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Estimating the conditional extreme-value index under random

right-censoring

Gilles Stupfler

Aix Marseille Université, CNRS, EHESS, Centrale Marseille, GREQAM UMR 7316,

13002 Marseille, France

Abstract. In extreme value theory, the extreme-value index is a parameter that controls the
behavior of a cumulative distribution function in its right tail. Estimating this parameter is thus the
first step when tackling a number of problems related to extreme events. In this paper, we introduce
an estimator of the extreme-value index in the presence of a random covariate when the response
variable is right-censored, whether its conditional distribution belongs to the Fréchet, Weibull or
Gumbel domain of attraction. The pointwise weak consistency and asymptotic normality of the
proposed estimator are established. Some illustrations on simulations are provided and we showcase
the estimator on a real set of medical data.

AMS Subject Classifications: 62G05, 62G20, 62G30, 62G32, 62N01, 62N02.

Keywords: Extreme-value index, random covariate, random right-censoring, consistency, asymp-
totic normality.

1 Introduction

Studying extreme events is relevant in numerous fields of statistical applications. For instance,
one can think about hydrology, where it is of interest to estimate the maximum level reached by
seawater along a coast over a given period, or to study extreme rainfall at a given location; in
actuarial science, a major problem for an insurance firm is to estimate the probability that a claim
so large that it represents a threat to its solvency is filed. The focus in this type of problem is not in
the estimation of“central”parameters of the random variable of interest, such as its mean or median,
but rather in the understanding of its behavior in its right tail. The basic result in extreme value
theory, known as the Fisher-Tippett-Gnedenko theorem (Fisher and Tippett [12], Gnedenko [16])
states that if (Yn) is an independent sequence of random copies of a random variable Y such that
there exist normalizing nonrandom sequences of real numbers (an) and (bn), with an > 0 and such
that the sequence

1

an

(
max
1≤i≤n

Yi − bn

)
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converges in distribution to some nondegenerate limit, then the cumulative distribution function
(cdf) of this limit has the form y 7→ GγY

(ay + b), with a > 0 and b, γY ∈ R where

GγY
(y) =

{
exp

(
−(1 + γY y)

−1/γY
)

if γY 6= 0 and 1 + γY y > 0,

exp (− exp(−y)) if γY = 0.

If the aforementioned convergence holds, we shall say that Y (or equivalently, its cdf FY ) belongs
to the domain of attraction (DA) of GγY

, with γY being the so-called extreme-value index of Y ,
and we write FY ∈ D(GγY

). The parameter γY drives the behavior of GγY
(and thus of FY ) in its

right tail:

• if γY > 0, namely Y belongs to the Fréchet DA, then 1 − GγY
is heavy-tailed i.e. it has a

polynomial decay;

• if γY < 0, namely Y belongs to the Weibull DA, then 1 − GγY
is short-tailed i.e. it has a

support bounded to the right;

• if γY = 0, namely Y belongs to the Gumbel DA, then 1−GγY
has an exponential decay.

This makes it clear that the estimation of γY is a first step when tackling various problems in
extreme value analysis, such as the estimation of extreme quantiles of Y . Recent monographs on
extreme value theory and especially univariate extreme-value index estimation include Beirlant et
al. [2] and de Haan and Ferreira [19].

In practical applications, it may happen that only incomplete information is available. Consider for
instance a medical follow-up study lasting up to time t which collects the survival times of patients
for a given chronic disease. If a patient is diagnosed with the disease at time s, his/her survival time
is known if and only if he/she dies before time t. If the patient survives until the end of the study,
the only information available is that his/her survival time is not less than t− s. This situation is
the archetypal example of right-censoring, which shall be the focus of this paper. An interesting
problem in this particular case is the estimation of extreme survival times or, in other words, how
long an exceptionally strong individual can survive the disease. A preliminary step necessary to
give an answer to this question is to estimate the extreme-value index of the survival time Y ; this
problem, which is much more complex than the estimation of the extreme-value index when the data
set is complete, has been investigated quite recently by Beirlant et al. [3] where asymptotic results
for an extreme-value index estimator using the data above a nonrandom threshold are derived in
the context of the Hall model (see Hall [20]), Einmahl et al. [11] in which the authors also suggest an
estimator of extreme quantiles under random right-censoring so as to provide extreme survival times
for male patients suffering from AIDS, Beirlant et al. [4] where maximum likelihood estimators are
discussed, Sayah et al. [25] who focus on the heavy-tailed case and introduce a robust estimator with
respect to contamination and Worms and Worms [29] where the consistency of several estimators,
coming either from Kaplan-Meier integration or censored regression techniques, is studied. This
situation should not be confused with right-truncation, in which case no information is available at
all when Y is not actually observed: a recent reference in this case is Gardes and Stupfler [15].

Besides, it may well be the case that the survival time of a patient depends on additional random
factors such as his/her age or the pre-existence of some other medical condition. Our goal in this
study is to make it possible to integrate such information in the model by taking into account
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the dependency of Y on a covariate X . The problem thus becomes to estimate the conditional
extreme-value index γY (x) of Y given X = x. Recent papers on this subject when Y is noncensored
include Wang and Tsai [28] who introduced a maximum likelihood approach, Daouia et al. [7] who
used a fixed number of nonparametric conditional quantile estimators to estimate the conditional
extreme-value index, Gardes and Girard [13] who generalized the method of [7] to the case when the
covariate space is infinite-dimensional, Goegebeur et al. [17] who studied a nonparametric regression
estimator whose uniform asymptotic properties are examined in Goegebeur et al. [18] and Gardes
and Stupfler [14] who introduced a smoothed local Hill estimator (see Hill [21]). All these papers
consider the case when Y given X = x belongs to the Fréchet DA; the case when the response
distribution belongs to an arbitrary domain of attraction is considered in Daouia et al. [8], who
generalized the method of [7] to this context and Stupfler [26] who introduced a generalization of
the popular moment estimator of Dekkers et al. [10]. To the best of our knowledge, the only paper
tackling this problem when Y is right-censored is Ndao et al. [23]; their work is, however, restricted
to the case when Y is heavy-tailed. Our focus here is to devise an estimator which works regardless
of whether or not the tail of Y is heavy.

The outline of this paper is as follows. In Section 2, we give a precise definition of our model.
In Section 3, we define our estimator of the conditional extreme-value index. The pointwise weak
consistency and asymptotic normality of the estimator are stated in Section 4. The finite sample
performance of the estimator is studied in Section 5. In Section 6, we revisit the medical data set
of [11] by integrating additional covariate information. Proofs are deferred to Section 7.

2 Framework

Let (X1, Y1, C1), . . . , (Xn, Yn, Cn) be n independent copies of a random vector (X,Y,C) taking
its values in E × (0,∞) × (0,∞) where E is a finite-dimensional linear space endowed with a
norm ‖ · ‖. We assume that for all x ∈ E, given X = x, Y and C are independent, possess
continuous probability density functions (pdfs) and that the related conditional survival functions
(csfs) FY (·|x) = 1−FY (·|x) of Y givenX = x and FC(·|x) = 1−FC(·|x) of C givenX = x belong to
some domain of attraction. Specifically, we shall work in the following setting, where we recall that
the left-continuous inverse of a nondecreasing function f is the function z 7→ inf{y ∈ R | f(y) ≥ z}:

(M1) Y and C are positive random variables and for every x ∈ E, there exist real numbers
γY (x), γC(x) and positive functions aY (·|x), aC(·|x) such that the left-continuous inverses UY (·|x)
of 1/FY (·|x) and UC(·|x) of 1/FC(·|x) satisfy

lim
t→∞

UY (tz|x)− UY (t|x)
aY (t|x)

= DγY (x)(z) and lim
t→∞

UC(tz|x)− UC(t|x)
aC(t|x)

= DγC(x)(z)

for every z > 0, where

Dγ(z) =





zγ − 1

γ
if γ 6= 0

log z if γ = 0.
(1)

Model (M1) is the conditional analogue of the classical extreme-value framework for Y and C, see
for instance [19], p.19. In this model, for every x ∈ E, the functions UY (·|x) and UC(·|x) have
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positive limits UY (∞|x) and UC(∞|x) at infinity; the functions x 7→ UY (∞|x) and x 7→ UC(∞|x),
which are such that

UY (∞|x) = sup{t ∈ R |FY (t|x) > 0} and UC(∞|x) = sup{t ∈ R |FC(t|x) > 0}

are respectively called the conditional right endpoints of Y and C.

We assume that we only observe the random vectors (Xi, Ti, δi) with Ti = Yi∧Ci and δi = I{Yi≤Ci},
where we denote by s ∧ t the minimum of s and t. Suppose that the following condition holds as
well:

(H) For every x ∈ E, the distribution of T given X = x belongs to some domain of attraction
D(GγT (x)) and we have either

• γY (x) > 0 and γC(x) > 0;

• γY (x) < 0, γC(x) < 0 and 0 < UY (∞|x) = UC(∞|x) < ∞;

• γY (x) = γC(x) = 0 and UY (∞|x) = UC(∞|x) = ∞.

An unconditional analogue of hypothesis (H) is condition (7) in [11]. This hypothesis ensures
that one works in an interesting case regarding censoring: censoring in the extremes of the sample
should be present to justify using an adapted methodology, but not complete so that we can expect
to recover information about the extremes of Y . For instance, any situation in which the tail of Y
is heavy and C is short-tailed, namely γY (x) > 0 and γC(x) < 0, is a so-called“completely censored
situation” in the extremes (see also [11]): clearly, high values of Y exceeding the right endpoint of
C will be censored with probability 1 and this makes it impossible to recover anything about the
right tail of Y . If on the contrary the random variable Y is short-tailed and the tail of C is heavy,
corresponding to the case γY (x) < 0 and γC(x) > 0, then we are in an “uncensored situation” in
which high values of T come from high values of Y with probability approaching 1 as the sample
size increases. In this situation, a methodology such as the one of [26] which does not account
for the right-censoring phenomenon will yield essentially the same results as an adapted technique
provided the sample size is large enough.

