3× 3 patch (using the color
map described above), a zoom on the central part of this
map, and the histogram of the distances from each patch to
its nearest-neighbor. The synthesis images are obtained us-
ing our algorithm, the random phase algorithm from [14],
the statistical pyramid-based approach from [33], and the

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

10 G. Tartavel, Y. Gousseau, and G. Peyré

Fig. 1 Result of our algorithm (big images) for several exemplar (small images). The last examples are the most difficult because they simultane-
ously exhibit many small sharp details and large geometrical structures.

pixel-based approach from [10]. The random phase algo-
rithm from [14] is a reference in term of innovation capacity
since it generates a new image at random from a gaussian
model.

The location maps (middle columns in Fig. 5) show that
our algorithm and the one from [33] produce an image which
is locally different from the input image, in the same way as
the random phase texture obtained using [14]. On the con-

trary, the location map corresponding to [10] has many ho-
mogeneous regions (see the map and its zoom in Fig. 5):
these regions show that the synthesized image is actually a
tiling made from the input image. The distance histograms
(right column in Fig. 5) show that the images synthesized
using our approach has no 3× 3 regions which are exactly
the same as in the input image, and neither have the results
using the algorithm of [33] or the random phase from [14].

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 11

Input images

Ours [33] [16] [14] [30]

Fig. 2 We present synthesis results using our approach and other statistical methods. From left to right: our approach penalizes a deviation of
histogram, spectrum, and sparse approximation of patches; [33] imposes statistics including correlations in a wavelet frame; [16] imposes the image
histogram and wavelet coefficient distributions (scale by scale); [14] preserves only the spectrum modulus; [30] imposes the image histogram and
patch sparsity

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

12 G. Tartavel, Y. Gousseau, and G. Peyré

Fig. 3 Results from the pixel-by-pixel copy-paste algorithm [10]
(middle); the coordinate maps (bottom) show that the results are tilings
from the exemplars (top), even if the synthesis is performed pixel after
pixel

Fig. 4 Results from the more recent copy-paste algorithm [20] (cen-
ter); like in Fig. 3, the coordinate map (right) shows that the result is
tilings from the exemplars (left)

On the opposite, one third of the pixels synthesized by the
method from [10] has exactly the same 3× 3 neighborhood
as in the input image, as shown by the first bin of the his-
togram: this bin has been made wider and smaller to fit on
the page, its area represents the proportion of distance that
are almost zero.

The location maps and the distance histograms show that
our algorithm and the one from [33] perform a genuine syn-
thesis, while the pixel-based approach of [10] generate a tex-
ture which is a piecewise copy of the exemplar image.

4.2 Detailed Analysis of the Synthesis Functional

The influence of each of the three terms of the function (3) is
illustrated in Fig. 6. The effect of each constraint is demon-
strated by suppressing one of them while preserving the two
others. This experiment yields the following observations.

The patch decomposition term relies on the adaptive dic-
tionary, which is good at representing geometrical features.
The syntheses produced without this constraint have little
geometrical content: edges and sharp details are completely
lost.

On the other hand, a sparse decomposition cannot repre-
sent granularities of textures like sand or rocks. This is due
to the noisy aspect of such textures which cannot be sparsely
represented. It is approximated by an almost-constant value
and the texture generated is too smooth when using only his-
togram + patch sparsity terms.

The spectrum term acts as a complement of the patch spar-
sity term. It is powerful to represent granularities, as may
be seen on the sand example. However, the spectrum can-
not produce any edge, as illustrated by the synthesis with
only the spectrum and histogram terms. Preserving only the
spectrum is proposed and illustrated in [14].

We also remark that the low frequencies imposed by the
spectrum enhance the regularity of the texture. Without this
constraint, the results have some brighter or darker regions,
whereas the results using the spectrum are more stationary.

The histogram term deals with the contrast and the color
faithfulness of the result. Note that the patch decomposition
alone has no control on the patch dynamic.

4.3 Influence of the Parameters

This section illustrates the influence of the parameters of our
synthesis algorithm: the size τ×τ of the patches, the number
J of scales, the weights α of each term of the function, and
the sparsity factor S.

4.3.1 Patch Size and Multi-scale

Figure 7 illustrates the influence of the multi-scale process
and of the size of the patches.