As mentioned in [11], if (M1) and (H) hold then T has conditional right endpoint UY (∞|x) =
UC(∞|x) and conditional extreme-value index

γT (x) =
γY (x)γC(x)

γY (x) + γC(x)

with the convention γT (x) = 0 if γY (x) = γC(x) = 0. In other words, if FT (·|x) is the csf of T
given X = x, there exists a positive function aT (·|x) such that the left-continuous inverse UT (·|x)
of 1/FT (·|x) satisfies

∀z > 0, lim
t→∞

UT (tz|x)− UT (t|x)
aT (t|x)

= DγT (x)(z).
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3 The estimators

To tackle the problem, we start by introducing an estimator of the conditional extreme-value index
γT . For x ∈ E and a sequence h = h(n) converging to 0 as n → ∞, we let Nn(x, h) be the total
number of observations in the closed ball B(x, h) with center x and radius h:

Nn(x, h) =
n∑

i=1

I{Xi∈B(x,h)} with B(x, h) = {x′ ∈ E | ‖x− x′‖ ≤ h},

where I{·} is the indicator function. The bandwidth sequence h(n) makes it possible to select
those covariates which are close enough to x. Given Nn(x, h) = l ≥ 1, we let, for i = 1, . . . , l,
(Ti,∆i) = (Ti(x, h),∆i(x, h)) be the response pairs whose associated covariates Xi = Xi(x, h)
belong to the ball B(x, h). Let T1,l ≤ · · · ≤ Tl,l be the order statistics associated with the sample
(T1, . . . , Tl) – this way of denoting order statistics shall be used throughout the paper – and set for
j = 1, 2:

M (j)
n (x, kx, h) =

1

kx

kx∑

i=1

[log(Tl−i+1,l)− log(Tl−kx,l)]
j

if kx ∈ {1, . . . , l − 1} and 0 otherwise. Define:

γ̂T,n(x, kx, h) = γ̂T,n,+(x, kx, h) + γ̂T,n,−(x, kx, h)

where γ̂T,n,+(x, kx, h) = M (1)
n (x, kx, h)

and γ̂T,n,−(x, kx, h) = 1− 1

2


1−

[
M

(1)
n (x, kx, h)

]2

M
(2)
n (x, kx, h)




−1

if
[
M

(1)
n (x, kx, h)

]2
6= M

(2)
n (x, kx, h), with γ̂T,n,−(x, kx, h) = 0 otherwise. The estimator γ̂T,n(x, kx, h)

is an adaptation of the moment estimator of [10] to the presence of a random covariate; it follows
from Theorem 1 in [26] that this quantity is a pointwise consistent estimator of the extreme-value
index γT (x) of T given X = x under mild conditions.

We then adapt an idea of [11] in order to obtain an estimator of γY (x). Given Nn(x, h) = l,
let ∆[1:l], . . . ,∆[l:l] be the order statistics induced by the sample (T1, . . . , Tl): ∆[i:l] is the random
variable associated with Ti,l. We define

p̂n(x, kx, h) =
1

kx

kx∑

i=1

∆[l−i+1:l],

the proportion of noncensored observations among Tl−kx+1,l, . . . , Tl,l when kx ∈ {1, . . . , l− 1} and 0
otherwise. This estimator is the adaptation to the random covariate case of the estimator p̂ of [11]:
we shall show (see the proof of Theorem 1 below) that under some conditions, p̂n(x, kx, h) is a
consistent estimator of γC(x)/(γY (x) + γC(x)). Our estimator of γY (x) is then

γ̂Y,n(x, kx, h) =
γ̂T,n(x, kx, h)

p̂n(x, kx, h)

if p̂n(x, kx, h) > 0 and 0 otherwise.
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4 Main results

4.1 Weak consistency

We start by giving a pointwise weak consistency result for our estimator. To this end let nx =
nx(n, h) = nP(X ∈ B(x, h)) be the average total number of points in the ball B(x, h) and assume
that nx(n, h) > 0 for every n. Let kx = kx(n) be a sequence of positive integers, FT,h(·|x) be the cdf
of T given X ∈ B(x, h) and UT,h(·|x) be the left-continuous inverse of 1/FT,h(·|x). We introduce
the functions p(·|x), ph(·|x) defined by

p(t|x) =
d

dt
P(δ = 1, T ≤ t |X = x)

/
d

dt
FT (t|x)

and ph(t|x) =
d

dt
P(δ = 1, T ≤ t |X ∈ B(x, h))

/
d

dt
FT,h(t|x)

for every t > 0 such that the denominator is nonzero and p(x) := γC(x)/(γY (x)+γC(x)) otherwise.
It follows from Lemma 1 (see Section 7) that if (M1), (H) hold and γY (x) 6= 0, then the first
of these two quantities converges to the positive limit p(x) as t → UT (∞|x) and from Lemma 2
that the second quantity is indeed well-defined. Assume that in the case γY (x) = γC(x) = 0, the
function p(·|x) also converges to a positive limit at infinity, which we denote by p(x) for the sake of
consistency. The function x 7→ 1− p(x) is understood as the conditional percentage of censoring in
the right tail of Y . For u, v ∈ (1,∞) such that u < v, we introduce the quantities

ω(logUT , u, v, x, h) = sup
t∈[u,v]

∣∣∣∣log
UT,h(t|x)
UT (t|x)

∣∣∣∣

and ω(p ◦ UT , u, v, x, h) = sup
t∈[u,v]

|ph(UT,h(t|x)|x) − p(x)| .

Our consistency result is then:

Theorem 1. Assume that (M1) and (H) hold. For some x ∈ E, assume that nx → ∞, kx → ∞,
kx/nx → 0 and for some η > 0

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞ (2)

and ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞. (3)

Then it holds that γ̂Y,n(x, kx, h)
P−→ γY (x) as n → ∞.

Conditions kx → ∞ and kx/nx → 0 in Theorem 1 are standard hypotheses for the estimation of
the conditional extreme-value index. Moreover, condition nx → ∞ is necessary to make sure that
there are sufficiently many observations close to x, which is a standard assumption in the random
covariate case.

We conclude this section by analyzing conditions (2) and (3). We assume that

(A1) For every x ∈ E, it holds that for all t ∈ (0, UT (∞|x)), fY (t|x) > 0 and fC(t|x) > 0.
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(A2) The functions γY and γC are continuous functions on E.

(A3) For every x′ ∈ B(x, h) and r > 0, we have P(X ∈ B(x′, r)) > 0 if n is large enough.

(A4) For every y ∈ R, the function FT (y|·) is continuous on E.

Note that hypothesis (A1) implies that the csf FT (·|x) is a continuous decreasing function on
(0, UT (∞|x)) and hypothesis (A2) entails that the function γT is continuous. Hypotheses (A3) and
(A4) are technical conditions; see Proposition 1 in [26] for analogues of these assumptions in the
noncensored case. We can draw two consequences from this:

1. If γY (x) > 0 and γC(x) > 0 then γY (x
′) > 0, γC(x

′) > 0 and γT (x
′) > 0 for x′ close enough

to x. Corollary 1.2.10 in [19], p.23 thus yields for n large enough and every x′ ∈ B(x, h)

∀z > 1, UT (z|x′) = zγT (x′)LUT
(z|x′)

where for every x′ ∈ B(x, h), LUT
(·|x′) is a slowly varying function at infinity, and

∀t > 0, FY (t|x′) = t−1/γY (x′)LFY
(t|x′) and FC(t|x′) = t−1/γC(x′)LFC

(t|x′)

where LFY
(·|x′) and LFC

(·|x′) are continuously differentiable slowly varying functions at
infinity. Especially, if

bY (t|x′) = t
L′
FY

(t|x′)

LFY
(t|x′)

and bC(t|x′) = t
L′
FC

(t|x′)

LFC
(t|x′)

then

∀t > 0, fY (t|x′) =

[
1

γY (x′)
− bY (t|x′)

]
FY (t|x′)

t

and fC(t|x′) =

[
1

γC(x′)
− bC(t|x′)

]
FC(t|x′)

t
.

2. If γY (x) < 0 and γC(x) < 0 then γY (x
′) < 0, γC(x

′) < 0 and γT (x
′) < 0 for x′ close enough

to x. Corollary 1.2.10 in [19], p.23 yields for n large enough and every x′ ∈ B(x, h) that

∀z > 1, UT (∞|x′)− UT (z|x′) = zγT (x′)LUT
(z|x′)

where for every x′ ∈ B(x, h), LUT
(·|x′) is a slowly varying function at infinity and

∀t > 0, FY (UY (∞|x′)− t−1|x′) = t1/γY (x′)LFY
(t|x′)

and FC(UC(∞|x′)− t−1|x′) = t1/γC(x′)LFC
(t|x′)

where LFY
(·|x′) and LFC

(·|x′) are continuously differentiable slowly varying functions at
infinity. In particular, if

bY (t|x′) =




t
L′
FY

(t|x′)

LFY
(t|x′)

if LFY
(t|x′) > 0

0 otherwise

and bC(t|x′) =




t
L′
FC

(t|x′)

LFC
(t|x′)

if LFC
(t|x′) > 0

0 otherwise,
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then, recalling that UT (∞|x′) = UY (∞|x′) = UC(∞|x′) for every x′ ∈ B(x, h), one may write

∀t ∈ (0, UT (∞|x′)), fY (t|x′) =

[
− 1

γY (x′)
− bY ((UT (∞|x′)− t)−1|x′)

]
FY (t|x′)

UT (∞|x′)− t

and fC(t|x′) =

[
− 1

γC(x′)
− bC((UT (∞|x′)− t)−1|x′)

]
FC(t|x′)

UT (∞|x′)− t
.

In this framework, it is possible to reformulate the hypotheses in our main results in a more conve-
nient fashion: let Kx,η := [nx/(1 + η)kx, n

1+η
x ] and assume that for some α ∈ (0, 1]

sup
x′∈B(x,h)

|γY (x′)− γY (x)| ∨ |γC(x′)− γC(x)| = O(hα) (4)

and sup
z∈Kx,η

sup
x′∈B(x,h)

1

log z

∣∣∣∣log
LUT

(z|x′)

LUT
(z|x)

∣∣∣∣ = O(hα) (5)

where we denote by s∨t the maximum of two real numbers s and t. Then in case 1, if hα lognx → 0
as n → ∞, one has

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα lognx) (6)

see the discussion below Proposition 1 in [26]. In case 2, if the conditional right endpoint UT (∞|·)
is such that

sup
x′∈B(x,h)

|UT (∞|x′)− UT (∞|x)| = O(hβ) (7)

with β ∈ (0, 1], then if

hα lognx → 0 and
(nx/kx)

−γT (x)

LUT
(nx/kx|x)

hβ → 0 as n → ∞ (8)

one has

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O

(
hα lognx ∨ (nx/kx)

−γT (x)

LUT
(nx/kx|x)

hβ

)
, (9)

see again the discussion below Proposition 1 in [26].

The next result gives bounds of this kind when considering hypothesis (3).

Proposition 1. Assume that conditions (M1), (H), (A1), (A2), (A3), (A4) hold and that for some
α ∈ (0, 1] and η > 0, conditions (4) and (5) are satisfied.

1. In case 1 above assume that for x′ close enough to x, |bY (·|x′)|, |bC(·|x′)| are regularly varying
functions at infinity with respective indices ρY (x

′)/γY (x
′), ρC(x

′)/γC(x
′), that is

|bY (t|x′)| = tρY (x′)/γY (x′)LbY (t|x′) and |bC(t|x′)| = tρC(x′)/γC(x′)LbC (t|x′) (10)
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with the so-called conditional second-order parameter functions ρY , ρC and the slowly varying
functions LbY (·|x′), LbC (·|x′) satisfying, for some η > 0,

sup
x′∈B(x,h)

|ρY (x′)− ρY (x)| ∨ |ρC(x′)− ρC(x)| = O(hα) , (11)

sup
t∈UT (Kx,η|x)

sup
x′∈B(x,h)

1

log t

[∣∣∣∣log
LbY (t|x′)

LbY (t|x)

∣∣∣∣ ∨
∣∣∣∣log

LbC (t|x′)

LbC (t|x)

∣∣∣∣
]

= O(hα) (12)

where UT (Kx,η|x) is the image of the interval Kx,η by the function UT (·|x). If ρY (x) and
ρC(x) are negative, hα lognx → 0 and the sequence

δn := |bY (UT (nx/kx|x)|x)| ∨ |bC(UT (nx/kx|x)|x)|

converges to 0 then, for η > 0 small enough, one has, as n → ∞:

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα lognx ∨ δn) .

2. In case 2 above assume that conditions (7) and (8) are satisfied. Assume moreover that for
x′ close enough to x, |bY (·|x′)| and |bC(·|x′)| are regularly varying functions at infinity with
respective indices −ρY (x

′)/γY (x
′) and −ρC(x

′)/γC(x
′), namely

|bY (t|x′)| = t−ρY (x′)/γY (x′)LbY (t|x′) and |bC(t|x′)| = t−ρC(x′)/γC(x′)LbC (t|x′) (13)

with the conditional second-order parameter functions ρY , ρC satisfying (11) and the slowly
varying functions LbY (·|x′), LbC (·|x′) being such that for some η ∈ (0, 1)

sup
t∈Jx,η

sup
x′∈B(x,h)

1

log t

[∣∣∣∣log
LbY (t|x′)

LbY (t|x)

∣∣∣∣ ∨
∣∣∣∣log

LbC (t|x′)

LbC (t|x)

∣∣∣∣
]
= O(hα) (14)

where Jx,η := [(1 − η)[UT (∞|x) − UT (nx/kx|x)]−1,∞). If ρY (x) and ρC(x) are negative and
the sequence

δn := |bY ((UT (∞|x) − UT (nx/kx|x))−1|x)| ∨ |bC((UT (∞|x)− UT (nx/kx|x))−1|x)|

converges to 0 then one has, as n → ∞:

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα lognx ∨ δn) .

This result relates hypothesis (3) in Theorem 1 to the various functions involved in the usual
parametrization of the problem. It shall allow us to recover the optimal rate of convergence of the
estimator, see Theorem 2 and the developments below for details.

4.2 Asymptotic normality

To prove a pointwise asymptotic normality result for our estimator, we need to introduce a second-
order condition on the function UT (·|x):
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(M2) Conditions (M1) and (H) hold and for every x ∈ E, there exist a real number ρT (x) ≤ 0
and a function AT (·|x) of constant sign converging to 0 at infinity such that the function UT (·|x)
satisfies

∀z > 0, lim
t→∞

1

AT (t|x)

[
UT (tz|x)− UT (t|x)

aT (t|x)
−DγT (x)(z)

]
= HγT (x),ρT (x)(z)

where

HγT (x),ρT (x)(z) =

∫ z

1

rγT (x)−1

[∫ r

1

sρT (x)−1ds

]
dr.

Hypothesis (M2) is the conditional analogue of a classical second-order condition, see for instance
Definition 2.3.1 and Corollary 2.3.4 in [19], pp.44–45: the parameter ρT (x) is the so-called second-
order parameter of T given X = x. Note that Theorem 2.3.3 in [19], p.44 shows that the function
|AT (·|x)| is regularly varying at infinity with index ρT (x). Moreover, as shown in Lemma B.3.16
p.397 therein, if (M2) holds with γT (x) 6= ρT (x) and ρT (x) < 0 if γT (x) > 0, then defining
qT (·|x) = aT (·|x)/UT (·|x), a second-order condition also holds for the function logUT (·|x), namely:

∀z > 0, lim
t→∞

1

QT (t|x)

[
logUT (tz|x)− logUT (t|x)

qT (t|x)
−DγT,−(x)(z)

]
= HγT,−(x),ρ′

T
(x)(z)

with γT,−(x) = γT (x) ∧ 0,

ρ′T (x) =





ρT (x) if γT (x) < ρT (x) ≤ 0

γT (x) if ρT (x) < γT (x) ≤ 0

−γT (x) if 0 < γT (x) < −ρT (x) and ℓT (x) 6= 0

ρT (x) if (0 < γT (x) < −ρT (x) and ℓT (x) = 0) or 0 < −ρT (x) ≤ γT (x)

where we have defined

ℓT (x) = lim
t→∞

(
UT (t|x)−

aT (t|x)
γT (x)

)

and QT (·|x) has ultimately constant sign, converges to 0 at infinity and is such that |QT (·|x)| is
regularly varying at infinity with index ρ′T (x). Note that Lemma B.3.16 in [19], p.397 entails that
one can choose

QT (t|x) =





AT (t|x) if γT (x) < ρT (x) ≤ 0

γT,+(x) −
aT (t|x)
UT (t|x)

if ρT (x) < γT (x) ≤ 0
or 0 < γT (x) < −ρT (x) and ℓT (x) 6= 0
or 0 < γT (x) = −ρT (x)

ρT (x)

γT (x) + ρT (x)
AT (t|x) if 0 < γT (x) < −ρT (x) and ℓT (x) = 0

or 0 < −ρT (x) < γT (x)

with γT,+(x) = γT (x) ∨ 0. Besides, if γT (x) > 0 and ρT (x) = 0, then one has

∀z > 0, lim
t→∞

1

QT (t|x)

[
logUT (tz|x)− logUT (t|x)

qT (t|x)
− log z

]
= 0

10



for every function QT (·|x) such that AT (t|x) = O(QT (t|x)) as t → ∞; especially, we can and will
take QT (·|x) = AT (·|x) and ρ′T (x) = 0 in this case.

We can now state the asymptotic normality of our estimator.

Theorem 2. Assume that (M2) holds. For some x ∈ E, assume that nx → ∞, kx → ∞, kx/nx →
0,

√
kx QT (nx/kx|x) → 0 and for some η > 0

√
kx

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞ (15)

and
√
kx ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞. (16)

Then if γT (x) 6= ρT (x), it holds that

√
kx [γ̂Y,n(x, kx, h)− γY (x)]

d−→ N
(
0,

1

p2(x)

[
V (γT (x)) +

γ2
T (x)

p(x)
(1− p(x))

])

where we have set

V (γT (x)) =





γ2
T (x) + 1 if γT (x) ≥ 0

(1− γT (x))
2(1− 2γT (x))(1 − γT (x) + 6γ2

T (x))

(1− 3γT (x))(1 − 4γT (x))
if γT (x) < 0.

Theorem 2 is the conditional analogue of the asymptotic normality result stated in [11]. In par-
ticular, the asymptotic variance of our estimator is similar to the one obtained when there is no
covariate. Besides, condition

√
kx QT (nx/kx|x) → 0 as n → ∞ in Theorem 2 is a standard condition

needed to control the bias of the estimator.