The effect of the multi-scale is clearly visible on all the
results: it increases the spatial coherence of the texture. In
the case of quasi-periodic textures with small patterns, it in-
creases the regularity of the texture: the patterns are more
regularly distributed. In the case of textures with large pat-
terns, it produces large structures such as long and continu-
ous edges. This is not possible with the single scale synthe-
sis.

The size of the patches must be roughly the size of the
elements in the texture. A patch size of 12× 12 pixels is a
good compromise on images of size 128× 128 pixels from
the VisTex database.

If the patches are too small compared to the patterns of
the texture, the pattern cannot be well synthesized and suffer

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 13

Fig. 5 Analysis of the innovation capacity of several algorithms. For each patch of the synthesized image, we find its nearest patch in the input
image. From left to right: synthesis image obtained from different algorithms, map of location of the nearest patch, 4× zoom on its central part,
and histogram of the distances to the nearest patch. From top to bottom: input image, synthesized images using [10], using [33], using [14], and
using our algorithm. Both location map and distances histogram show that the pixel-based synthesis algorithm from [10] mostly create a tiling,
whereas our algorithm and the one from [33] are able to generate novel images. Note that the wide black bar on the top-right histogram correspond
to the zero bin and has been made wider and smaller to fit on the page.

from geometrical distortions. On the contrary, using too big
patches makes the sparse approximation into D0 rougher and
the small details are lost. Moreover, bigger patches imply
more coefficients, a bigger dictionary, and less sparsity: the
sparse decomposition algorithm becomes far slower and less
accurate (we recall that we use a heuristic since the problem
is NP-hard).

Figure 8 shows the synthesis of a higher resolution im-
age of 512× 512 pixels, which illustrates the limitations of
our method. The size of the patches is set to 18× 18 and

5 scales are used. The algorithm is able to synthesize an
image with a similar aspect as in the lower resolution case
(128× 128 pixels). However the zoom in Fig. 8 shows that
the result is less sharp, mainly because the patches are big-
ger. Synthesizing very large geometric structures as well as
small details is challenging. A multi-scale scheme with a
varying size of patches may be more appropriate for such a
case.

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

14 G. Tartavel, Y. Gousseau, and G. Peyré

Input Synthesis (w/o post-process) No histogram No spectrum No patch constraint

Fig. 6 Synthesis results when dropping one of the three terms. The histogram term prevents from a loss of contrast. The spectrum term spatially
regularizes the synthesis and generates granularity. The patch decomposition term handles sharp edges. Note that the post-process is not performed
to allow a fair comparison of each term.

4.3.2 Weights of the Function

Figure 9 shows results obtained when varying the weighting
of the different terms in the functional (3) instead of choos-
ing αh = αs = α̃p = 1.

This default choice provides reasonable results for most
of the textures, but the weights can be tuned for each tex-
ture to be synthesized. We did not find an easy way to au-
tomatically compute a good set of weights for each texture,
although this would be useful in practice.

The synthesis given in Fig. 9 are obtained, from left to
right, with the following settings of αs/α̃p : 5/1, 3/1, 1/1,
1/3, and 1/5, and always with αh = (αs + α̃p)/2. Textures
with large structures, long edges, or geometrical elements,
are better synthesized with a higher weight for the patch
sparsity term. On the contrary, a texture without sharp nor
structured elements but with a granular aspect is better re-

produced with more weight on the spectrum term. In the
extreme case of a texture without any geometrical element,
the patch term can be removed: see the examples of the sand
texture in Fig. 2 with [14] (spectrum only) or in Fig. 6 with-
out the patches sparsity term (spectrum and histogram).

The intermediate cases (a granular texture with some
sharp patterns) are well synthesized with a balanced weight-
ing αs = α̃p.

4.3.3 Sparsity

Figure 10 illustrates the effect of the sparsity parameter S.
A larger parameter S means that the patches are a lin-

ear combination of more elements from the dictionary D0.
In the case of texture synthesis, a large value of S allows the
superposition of several atoms and create artifacts, particu-
larly visible on the example in Fig. 10.

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 15

Input 1 scale 2 scales 3 scales

Input 8×8 px 12×12 px 16×16 px

Fig. 7 Synthesis results with different numbers of scales (top) and different sizes of patches (bottom). Multi-scale ensures spatial coherency of
the texture. The patches must roughly have the size of the patterns of the texture.