We conclude this paragraph by showing how Theorem 2 can be used to obtain optimal rates of
convergence for our estimator. We assume that E = R

d, d ≥ 1 is equipped with the standard
Euclidean distance and that X has a probability density function f on R

d which is continuous on
its support S, assumed to have nonempty interior. If x is a point lying in the interior of S which is
such that f(x) > 0, it is straightforward to show that (A3) holds and that

nx = n

∫

B(x,h)

f(u)du = nhdVf(x)(1 + o(1)) as n → ∞

with V being the volume of the unit ball in R
d. Set k = kx/(h

dVf(x)); it is then clear that
kx = khdVf(x) and that hypotheses nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞ are equivalent to
khd → ∞ and k/n → 0 as n → ∞. If k and h have respective order na and n−b, with a, b > 0, the
rate of convergence of the estimator γ̂Y,n(x, kx, h) to γY (x) is then n(a−bd)/2. Under the hypotheses
of Theorem 2, provided that (A1), (A2) and (A4) hold, one can find the optimal values for a and b
in the Fréchet and Weibull domains of attraction:

• If γY (x) > 0 and γC(x) > 0, then under the Hölder conditions (4) and (5), hypothesis (15)

shall be satisfied if
√
khdhα log(nhd) → 0 as n → ∞. Besides, under assumption (10) and the

Hölder conditions (11) and (12), Proposition 1 gives that hypothesis (16) is implied by
√
kx
[
|bY (UT (nx/kx|x)|x)| ∨ |bC(UT (nx/kx|x)|x)|

]
→ 0 as n → ∞
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or, equivalently,

√
khd

(n
k

)γC(x)ρY (x)/(γY (x)+γC(x))

LY (n/k|x) → 0

and
√
khd

(n
k

)γY (x)ρC(x)/(γY (x)+γC(x))

LC(n/k|x) → 0

as n → ∞, where LC(·|x) and LY (·|x) are slowly varying functions at infinity. Recalling the

bias condition
√
khdQT (n/k|x) → 0 as n → ∞ , the problem is thus to maximize the quantity

a− bd under the constraints a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0,

a− bd+ 2(1− a)
γC(x)ρY (x)

γY (x) + γC(x)
≤ 0,

a− bd+ 2(1− a)
γY (x)ρC(x)

γY (x) + γC(x)
≤ 0

and a− bd+ 2(1− a)ρ′T (x) ≤ 0.

Setting

ρ(x) := max

(
ρ′T (x),

γC(x)ρY (x)

γY (x) + γC(x)
,

γY (x)ρC(x)

γY (x) + γC(x)

)
≤ 0

the constraints become a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0 and a− bd+ 2(1− a)ρ(x) ≤ 0.

The solution to this problem is

a∗ =
−(d+ 2α)ρ(x)

α− (d+ 2α)ρ(x)
and b∗ =

−ρ(x)

α− (d+ 2α)ρ(x)

for which

a∗ − b∗d =
−2αρ(x)

α− (d+ 2α)ρ(x)
.

The optimal convergence rate for our estimator in this case is therefore

n(a∗−b∗d)/2 = n−αρ(x)/(α−(d+2α)ρ(x)).

• If γY (x) < 0 and γC(x) < 0, then under the Hölder conditions (4), (5) and (7), hypothesis (15)
shall be satisfied if (see (8))

√
khdhα log(nhd) → 0 and

√
khd

(n/k)−γT (x)

LUT
(n/k|x)h

β → 0 as n → ∞.

Besides, under assumption (13) and the Hölder conditions (11) and (14), Proposition 1 gives
that hypothesis (16) is implied by

√
kx
[
|bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| ∨ |bC((UT (∞|x) − UT (nx/kx|x))−1|x)|

]
→ 0

12



or, equivalently,

√
khd

(n
k

)γC(x)ρY (x)/(γY (x)+γC(x))

LY (n/k|x) → 0

and
√
khd

(n
k

)γY (x)ρC(x)/(γY (x)+γC(x))

LC(n/k|x) → 0

as n → ∞, where LC(·|x) and LY (·|x) are slowly varying functions at infinity. Recalling the

bias condition
√
khdQT (n/k|x) → 0 as n → ∞, the problem thus consists in maximizing the

quantity a− bd under the constraints a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0,

a− 2(1− a)γT (x)− b(d+ 2β) ≤ 0,

a− bd+ 2(1− a)
γC(x)ρY (x)

γY (x) + γC(x)
≤ 0,

a− bd+ 2(1− a)
γY (x)ρC(x)

γY (x) + γC(x)
≤ 0

and a− bd+ 2(1− a)ρ′T (x) ≤ 0.

Assume now that the functions γY and γC are at least as regular as UT (∞|·), namely that
β ≤ α. In this case, since γT (x) < 0, the constraints reduce to a ∈ (0, 1), a− bd ≥ 0,

a− bd+ 2(1− a)ρ(x) ≤ 0

and a− 2(1− a)γT (x) − b(d+ 2β) ≤ 0

where

ρ(x) := max

(
ρ′T (x),

γC(x)ρY (x)

γY (x) + γC(x)
,

γY (x)ρC(x)

γY (x) + γC(x)

)
≤ 0.

The solution to this problem is

a∗ =
−(d+ 2β)ρ(x) − dγT (x)

β − (d+ 2β)ρ(x)− dγT (x)
and b∗ =

−ρ(x)− γT (x)

β − (d+ 2β)ρ(x) − dγT (x)

for which

a∗ − b∗d =
−2βρ(x)

β − (d+ 2β)ρ(x)− dγT (x)
.

The optimal convergence rate for our estimator in this case is then

n(a∗−b∗d)/2 = n−βρ(x)/(β−(d+2β)ρ(x)−dγT (x)).

5 Simulation study

In this paragraph, we carry out a simulation study to get a grasp of how our estimator behaves in
a finite sample situation. We consider the case E = R equipped with the standard Euclidean norm
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and a covariate X which is uniformly distributed on [0, 1] ⊂ E. Moreover, we let γY : [0, 1] → R

and γC : [0, 1] → R be the positive functions defined by

∀x ∈ [0, 1], γY (x) =
2

3
+

1

6
sin(2πx) and γC(x) = 5 +

1

3
sin(2πx).

We shall now give details about the different models we use in this finite-sample study as far as the
distribution of (Y,C) given X = x is concerned.

5.1 The models

Fréchet-Fréchet case Our first model is

∀t > 0, FY (t|x) =
(
1 + t−ρ/γY (x)

)1/ρ
and FC(t|x) =

(
1 + t−ρ/γC(x)

)1/ρ

where the parameter ρ is chosen to be independent of x, in the set {−1.5,−1,−0.5}. In particular,
Y and C given X = x are Burr type XII distributed. In this case, FY (·|x) and FC(·|x) both
belong to the Fréchet DA for every x ∈ [0, 1] with respective conditional extreme-value indices
γY (x) and γC(x). Finally, the conditional percentage p of censoring in the right tail is such that
0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1]. We now examine the validity of the second-order condition
(M2). Let us first recall that if a continuous and strictly increasing survival function G is such that

G(t) = t−1/γ
(
C1 +D1t

ρ/γ + o
(
tρ/γ

))
as t → ∞

where γ > 0, ρ < 0 and C1, D1 are nonzero constants, it is straightforward to show that the inverse
V of 1/G is such that

V (z) = zγ (C2 +D2z
ρ + o (zρ)) as z → ∞

where C2, D2 are nonzero constants. The related distribution then satisfies the second-order con-
dition with a second-order parameter equal to ρ. Here, the function FT (·|x) = FY (·|x)FC(·|x) is
continuous and strictly increasing and

FT (t|x) = t−1/γT (x)

(
1 +

1

ρ
tρ/γC(x) + o

(
tρ/γC(x)

))
as t → ∞

because γY (x) < γC(x), so that the second-order condition (M2) is satisfied in this example, with
conditional second-order parameter ρT (x) = ργT (x)/γC(x) = ργY (x)/(γY (x) + γC(x)).

Weibull-Weibull case The second model is

∀t ∈ [0, g(x)], FY (t|x) =
Γ(2/γY (x))

Γ2(1/γY (x))

∫ 1

t/g(x)

v1/γY (x)−1(1− v)1/γY (x)−1dv

and FC(t|x) =
Γ(2/γC(x))

Γ2(1/γC(x))

∫ 1

t/g(x)

v1/γC(x)−1(1 − v)1/γC(x)−1dv

where Γ : (0,∞) → R is Euler’s Gamma function:

∀z > 0, Γ(z) =

∫ ∞

0

e−ttz−1dt
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and the conditional right endpoint function g is defined by

∀x ∈ [0, 1], g(x) = 1− c+ 8cx(1− x)

with c ∈ {0.1, 0.2, 0.3}. Here, given X = x, Y/g(x) is a Beta(1/γY (x), 1/γY (x)) random variable
and C/g(x) is a Beta(1/γC(x), 1/γC(x)) random variable. Especially, Y and C given X = x belong
to the Weibull DA, with common conditional right endpoint g(x), respective conditional extreme-
value indices −γY (x) and −γC(x) and the conditional percentage p of censoring in the right tail
being such that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1]. To check that the second-order condition holds,
we notice again that if a continuous and strictly increasing survival function G is such that

G(t) = (θ − t)−1/γ
(
C1 +D1(θ − t)ρ/γ + o

(
(θ − t)ρ/γ

))
as t ↑ θ

where γ, ρ < 0, C1 and D1 are both nonzero and θ is a constant, it is easy to prove that the inverse
V of 1/G is such that

θ − V (z) = zγ (C2 +D2z
ρ + o (zρ)) as z → ∞

where C2, D2 are nonzero constants. The related distribution then satisfies the second-order con-
dition with a second-order parameter equal to ρ. Here, the function FT (·|x) = FY (·|x)FC(·|x) is
continuous, strictly increasing and

FT (t|x) ∝ (g(x)− t)−1/γT (x)

(
1 +

[
1− γ−1

Y (x)

1 + γY (x)
+

1− γ−1
C (x)

1 + γC(x)

] [
1− t

g(x)

]
(1 + o(1))

)

as t ↑ g(x), see the asymptotic expansion of the cdf of a Beta random variable in [2], p.68. It is
easy to see that

∀x ∈ [0, 1],
1− γ−1

Y (x)

1 + γY (x)
+

1− γ−1
C (x)

1 + γC(x)
6= 0

except for two values of x which are approximately equal to x1 = 0.1661 and x2 = 0.3339. For
x different from x1 and x2, the second-order condition (M2) is thus satisfied, with conditional
second-order parameter ρT (x) = γT (x). When x ∈ {x1, x2}, straightforward computations entail

FT (t|x) ∝ (g(x) − t)−1/γT (x)

(
1 +

[
(1− γ−1

Y (x))(2 − γ−1
Y (x))

2(1 + 2γY (x))
+

(1− γ−1
C (x))(2 − γ−1

C (x))

2(1 + 2γC(x))

+
(1− γ−1

Y (x))(1 − γ−1
C (x))

(1 + γY (x))(1 + γC(x))

] [
1− t

g(x)

]2
(1 + o(1))

)

as t ↑ g(x); the coefficient before the [1− t/g(x)]2 term can be shown to be nonzero for x ∈ {x1, x2},
so that the second-order condition (M2) is satisfied with conditional second-order parameter ρT (x) =
2γT (x).

Gumbel-Gumbel case The third model is

∀t > 0, FY (t|x) = FC(t|x) =
2

1 + exp(q(x)t)
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where q is the function defined by

∀x ∈ [0, 1], q(x) = 1 +
1

2
sin(2πx).

In this model, q(x)Y and q(x)C given X = x have a common logistic distribution, which is an
example of distribution belonging to the Gumbel DA. Here the function p is constant equal to 1/2.
To check that the second-order condition holds here, we check instead the second-order von Mises
condition (see [19], p.49): remark that since Y and C have the same conditional distribution, we
have UT (z|x) = UY (

√
z|x). This entails

zU
′′

T (z|x)
U

′

T (z|x)
+ 1 =

1

2

(√
zU

′′

Y (
√
z|x)

U
′

Y (
√
z|x) + 1

)
.

Because UY (z|x) = [q(x)]−1 log(2z − 1) we get

zU
′′

T (z|x)
U

′

T (z|x)
+ 1 = − 1

2(2
√
z − 1)

and we may thus apply Theorem 2.3.12 p.49 in [19] to obtain that the conditional distribution of
T satisfies the second-order condition (M2) with AT (z|x) being the right-hand side of the above
equation, yielding ρ(x) = −1/2 for every x.

To see how the estimator behaves in uncensored cases, namely when inference in the extremes is
possible but the correction due to the presence of censoring is not needed, we also consider the three
models below where the right tail of Y is much lighter than that of C:

Gumbel-Fréchet case In this model,

∀t > 0, FY (t|x) =
2

1 + exp(q(x)t)
and FC(t|x) =

(
1 + t−ρ/γC(x)

)1/ρ

where q(x) = 1 + 0.5 sin(2πx) and ρ = −1. Here, given X = x, q(x)Y has a logistic distribution
and C is Burr type XII distributed.

Weibull-Fréchet case Here,

∀t > 0, FY (t|x) =
Γ(2/γY (x))

Γ2(1/γY (x))

∫ 1

t/g(x)

v1/γY (x)−1(1 − v)1/γY (x)−1dv

and FC(t|x) =
(
1 + t−ρ/γC(x)

)1/ρ

where g(x) = 1−c+8cx(1−x), c = 0.1 and ρ = −1. Here, givenX = x, Y/g(x) is Beta(1/γY (x), 1/γY (x))
distributed and C is Burr type XII distributed.
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Weibull-Gumbel case In the final model,

∀t > 0, FY (t|x) =
Γ(2/γY (x))

Γ2(1/γY (x))

∫ 1

t/g(x)

v1/γY (x)−1(1 − v)1/γY (x)−1dv

and FC(t|x) =
2

1 + exp(q(x)t)

where g(x) = 1− c+ 8cx(1− x), c = 0.1 and q(x) = 1+ 0.5 sin(2πx). Here, given X = x, Y/g(x) is
Beta(1/γY (x), 1/γY (x)) distributed and q(x)C has a logistic distribution.

5.2 Selecting the tuning parameters k
x
and h

Our goal is to estimate the conditional extreme-value index γY on a grid of points {x1, . . . , xM}
of [0, 1]. To this aim, two parameters have to be chosen: the bandwidth h and the number of
log-spacings kx. We adapt a selection procedure that was introduced in [14]:

1) For every bandwidth h in a grid {h1, . . . , hP } of possible values of h, we make a prelimi-
nary choice of kx. Let γ̂i,j(k) = γ̂Y,n(xi, k, hj) and ⌊·⌋ denote the floor function: for each
i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and k ∈ {qi,j + 1, . . . , Nn(xi, hj) − qi,j}, where qi,j =
⌊Nn(xi, hj)/10⌋ ∨ 1, we introduce the set Ei,j,k = {γ̂i,j(ℓ), ℓ ∈ {k − qi,j , . . . , k + qi,j}}. We
compute the standard deviation Σi,j(k) of the set Ei,j,k for every possible value of k and we
record the numberKi,j for which this standard deviation reaches its first local minimum and is
less than its average value. Namely, Ki,j = qi,j+1 if Σi,j is increasing, Ki,j = Nn(xi, hj)−qi,j
if Σi,j is decreasing and

Ki,j = min

{
k such that Σi,j(k) ≤ Σi,j(k − 1) ∧Σi,j(k + 1)

and Σi,j(k) ≤
1

Nn(xi, hj)− 2qi,j

Nn(xi,hj)−qi,j∑

l=qi,j+1

Σi,j(l)

}

otherwise, where we extend Σi,j by setting Σi,j(qi,j) = Σi,j(qi,j + 1) and Σi,j(Nn(xi, hj) −
qi,j + 1) = Σi,j(Nn(xi, hj) − qi,j). We then select the value ki,j such that γ̂i,j(ki,j) is the
median of the set Ei,j,Ki,j

.

The main idea of the first part of this procedure is that, for a given point xi and a given
bandwidth hj, the number of order statistics is chosen in the first reasonable region of stability
of the Hill plot related to the function k 7→ γ̂Y,n(xi, k, hj).

2) We now select the bandwidth h: let q′ be a positive integer such that 2q′ + 1 < P . For each
i ∈ {1, . . . ,M} and j ∈ {q′ +1, . . . , P − q′}, let Fi,j = {γ̂i,ℓ(ki,ℓ), ℓ ∈ {j − q′, . . . , j + q′}} and
compute the standard deviation σi(j) of Fi,j . Our objective function is then the average of
these quantities over the grid {x1, . . . , xM}:

σ(j) =
1

M

M∑

i=1

σi(j).
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We next record the integer j∗ such that σ(j∗) is the first local minimum of the application
j 7→ σ(j) which is less than the average value of σ. In other words, j∗ = q′+1 if σ is increasing,
j∗ = P − q′ if σ is decreasing and

j∗ = min

{
j such that σ(j) ≤ σ(j − 1) ∧ σ(j + 1) and σ(j) ≤ 1

P − 2q′

P−q′∑

l=q′+1

σ(l)

}

otherwise, where we extend σ by setting σ(q′) = σ(q′ +1) and σ(P − q′+1) = σ(P − q′). The
selected bandwidth is then independent of x and is given by h∗ = hj∗ .

In doing so, we require that h∗ be not too large, to ensure that the computation of our
estimator is carried out only using covariates which are close to x, and the estimation carried
out for bandwidths in a neighborhood of h∗ is reasonably stable. The selected number of
log-spacings is thus given, for x = xi, by k∗xi

= ki,j∗ .

We choose here to estimate the conditional extreme-value index on a grid of M = 50 evenly spaced
points in [0, 1]. Regarding the selection procedure, we test P = 25 evenly spaced values of h ranging
from 0.05 to 0.25 and we set q′ = 1.

5.3 Results

We give in Table 1 the empirical mean squared errors (MSEs) of our estimator, averaged over the M
points of the grid, for N = 100 independent samples of size n = 1000, along with the minimal and
maximal MSEs obtained. One can see that in the Fréchet-Fréchet case, the MSE of our estimator
increases as |ρ| approaches 0: this is not surprising since the conditional second-order parameter
of T , known to play a major role in the performance of the estimators of the extreme-value index,
is proportional to ρ in this case. The Weibull-Weibull case seems to show that the quality of the
estimates does not depend on the value of the common endpoint, and this could be expected as well
since we know that how the estimator performs should only depend on the value of the second-order
parameter and of the censoring percentage in the extremes. Finally, in the cases tested here, the
estimator performs much better in the uncensored cases than in the censored cases at the finite-
sample level. Some illustrations are given in Figures 1 and 2, where the estimates corresponding
to the 5% quantile, median and 95% quantile of the MSE are represented in each case for our
estimator.

6 Real data example

In this section, we introduce a medical data set, provided by Dr P. J. Solomon and the Australian
National Centre in HIV Epidemiology and Clinical Research; see Ripley and Solomon [24], Venables
and Ripley [27] and the data set aids2, part of the package MASS in R. In the context of extreme
value analysis, this data set was considered by [11] and [23]. The data set contains information
collected after a follow-up study on 2843 patients diagnosed with AIDS before July 1st, 1991.
Especially, for each patient, the data set gives his/her age at the time of diagnosis and, if the
patient died before the end of the study, his/her date of death. There are only 89 female patients
in this study, so we chose to retain the 2754 male patients of the data set. Our variable of interest
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is the survival time Y of a patient which is randomly right-censored as is usually the case in such
follow-up studies. The covariate we consider is the age of a patient at the time of diagnosis. A
scatterplot of the data is given in Figure 3.