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

16 G. Tartavel, Y. Gousseau, and G. Peyré

Input images

More spectrum ←− Balanced −→ More patch sparsity

Fig. 9 Synthesis results with different weighting: more spectrum on the left, more patch sparsity on the right. Textures with few geometrical
content (top) are better reproduced with more spectrum; textures with large structures (bottom) need more patches sparsity.

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 17

Input Synthesis

Same, 2× and 4× zoom

Fig. 8 Synthesis of a 512× 512 image using 5 scales and patches of
size 18×18. The synthesized image has the same appearance as in the
128×128 image. We see on the zoomed result that fine details are lost
since bigger patches are used: a more evolved multi-scale scheme may
be necessary to handle both very large and very thin patterns.

On the contrary, the smallest value S = 1 imposes each
patch to be proportional to 1 atom from D0. Imposing S = 1
and binary weights W ∈ {0,1}N×K is an interesting alterna-
tive. It forces each patch to be equal to an atom of the dic-
tionary. The normalization constraint ‖dn‖2 ≤ 1 is no longer
necessary and should be removed in this case.

Within this setting, the learning stage (9) becomes a K-
means algorithm. The decomposition Algorithm 1 becomes
a nearest-neighbor classification, with a constraint on the
number Fn of use of each atom. The dictionary is in this
case a resampled and weighted version of the set of all the
patches in the original image. It is more compact because it
contains far less patches than the image. The nearest-neigh-
bor search would thus be far faster than an exhaustive search.
Observe that in the case of an exhaustive patch search, the
synthesis method is similar to the “Texture Optimization” al-
gorithm [20] and to the video inpainting approach of Wexler
et al. [40].

4.3.4 Other Settings

Figure 11 shows the effect of several options of our method.

Input

S = 2 S = 4

S = 6 S = 8

Fig. 10 Synthesis results with different sparsity S = 2,4,6,8. This
example illustrates the artifacts caused by the superposition of several
atoms for larger S.

The set of patches Πu can be subsampled to improve the
speed of the algorithm as explained in Sect. 3.5.

We only consider the patches lying on a grid of step ∆

with ∆ > 1. This leads to a mosaic artifact: it appears be-
cause the borders of the patches becomes visible. To avoid
this artifact, we use random translations of the grid at each
iteration: the border of the patches are not always at the
same relative position, and the mosaic artifact disappears.
Figure 11 shows that using ∆ = 4 with random offset gives
a similar result than when using ∆ = 1, while being 16 times
faster.

Alternated projections on the sets Ch, Cs, and Cp (Sect. 3.3)
leads to the images in Fig. 11 (right). The result is quite
similar to our result (2nd image from the right) but has some
artifacts: some small edges appear, and some grain is miss-
ing. More generally, the results obtained using this alter-
nated projection algorithm are sometimes similar to ours,
and sometimes suffer from several kinds of artifacts, which
point out the bad convergence of that method.

The post-processing step, that is the final projection on Cs

and then Ch, removes residual smoothness of the texture,
due to the patch sparsity constraint. This is visible in Fig. 11
(3rd and 4th images from the left).

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

18 G. Tartavel, Y. Gousseau, and G. Peyré

Input image ∆ = 1, no post-processing

∆ = 4, constant offset ∆ = 4, random offset

Using alternated projections As above + post-processing

Fig. 11 Synthesis results with different settings. Top right: synthesis
using all the patches (∆ = 1) without the post-processing step (the final
projection on Cs and then Ch); middle left: using only the patches on a
grid of step ∆ = 4; middle right: adding random translations of the grid
at each iteration; bottom right: adding the post-processing step; bottom
left: comparison with alternated projections instead of our gradient de-
scent scheme.

5 Conclusion

In this paper, we proposed a texture synthesis framework
which puts together both a Fourier spectrum constraint and a
sparsity constraint on the patches. Thanks to these two con-
straints, our method is able to synthesize a wide range of tex-
tures without a patch-based copy-paste approach. The spec-
trum controls the amount of oscillations and the grain of the
synthesized image, while the sparsity of the patches handles
geometrical information such as edges and sharp patterns.

We propose a variational framework to take both con-
straints into account. This framework is based on a non-
convex energy function defined as the sum of weighted dis-
tances between the image (or some linear transform of it)
and these constraints. The synthesis consists in finding local
minima of this function. The proposed framework is generic
and can take into account other constraints: in addition to the
sparsity and spectrum constraint, we use a histogram con-
straint to control the color distribution.