Our first goal is to provide an estimate of the conditional extreme-value index of Y using our
estimator. A look at the scatterplot shows that data for patients aged either less than 20 or more
than 65 when diagnosed with AIDS is very scarce, so we focus on patients aged between xmin = 20
and xmax = 65. We use the selection procedure detailed in Section 5.2: the bandwidth h is chosen
among h1 ≤ · · · ≤ h25 where the hi are evenly spaced and

h1 = 0.05(xmax − xmin) and h25 = 0.25(xmax − xmin).

This leads us to choose h∗ = 3.75. The estimate of the conditional extreme-value index γY on 25
evenly spaced points in [xmin, xmax] is represented on Figure 4.

This estimate is only a first step in the assessment of the tail heaviness of the conditional distri-
bution of Y given X = x, however. A further interesting step is to estimate conditional extreme
quantiles of this distribution, where the conditional quantile function qY (·|x) is defined in terms of
the generalized inverse of FY (·|x):

qY (ε|x) = inf{t ∈ R |FY (t|x) ≤ ε}.

Note at this point that qY (ε|x) is the (1 − ε)−conditional quantile of Y in the usual sense. We
propose an adaptation of the extreme quantile estimator of [11], which is itself an adaptation of
the classical extreme quantile estimator, see for instance Theorem 4.3.1 in [19], p.134. We let

F̂Y,n(·, h|x) be the straightforward conditional adaptation of the Kaplan-Meier estimator for the csf
of Y given X = x (see Beran [5]). Besides, given Nn(x, h) = l, we set for kx ∈ {1, . . . , l − 1}

ân(x, kx, h) = Tl−kx,l
γ̂T,n,+(x, kx, h)(1− γ̂T,n,−(x, kx, h))

p̂n(x, kx, h)

and 0 otherwise. An estimator of the conditional extreme quantile qY (ε|x), where ε is a small
positive number, is then

q̂Y,n(ε, x, kx, h) = Tl−kx,l + ân(x, kx, h)Dγ̂T,n(x,kx,h)

(
F̂Y,n(Tl−kx,l, h|x)/ε

)

if kx ∈ {1, . . . , l− 1} and 0 otherwise, where the function D was introduced in (1). In our case, we
set h = h∗; for x ∈ [xmin, xmax], the number of log-spacings kx is chosen by applying the first step
of the selection procedure introduced in Section 5.2.

We give some results on Figure 5, where estimates of the extreme quantile curve x 7→ q̂Y,n(ε, x, k
∗
x, h

∗)
are represented for an exceedance level ε ∈ {0.01, 0.005, 0.002, 0.001}. One can see on this figure
that these estimates are fairly stable for patients aged between 20 and 53 years and decrease sharply
afterwards. This may be interpreted as a consequence of immunosenescence, namely the deteriora-
tion of the immune system as age increases. This phenomenon is of course especially critical in the
case of AIDS, since HIV targets cells of the immune system; the significant effect of increasing age
on survival rates for AIDS has been shown numerous times in the medical literature, see e.g. Ripley
and Solomon [24], Luo et al. [22], Darby et al. [9] and Balslev et al. [1], among others. Besides, one
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can see that the estimate of the extreme quantile curve for ε = 0.001 yields, in the range [20, 53],
survival times around 13 years and as high as 16 years. This is in line with Figure 1(b) of [11],
which does not consider any covariate information and gives a value of this extreme survival time
between 15 and 19 years while using a different estimator of the extreme-value index.

7 Proofs

Before giving a proof of Theorem 1, we need some preliminary results. Lemma 1, which is essentially
contained in [11], gives a useful representation of p(x).

Lemma 1. Let Y , C be two independent positive random variables having respective survival func-
tions FY , FC , respective pdfs fY , fC and common right endpoint U(∞) = UY (∞) = UC(∞).
Define for t > 0

p(t) =
d

dt
P(Y ≤ C, Y ∧C ≤ t)

/
d

dt
P(Y ∧ C ≤ t)

whenever the denominator is nonzero, and p := γC/(γY + γC) otherwise. Then one has

p(t) =
FC(t)fY (t)

FC(t)fY (t) + FY (t)fC(t)

whenever the denominator is nonzero. In particular, p(t) ≤ 1 for every t > 0. If moreover Y and
C belong respectively to D(GγY

) and D(GγC
) and either

• γY > 0 and γC > 0;

• γY < 0, γC < 0 and 0 < U(∞) < ∞,

then p(t) → p as t → U(∞).

Lemma 2 is a partial generalization of Lemma 1 to the random covariate case.

Lemma 2. Assume that the functions (x, t) 7→ fY (t|x) and (x, t) 7→ fC(t|x) are continuous on
E × (0,∞). Then given X ∈ B(x, h), T has pdf

fT,h(t|x) := E(FC(t|X)fY (t|X) + FY (t|X)fC(t|X) |X ∈ B(x, h))

and we have

∀t > 0, ph(t|x) =
E(FC(t|X)fY (t|X) |X ∈ B(x, h))

E(FC(t|X)fY (t|X) |X ∈ B(x, h)) + E(F Y (t|X)fC(t|X) |X ∈ B(x, h))

whenever the denominator is nonzero. In particular, ph(t|x) ≤ 1 for every t > 0.

Proof of Lemma 2. Remark that

FT,h(t|x) = P(Y ≤ C, Y ≤ t |X ∈ B(x, h)) + P(C ≤ Y,C ≤ t |X ∈ B(x, h)).
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The independence of Y and C given X and Tonelli’s theorem yield

P(Y ≤ C, Y ≤ t |X ∈ B(x, h)) = E

(∫ t

0

FC(z|X)fY (z|X)dz |X ∈ B(x, h)

)

=

∫ t

0

E
(
FC(z|X)fY (z|X) |X ∈ B(x, h)

)
dz (17)

and P(C ≤ Y,C ≤ t |X ∈ B(x, h)) = E

(∫ t

0

FY (z|X)fC(z|X)dz |X ∈ B(x, h)

)

=

∫ t

0

E
(
FY (z|X)fC(z|X) |X ∈ B(x, h)

)
dz.

The regularity hypotheses on fY and fC make it clear that both of the above integrands are
continuous as functions of z, so that FT,h(·|x) has a continuous derivative which is

d

dt
FT,h(t|x) = E(FC(t|X)fY (t|X) + FY (t|X)fC(t|X) |X ∈ B(x, h)) = fT,h(t|x). (18)

This is the first desired result. Moreover,

P(δ = 1, T ≤ t |X ∈ B(x, h)) = P(Y ≤ C, Y ≤ t |X ∈ B(x, h)).

From (17), we get

d

dt
P(δ = 1, T ≤ t |X ∈ B(x, h)) = E

(
FC(t|X)fY (t|X) |X ∈ B(x, h)

)
. (19)

Combining (18) and (19) concludes the proof.

We then state a couple of useful technical results. The first one gives the conditional distribution
of the random pairs (Ti,∆i).

Lemma 3. Given Nn(x, h) = l ≥ 1, the random pairs (Ti,∆i), 1 ≤ i ≤ l, are independent and
identically distributed random variables whose common distribution is that of (T, δ) given X ∈
B(x, h).

Proof of Lemma 3. The proof of this result is similar to that of Lemma 2 in [26]: if (t1, . . . , tl) ∈ R
l

and (d1, . . . , dl) ∈ {0, 1}l, then since the random vectors (Xi, Ti, δi) have the same distribution, it
holds that

P

(
l⋂

i=1

{Ti ≤ ti,∆i = di}, Nn(x, h) = l

)
=

(
n

l

)
P

(
l⋂

i=1

{Ti ≤ ti, δi = di, Xi ∈ B(x, h)}
)

×
n∏

i=l+1

P (Xi /∈ B(x, h)) .

The independence of the random pairs (Xi, Ti, δi), i = 1, . . . , n entails that the above probability is

l∏

i=1

P(T ≤ ti, δ = di |X ∈ B(x, h)) ×
[(

n

l

) l∏

i=1

P (Xi ∈ B(x, h))

n∏

i=l+1

P (Xi /∈ B(x, h))

]
.

Since Nn(x, h) is a binomial random variable with parameters n and P(X ∈ B(x, h)), the result
follows.
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The next lemma, whose proof can be found in [26], is a pivotal technical tool for the proofs of
Theorems 1 and 2.

Lemma 4. Let (Sn) be a sequence of random variables. Assume that there exist a triangular array
of events (Aij)0≤j≤i and a sequence of non-empty sets (In) contained in {1, . . . , n} such that

• for every n the Anl, 0 ≤ l ≤ n, have positive probability, are pairwise disjoint and

n∑

l=0

P(Anl) = 1;

• it holds that
∑

l∈In

P(Anl) → 1 as n → ∞.

If one has for every ε > 0
sup
l∈In

P(|Sn| > ε|Anl) → 0 as n → ∞,

then Sn
P−→ 0 as n → ∞.

This result will be applied in the following way: remark that since Nn(x, h) is a binomial random
variable with parameters n and P(X ∈ B(x, h)), it is a consequence of Chebyshev’s inequality that
for all η ∈ (0, 1), √

n1−η
x

∣∣∣∣
Nn(x, h)

nx
− 1

∣∣∣∣
P−→ 0 as n → ∞.

If Ix := N ∩
[(

1− n
−1/4
x

)
nx,
(
1 + n

−1/4
x

)
nx

]
– this notation will be used in the remainder of

Section 7 – then this entails

∑

l∈Ix

P(Nn(x, h) = l) → 1 as n → ∞.

The final lemma, contained in [26], makes it possible to understand a bit more about the asymptotic
behavior of certain random variables which appear in our proofs.

Lemma 5. Let Wi, i ≥ 1 be independent standard Pareto random variables, i.e. having cdf w 7→
1 − 1/w on (1,∞). Assume that nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞. Then for every
ε > 0 it holds that

sup
l∈Ix

P

(∣∣∣∣
kx
l
Wl−kx,l − 1

∣∣∣∣ > ε

)
→ 0 as n → ∞.

We may now prove Theorem 1.

Proof of Theorem 1. Write

γ̂Y,n(x, kx, h)− γY (x) =
1

p̂n(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x)) −

γT (x)

p(x)
(p̂n(x, kx, h)− p(x))

]
.
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Following [11], we note that if V is a standard uniform random variable which is independent of
(X,Y,C), then:

P(V ≤ ph(T |x), T ≤ t0 |X ∈ B(x, h)) =

∫ t0

0

ph(t|x)fT,h(t|x)dt

= P(δ = 1, T ≤ t0 |X ∈ B(x, h))

so that given X ∈ B(x, h), the random pairs (T, I{V≤ph(T |x)}) and (T, δ) have the same distribution.
Consequently, if Vi, i ≥ 1 is an independent sequence of standard uniform random variables which
are independent of the (Xi, Yi, Ci), then given Nn(x, h) = l, it is a consequence of Lemma 3 that
the distribution of (γ̂T,n(x, kx, h), p̂n(x, kx, h)) is that of (γ̂T,n(x, kx, h), p̃n(x, kx, h)), with

p̃n(x, kx, h) :=
1

kx

kx∑

i=1

I{V[l−i+1:l]≤ph(Tl−i+1,l|x)}

if kx ∈ {1, . . . , l − 1} and 0 otherwise, where V[1:l], . . . , V[l:l] are the order statistics induced by
T1,l, . . . , Tl,l. Moreover, since the Vi, i ≥ 1 are standard uniform variables independent of the
(Xi, Yi, Ci), so are the V[i:l], 1 ≤ i ≤ l. Introducing, given Nn(x, h) = l, the quantity

pn(x, kx, h) :=
1

kx

kx∑

i=1

I{Vi≤ph(Tl−i+1,l|x)}

if kx ∈ {1, . . . , l − 1} and 0 otherwise, we obtain

γ̂Y,n(x, kx, h)− γY (x)
d
=

1

pn(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x)) −

γT (x)

p(x)
(pn(x, kx, h)− p(x))

]
.

It is thus enough to show the consistency of γ̂T,n(x, kx, h) and pn(x, kx, h). The consistency of the
former quantity is an immediate consequence of Theorem 1 in [26]. To prove the consistency of
pn(x, kx, h), note that

pn(x, kx, h)− p(x) =

[
Bkx

kx
− p(x)

]
− Sn,1 + Sn,2

where

Bkx
=

kx∑

i=1

I{Vi≤p(x)}, (20)

Sn,1 = I{Nn(x,h)≤kx}

kx∑

i=1

I{Vi≤p(x)} (21)

and Sn,2 =

n∑

l=kx+1

[
1

kx

kx∑

i=1

I{Vi≤ph(Tl−i+1,l|x)} − I{Vi≤p(x)}

]
I{Nn(x,h)=l}. (22)

As a consequence, Bkx
is a binomial random variable with parameters kx and p(x) which is inde-

pendent of γ̂T,n(x, kx, h) and Tchebychev’s inequality entails

pn(x, kx, h)− p(x) = −Sn,1 + Sn,2 + oP(1) as n → ∞.
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Further, for every ε > 0,

P(|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞

so that Sn,1
P−→ 0 as n → ∞. Besides, if Wi, i ≥ 1 are independent standard Pareto random

variables, then the distribution of the random vector (T1, . . . , Tl) given Nn(x, h) = l ≥ 1 is the
distribution of the random vector (UT,h(W1|x), . . . , UT,h(Wl|x)), see Lemma 3. Let n be so large
that kx < inf Ix. The equality

∀a, b ∈ [0, 1], E
∣∣I{V≤a} − I{V ≤b}

∣∣ = |a− b|

valid for every standard uniform random variable V , entails for every l ∈ Ix

E(|Sn,2| |Nn(x, h) = l) ≤ 1

kx

kx∑

i=1

E(|ph(Tl−i+1,l|x)− p(x)| |Nn(x, h) = l)

=
1

kx

kx∑

i=1

E|ph(UT,h(Wl−i+1,l|x)|x) − p(x)|.

Clearly, for every κ > 0, if n is so large that

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
≤ κ

2

we have by Lemma 2 that

E(|Sn,2| |Nn(x, h) = l) ≤ κ

2
+ 2 sup

l∈Ix

P
(
{Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η

x }
)
. (23)

Lemma 5 entails

sup
l∈Ix

P(Wl−kx+1,l < nx/(1 + η)kx) = sup
l∈Ix

P

(
kx
nx

Wl−kx+1,l − 1 < − η

1 + η

)
→ 0 as n → ∞,

and since the Wi are independent standard Pareto random variables, we get

sup
l∈Ix

P
(
Wl,l > n1+η

x

)
= sup

l∈Ix

[
1−

(
1− n−1−η

x

)l] ≤ 1−
(
1− n−1−η

x

)3nx/2 → 0 as n → ∞.

In other words
sup
l∈Ix

P({Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η
x }) ≤ κ

4
(24)

for n large enough, so that combining (23) and (24), we find that E(|Sn,2| |Nn(x, h) = l) → 0
uniformly in l ∈ Ix as n → ∞. According to Markov’s inequality, we have for every ε > 0

sup
l∈Ix

P(|Sn,2| > ε |Nn(x, h) = l) ≤ sup
l∈Ix

E(|Sn,2| |Nn(x, h) = l)

ε
→ 0 as n → ∞.

Lemma 4 then entails Sn,2
P−→ 0 as n → ∞ and the proof is complete.
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We proceed by proving the pointwise asymptotic normality of the estimator.

Proof of Theorem 2. Recall from the proof of Theorem 1 the equality

γ̂Y,n(x, kx, h)− γY (x)
d
=

1

pn(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x)) −

γT (x)

p(x)
(pn(x, kx, h)− p(x))

]
.

The asymptotic normality of γ̂T,n(x, kx, h),

√
kx [γ̂T,n(x, kx, h)− γT (x)]

d−→ N (0, V (γT (x))) (25)

is contained in Theorem 2 of [26]. We now recall the representation

pn(x, kx, h)− p(x) =

[
Bkx

kx
− p(x)

]
− Sn,1 + Sn,2

with Bkx
, Sn,1 and Sn,2 as in (20), (21) and (22). Note that, from (21), one has for every ε > 0

P(
√
kx|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞

so that
√
kx|Sn,1| P−→ 0 as n → ∞. Let n be so large that kx < inf Ix. Let further Wi, i ≥ 1 be

independent standard Pareto random variables which are independent of the Vi and note that, from
Lemma 3 and (22), one has given Nn(x, h) = l ∈ Ix:

Sn,2
d
=

1

kx

kx∑

i=1

I{Vi≤ph(UT,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)} =: S′
n.

Further,

√
kx|S′

n| ≤ 2
√
kxI{Wl−kx+1,l<nx/(1+η)kx}∪{Wl,l>n1+η

x }

+
√
kx

[
1

kx

kx∑

i=1

∣∣I{Vi≤ph(UT,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)}

∣∣
]

× I{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η
x }.

Since the expectation of the second term on the right-hand side of this inequality is

1√
kx

kx∑

i=1

E

[
|ph(UT,h(Wl−i+1,l|x)|x) − p(x)|I{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η

x }

]

we may, for every κ > 0, bound it from above by

√
kxω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
≤ κ

2

for n sufficiently large. From (24) and Markov’s inequality, we get for every ε > 0

sup
l∈Ix

P(
√
kx|Sn,2| > ε |Nn(x, h) = l) ≤ κ
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if n is large enough. By Lemma 4, this entails
√
kx|Sn,2| P−→ 0 as n → ∞. Consequently

√
kx [pn(x, kx, h)− p(x)] =

√
kx

[
Bkx

kx
− p(x)

]
+ oP(1).

Recall from the proof of Theorem 1 that Bkx
is a binomial random variable with parameters kx and

p(x) which is independent of γ̂T,n(x, kx, h). Since

√
kx

[
Bkx

kx
− p(x)

]
d−→ N (0, p(x)(1 − p(x))), (26)

as n → ∞, the convergences (25), (26) and Slutsky’s lemma entail

√
kx [γ̂Y,n(x, kx, h)− γY (x)]

d−→ N
(
0,

1

p2(x)

[
V (γT (x)) +

γ2
T (x)

p(x)
(1− p(x))

])

as n → ∞, which is the result.

The last lemma is the converse statement of Lemma 9 in [26]. It is necessary to prove Proposition 1.

Lemma 6. Let F be a csf on R and U be the left-continuous inverse of 1/F .

1. If F is such that
∀y ∈ R, F (y) ∈ (0, 1) ⇒ ∀δ > 0, F (y + δ) < F (y)

then U is a continuous function on (1,∞).

2. If F is continuous on R then U is an increasing function on (1,∞).

Proof of Lemma 6. To prove the first statement, pick α0 ∈ (1,∞) and assume that U is not
continuous at α0. In particular, since U is left-continuous and nondecreasing,

lim
α→α0
α>α0

U(α)− U(α0) > 0.

Then necessarily 0 < F (U(α0)) ≤ 1/α0 < 1. Moreover, the above inequality entails, since U is
nondecreasing,

∃δ > 0, ∀α > α0, U(α) > U(α0) + δ.

Using the definition of the function U , we obtain

∀α > α0, α0 ≤ 1

F (U(α0))
≤ 1

F (U(α0) + δ)
< α.