A numerical exploration of synthesis results shows that,
on contrary to copy-based approaches, our method produces
a high degree of innovation, and does not copy verbatim
whole parts of the input exemplar.

A Appendix: Proofs

A.1 Projection on Cs

We prove expression (8) of the projection of u on Cs. The projection is
us ∈ Cs of the form ûs(m) = eiϕ(m)û0(m). Our goal is to minimize

‖u−us‖2 =∑
m

∥

∥

∥
û(m)− eiϕ(m)û0(m)

∥

∥

∥

2
(27)

with respect to ϕ .
As the term of the sum are independent, the problem is to minimize

f (ψ) =
∥

∥

∥
x− yeiψ

∥

∥

∥

2
(28)

where x = û(m), y = û0(m) and ψ = ϕ(m) for any m. The hermitian
product of x,y ∈ C3 is denoted by x · y = ∑i xiy

∗
i ∈ C

The development of the expression of f (ψ) gives

f (ψ) = ‖x‖2− eiψ y · x− e−iψx · y+‖y‖2 .

The function f being continuous and 2π-periodic on R, it admits
(at least) a minimum and a maximum which are critical points ψc sat-
isfying f ′(ψc) = 0. Let’s write x · y = Aeiθ with A≥ 0. The derivative

f ′(ψ) =−ieiψy · x+ ie−iψx · y

gives e2iψc = e2iθ and the critical points ψc are thus characterized by
eiψc =±eiθ .

The second derivative

f ′′(ψ) = eiψ y · x+ e−iψ x · y.

provides more information: we know eiθ is a minimum since f ′′(eiθ) =
2A≥ 0, and −eiθ is a maximum since f ′′(−eiθ) =−2A≤ 0.

The case x · y = 0 leads to A = 0 and f being constant. In other
cases, A > 0: the minimums ψmin of the functions are strict and satisfy
eiψmin = eiθ = x·y

|x·y| , hence the expression of ûs(m) given in (8).

A.2 Projection on Cp

We provide here the proof that (14) and (15) are the minimizers of (11).

Using (16), the expression (11) is
∥

∥

∥
R(ℓ)−wD0En,k

∥

∥

∥

2
. Expressing

this norm as the sum of the norms of the columns leads to

min
k,n,w

∥

∥

∥
R
(ℓ)
k −wDn

∥

∥

∥

2
+ ∑

k′ 6=k

∥

∥

∥
R
(ℓ)
k′

∥

∥

∥

2
. (29)

Let us fix k and n. The problem

min
w

∥

∥

∥
R
(ℓ)
k −wDn

∥

∥

∥

2
(30)

is now an orthogonal projection. Since Dn is normalized, the solution
is

w∗ = 〈R(ℓ)
k ,Dn〉 (31)

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

Variational Texture Synthesis with Sparsity and Spectrum Constraints 19

as stated in (15) and Pythagora’s theorem gives the error

∥

∥

∥
R
(ℓ)
k −w∗Dn

∥

∥

∥

2
=
∥

∥

∥
R
(ℓ)
k

∥

∥

∥

2
−〈R(ℓ)

k ,Dn〉2. (32)

Substituting w in (29) by its optimal value w∗ function of (k,n)
simplifies the problem to

min
k,n
−〈R(ℓ)

k ,Dn〉2 +∑
k′

∥

∥

∥
R
(ℓ)
k′

∥

∥

∥

2
. (33)

Hence the result (16) stating (k∗,n∗) = argmax
∣

∣

∣
〈R(ℓ)

k ,Dn〉
∣

∣

∣
among the

set I
W (ℓ) of admissible (k,n).

A.3 Complexity of the greedy Algorithm 1

Here we show that the complexity of the greedy Algorithm 1 without
the back-projection step is

O
(

KN(L+λ S logK)
)

. (34)

Initialization. Computing the inner products Φ = DT
0 P between the

K patches and the N atoms in dimension L requires O(KNL) oper-
ations using standard matrix multiplications. Precomputing the inner
products DT

0 D0 is in O(N2L) operations. Initializing W and R is in KN

operation.
Building a max-heap from the absolute values of the KN inner

products Φn,k = 〈Rk,Dn〉 has a time-complexity of O
(

KN logKN)).