Taking the limit α ↓ α0 gives F (U(α0) + δ) = F (U(α0)), which is a contradiction.

To show the second statement, assume that α, β are such that 1 < α < β and U(α) = U(β). Then
since F is right-continuous and nonincreasing, we get

F (U(α)) = F (U(β)) ≤ 1

β
<

1

α
≤ lim

t→U(α)
t<U(α)

F (t).

Hence F is not continuous at U(α), which is a contradiction.
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Proof of Proposition 1. We start by considering case 1. For n large enough and for every
x′ ∈ B(x, h), one has

FC(t|x′)fY (t|x′)− 1

γY (x)
G(t|x′) = rY (t, x, x

′)G(t|x′)

and FY (t|x′)fC(t|x′)− 1

γC(x)
G(t|x′) = rC(t, x, x

′)G(t|x′)

with G(t|x′) = t−1/γY (x′)−1/γC(x′)−1LFY
(t|x′)LFC

(t|x′),

rY (t, x, x
′) =

1

γY (x′)
− 1

γY (x)
− bY (t|x′)

and rC(t, x, x
′) =

1

γC(x′)
− 1

γC(x)
− bC(t|x′).

From Lemma 2, we obtain the equality

ph(t|x) =

1

γY (x)
+

E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

1

γY (x)
+

1

γC(x)
+

E([rY (t, x,X) + rC(t, x,X)]G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

.

If we can prove that for η > 0 small enough

sup
t∈UT,h(Kx,η|x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) = O(hα lognx ∨ δn) → 0 (27)

as n → ∞, with UT,h(Kx,η|x) being the image of the interval Kx,η by the function UT,h(·|x), then
the fact that G(·|X) is nonnegative shall entail

sup
t∈UT,h(Kx,η|x)

∣∣∣∣
E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

∣∣∣∣ ≤ sup
t∈UT,h(Kx,η|x)

sup
x′∈B(x,h)

|rY (t, x, x′)|

= O(hα lognx ∨ δn)

and sup
t∈UT,h(Kx,η |x)

∣∣∣∣
E(rC(t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

∣∣∣∣ ≤ sup
t∈UT,h(Kx,η|x)

sup
x′∈B(x,h)

|rC(t, x, x′)|

= O(hα lognx ∨ δn)

of which it is a direct consequence that

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα lognx ∨ δn)

which is the result. To this end, we start by noting that because (see Lemma 1.2.9 in [19], p.22)

UT (nx/kx|x)
aT (nx/kx|x)

→ 1

γT (x)
as n → ∞,
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it is a consequence of (6) and of the mean value theorem that

sup
z∈Kx,η

∣∣∣∣
UT,h(z|x)
UT (z|x)

− 1

∣∣∣∣→ 0 as n → ∞.

Using the fact that UT (·|x) is regularly varying at infinity with index γT (x) > 0, we get for n large
enough

UT,h(Kx,η|x) ⊂ UT (Kx,2η|x).
This proves that for n large enough

sup
t∈UT,h(Kx,η|x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) ≤ sup
t∈UT (Kx,2η|x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′).

Letting η > 0 be so small that condition (12) holds with η replaced by 2η and using this Hölder
condition along with (11) we deduce that

sup
t∈UT,h(Kx,η|x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′)

= O

(
hα lognx ∨ sup

t∈UT (Kx,2η|x)

|bY (t|x)| ∨ sup
t∈UT (Kx,2η|x)

|bC(t|x)|
)
.

Finally, Potter bounds for the regularly varying functions |bY (·|x)| and |bC(·|x)| (see Bingham et
al. [6], p.25), both having negative regular variation indices, entail

lim sup
n→∞

sup
t∈UT (Kx,2η|x)

|bY (t|x)|
|bY (UT (nx/kx|x)|x)|

∨ |bC(t|x)|
|bC(UT (nx/kx|x)|x)|

< ∞

which yields (27) and the result in this case.

We now turn to case 2. We remark that

FC(t|x′)fY (t|x′) +
1

γY (x)
G(t|x′) = rY (t, x, x

′)G(t|x′)

and FY (t|x′)fC(t|x′) +
1

γC(x)
G(t|x′) = rC(t, x, x

′)G(t|x′)

with

G(t|x′) =





LFY
((UT (∞|x′)− t)−1|x′)LFC

((UT (∞|x′)− t)−1|x′)

(UT (∞|x′)− t)1/γY (x′)+1/γC(x′)+1
if 0 < t < UT (∞|x′)

0 otherwise

and

rY (t, x, x
′) =

1

γY (x)
− 1

γY (x′)
− bY ((UT (∞|x′)− t)−1|x′),

rC(t, x, x
′) =

1

γC(x)
− 1

γC(x′)
− bC((UT (∞|x′)− t)−1|x′).

28



A particular consequence of this is, according to Lemma 2:

ph(t|x) =
− 1

γY (x)
+

E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

− 1

γY (x)
− 1

γC(x)
+

E([rY (t, x,X) + rC(t, x,X)]G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

.

Define Ix,x′,η = [UT,h(nx/(1 + η)kx|x), UT (∞|x′)). We shall now prove that

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′) = O(hα lognx ∨ δn) → 0 (28)

as n → ∞. The fact that G(·|X) is nonnegative shall then yield

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)

= O

(
hα ∨ sup

x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′)

)

= O(hα lognx ∨ δn)

which is what we want to prove. To this aim, remark that one has (see Lemma 1.2.9 in [19], p.22)

UT (nx/kx|x)
aT (nx/kx|x)

= −UT (∞|x)
γT (x)

[UT (∞|x)− UT (nx/kx|x)]−1(1 + o(1)) as n → ∞.

Using (9), it is a consequence of the mean value theorem that

sup
z∈Kx,η

∣∣∣∣
UT,h(z|x)
UT (z|x)

− 1

∣∣∣∣ = o(UT (∞|x)− UT (nx/kx|x)) = o

([
nx

kx

]γT (x)

LUT
(nx/kx|x)

)

as n → ∞. Especially, (7) and (8) entail that

sup
x′∈B(x,h)

UT (∞|x′)− UT,h(nx/(1 + η)kx|x)
UT (∞|x)− UT (nx/kx|x)

→ (1 + η)−γT (x) as n → ∞.

The interval Ix,x′,η is therefore well-defined for all n large enough and x′ ∈ B(x, h), and there exists
some constant η′ > 0 such that for n large enough

∀x′ ∈ B(x, h), t ∈ Ix,x′,η ⇒ (UT (∞|x′)− t)−1 ∈ Jx,η′ =

[
1− η′

UT (∞|x) − UT (nx/kx|x)
,∞
)
.

This proves that for n large enough

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′) ≤ sup
z∈Jx,η′

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(z|x′)|.

Conditions (11) and (14) then entail

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′)

= O

(
hα lognx ∨ sup

z∈Jx,η′

|bY (z|x)| ∨ sup
z∈Jx,η′

|bC(z|x)|
)
.
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We conclude by using Potter bounds for the regularly varying functions |bY (·|x)| and |bC(·|x)| to
get

lim sup
n→∞

sup
t∈Jx,η′

|bY (t|x)|
|bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| < ∞

and lim sup
n→∞

sup
t∈Jx,η′

|bC(t|x)|
|bC((UT (∞|x)− UT (nx/kx|x))−1|x)| < ∞

of which (28) is a direct consequence.
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Censored cases
Situation Moment estimator γ̂Y

Fréchet-Fréchet model
ρ = −0.5 0.177 [0.0138, 0.550]
ρ = −1 0.0639 [0.0139, 0.170]
ρ = −1.5 0.0491 [0.00563, 0.146]

Weibull-Weibull model
c = 0.1 0.0451 [0.00956, 0.138]
c = 0.2 0.0505 [0.0146, 0.165]
c = 0.3 0.0494 [0.0125, 0.137]

Gumbel-Gumbel model 0.0840 [0.0172, 0.334]

Uncensored cases
Situation Moment estimator γ̂Y

Gumbel-Fréchet model 0.0352 [0.00476, 0.102]
Weibull-Fréchet model 0.0375 [0.00587, 0.144]
Weibull-Gumbel model 0.0364 [0.00750, 0.0997]

Table 1: MSEs associated to the estimator γ̂Y in all cases. Between brackets: minimal and maximal
mean squared error recorded.
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Figure 1: Censored cases: the true function γY (solid line) and its estimator γ̂Y (dashed line).
Top row: Fréchet-Fréchet model, case ρ = −1. Middle row: Weibull-Weibull model, case c = 0.1.
Bottom row: Gumbel-Gumbel model. Left: case corresponding to the 5% quantile of the MSE.
Middle: case corresponding to the median of the MSE. Right: case corresponding to the 95%
quantile of the MSE.
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Figure 2: Uncensored cases: the true function γY (solid line) and its estimator γ̂Y (dashed line). Top
row: Gumbel-Fréchet model. Middle row: Weibull-Fréchet model. Bottom row: Weibull-Gumbel
model. Left: case corresponding to the 5% quantile of the MSE. Middle: case corresponding to the
median of the MSE. Right: case corresponding to the 95% quantile of the MSE.
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Figure 3: Scatterplot of the AIDS data: x−axis: age of the patient at the time of diagnosis, y−axis:
survival time (in years).
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Figure 4: AIDS data: estimator γ̂Y . x−axis: age of the patient at the time of diagnosis.
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Figure 5: AIDS data: estimation of the conditional extreme quantile of the survival time. Full
line: level ε = 0.01, dashed line: level ε = 0.005, dashed-dotted line: ε = 0.002, dotted line: level
ε = 0.001. x−axis: age of the patient at the time of diagnosis, y−axis: survival time (in years).
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