Loop for ℓ= 1 to λ SK. Finding the indices (k∗,n∗) and extracting
the maximum

∣

∣Φn∗,k∗
∣

∣ from the heap requires O(logKN) operations.
Updating W with the optimal weight w∗ =Φn∗ ,k∗ is only one oper-

ation. Updating R is in O(L) operations since only the L coefficients of
the k∗-th column is affected. Similarly, updating Φ is in O(N logKN)
operations since the N updated coefficients must be relocated in the
heap, and we recall that DT

0 D0 is precomputed.

Conclusion. Since we assume that S≪L≤N≪K, previous bounds
can be simplified, and in particular log(KN) ∈ O(logK). The initial-
izations and precomputations are in O(KNL). Updating the heap is in
O(λ SKN logK); building and searching the heap are cheaper. Hence
the complexity (34).

Acknowledgements We would like to thank the reviewers for their
valuable suggestions to improve and complete this paper. We thank the
authors of the VisTex database [31] for the set of textures they pub-
licly provide. Gabriel Peyré acknowledges support from the European
Research Council (ERC project SIGMA-Vision).

References

1. Aguerrebere, C., Gousseau, Y., Tartavel, G.: Exemplar-based Tex-
ture Synthesis: the Efros-Leung Algorithm. Image Processing On
Line 2013, 213–231 (2013)

2. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm
for designing overcomplete dictionaries for sparse representa-
tion. Signal Processing, IEEE Transactions on 54(11), 4311–4322
(2006)

3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patch-
Match: A randomized correspondence algorithm for structural im-
age editing. ACM Transactions on Graphics (Proc. SIGGRAPH)
28(3) (2009)

4. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, er-
ror reduction algorithm, and fienup variants: a view from convex
optimization. JOSA A 19(7), 1334–1345 (2002)

5. Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced
and radon wasserstein barycenters of measures. to
appear in Journal of Mathematical Imaging and Vi-
sion (2014). DOI 10.1007/s10851-014-0506-3. URL
http://hal.archives-ouvertes.fr/hal-00881872/

6. Briand, T., Vacher, J., Galerne, B., Rabin, J.: The Heeger and
Bergen pyramid based texture synthesis algorithm. Image Pro-
cessing On Line, preprint (2013)

7. Cross, G., Jain, A.: Markov random field texture models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 5(1),
25–39 (1983)

8. Desolneux, A., Moisan, L., Ronsin, S.: A compact representation
of random phase and gaussian textures. In: Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Conference
on, pp. 1381–1384. IEEE (2012)

9. Efros, A., Freeman, W.: Image quilting for texture synthesis and
transfer. In: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pp. 341–346. ACM
(2001)

10. Efros, A., Leung, T.: Texture synthesis by non-parametric sam-
pling. In: Computer Vision, 1999. The Proceedings of the Seventh
IEEE International Conference on, vol. 2, pp. 1033–1038. IEEE
(1999)

11. Elad, M., Aharon, M.: Image denoising via sparse and redundant
representations over learned dictionaries. Image Processing, IEEE
Transactions on 15(12), 3736–3745 (2006)

12. Engan, K., Aase, S., Hakon Husoy, J.: Method of optimal direc-
tions for frame design. In: Acoustics, Speech, and Signal Process-
ing, 1999. Proceedings., 1999 IEEE International Conference on,
vol. 5, pp. 2443–2446. IEEE (1999)

13. Galerne, B., Gouseau, Y., Morel, J.M.: Micro-texture synthesis by
phase randomization. Image Processing On Line (2011)

14. Galerne, B., Gousseau, Y., Morel, J.: Random phase textures: The-
ory and synthesis. Image Processing, IEEE Transactions on 20(1),
257–267 (2011)

15. Galerne, B., Lagae, A., Lefebvre, S., Drettakis, G.: Gabor noise by
example. ACM Transactions on Graphics (TOG) 31(4), 73 (2012)

16. Heeger, D., Bergen, J.: Pyramid-based texture analysis/synthesis.
In: SIGGRAPH ’95, pp. 229–238 (1995)

17. Julesz, B.: Visual pattern discrimination. Information Theory, IRE
Transactions on 8(2), 84–92 (1962)

18. Julesz, B.: A theory of preattentive texture discrimination based
on first-order statistics of textons. Biological Cybernetics 41(2),
131–138 (1981)

19. Kuhn, H.: The hungarian method for the assignment problem.
Naval research logistics quarterly 2(1-2), 83–97 (1955)

20. Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization
for example-based synthesis. In: ACM Transactions on Graphics
(TOG), vol. 24, pp. 795–802. ACM (2005)

21. Lagae, A., Lefebvre, S., Cook, R., Derose, T., Drettakis, G., Ebert,
D., Lewis, J., Perlin, K., Zwicker, M.: State of the art in procedural
noise functions. EG 2010-State of the Art Reports (2010)

22. Lagae, A., Lefebvre, S., Drettakis, G., Dutré, P.: Procedural noise
using sparse gabor convolution. In: ACM Transactions on Graph-
ics (TOG), vol. 28, p. 54. ACM (2009)

23. Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis.
ACM Transactions on Graphics (TOG) 24(3), 777–786 (2005)

24. Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for
alternating and averaged nonconvex projections. Foundations of
Computational Mathematics 9(4), 485–513 (2009)

25. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for
matrix factorization and sparse coding. The Journal of Machine
Learning Research 11, 19–60 (2010)

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

http://hal.archives-ouvertes.fr/hal-00881872/

20 G. Tartavel, Y. Gousseau, and G. Peyré

26. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dic-
tionaries. Signal Processing, IEEE Transactions on 41(12), 3397–
3415 (1993)

27. Moisan, L.: Periodic plus smooth image decomposition. Journal
of Mathematical Imaging and Vision 39(2), 161–179 (2011)

28. Olshausen, B., Field, D.: Natural image statistics and efficient
coding. Network: computation in neural systems 7(2), 333–339
(1996)

29. Perlin, K.: An image synthesizer. SIGGRAPH Comput. Graph.
19(3), 287–296 (1985)

30. Peyré, G.: Sparse modeling of textures. Journal of Mathematical
Imaging and Vision 34(1), 17–31 (2009)

31. Pickard, R., Graszyk, C., Mann, S., Wachman, J., Pickard, L.,
Campbell, L.: Vistex database. Media Lab., MIT, Cambridge,
Massachusetts (1995)

32. Pitie, F., Kokaram, A., Dahyot, R.: N-dimensional probability den-
sity function transfer and its application to color transfer. In: Com-
puter Vision, 2005. ICCV 2005. Tenth IEEE International Confer-
ence on, vol. 2, pp. 1434–1439. IEEE (2005)

33. Portilla, J., Simoncelli, E.: A parametric texture model based on
joint statistics of complex wavelet coefficients. International Jour-
nal of Computer Vision 40(1), 49–70 (2000)

34. Ramanarayanan, G., Bala, K.: Constrained texture synthesis via
energy minimization. Visualization and Computer Graphics, IEEE
Transactions on 13(1), 167–178 (2007)

35. Simoncelli, E., Freeman, W., Adelson, E., Heeger, D.: Shiftable
multiscale transforms. Information Theory, IEEE Transactions on
38(2), 587–607 (1992)

36. Tartavel, G., Gousseau, Y., Peyré, G.: Constrained sparse texture
synthesis. Proceedings of SSVM’13 (2013)

37. Tropp, J.: Greed is good: Algorithmic results for sparse approxi-
mation. Information Theory, IEEE Transactions on 50(10), 2231–
2242 (2004)

38. Wei, L., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in
example-based texture synthesis. In: Eurographics 2009, State of
the Art Report, EG-STAR. Eurographics Association (2009)

39. Wei, L., Levoy, M.: Fast texture synthesis using tree-structured
vector quantization. In: SIGGRAPH ’00, pp. 479–488. ACM
Press/Addison-Wesley Publishing Co. (2000)

40. Wexler, Y., Shechtman, E., Irani, M.: Space-time video comple-
tion. In: Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Confer-
ence on, vol. 1, pp. I–120. IEEE (2004)

41. Xia, G.S., Ferradans, S., Peyré, G., Aujol, J.F.: Syn-
thesizing and mixing stationary gaussian texture
models. SIAM Journal on Imaging Sciences 7(1),
476–508 (2014). DOI 10.1137/130918010. URL
http://hal.archives-ouvertes.fr/hal-00816342/

ha
l-0

08
81

84
7,

 v
er

si
on

 2
 -

10
 J

un
 2

01
4

http://hal.archives-ouvertes.fr/hal-00816342/

	Introduction
	Variational Formulation
	Optimization
	Numerical Results
	Conclusion
	Appendix: Proofs

