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Estimating the onditional extreme-value index under randomright-ensoringGilles Stup�erAix Marseille Université, CERGAM, EA 4225,15-19 allée Claude Forbin, 13628 Aix-en-Provene Cedex 1, FraneAbstrat. In extreme value theory, the extreme-value index is a parameter that ontrolsthe behavior of a umulative distribution funtion in its right tail. Estimating this parameter isthus the �rst step when takling a number of problems related to extreme events. In this paper,we introdue an estimator of the extreme-value index in the presene of a random ovariatewhen the response variable is right-ensored, whether its onditional distribution belongs tothe Fréhet, Weibull or Gumbel max-domain of attration. The pointwise weak onsistenyand asymptoti normality of the proposed estimator are established. Some illustrations onsimulations are provided and we showase the estimator on a real set of medial data.AMS Subjet Classi�ations: 62G05, 62G20, 62G30, 62G32, 62N01, 62N02.Keywords: Extreme-value index, random ovariate, random right-ensoring, onsisteny,asymptoti normality.1 IntrodutionStudying extreme events is relevant in numerous �elds of statistial appliations. One an thinkabout hydrology, where it is of interest to estimate the maximum level reahed by seawateralong a oast over a given period, or to study extreme rainfall at a given loation; in atuarial1



siene, a major problem for an insurane �rm is to estimate the probability that a laim solarge that it represents a threat to its solveny is �led. The fous in this type of problem isnot in the estimation of �entral� parameters of the random variable of interest, suh as itsmean or median, but rather in the understanding of its behavior in its right tail. The basiresult in extreme value theory, known as the Fisher-Tippett-Gnedenko theorem (Fisher andTippett [9℄, Gnedenko [12℄) states that if (Yn) is an independent sequene of random opies ofa random variable Y suh that there exist normalizing nonrandom sequenes of real numbers
(an) and (bn), with an > 0 and suh that the sequene

1

an

(
max
1≤i≤n

Yi − bn

)onverges in distribution to some nondegenerate limit, then the umulative distribution fun-tion (df) of this limit an neessarily be written y 7→ GγY (ay + b), with a > 0 and b, γY ∈ Rwhere
GγY (y) =





exp
(
−(1 + γY y)

−1/γY
) if γY 6= 0 and 1 + γY y > 0,

exp (− exp(−y)) if γY = 0.If the aforementioned onvergene holds, we shall say that Y (or equivalently, its df FY )belongs to the max-domain of attration (MDA) of GγY , with γY being the so-alled extreme-value index of Y , and we write FY ∈ D(GγY ). The parameter γY drives the behavior of GγY(and thus of FY ) in its right tail:
• if γY > 0, namely Y belongs to the Fréhet MDA, then 1 −GγY is heavy-tailed, i.e. ithas a polynomial deay;
• if γY < 0, namely Y belongs to the Weibull MDA, then 1 − GγY is short-tailed, i.e. ithas a support bounded to the right;
• if γY = 0, namely Y belongs to the Gumbel MDA, then 1 − GγY has an exponentialdeay.This makes it lear that the estimation of γY is a �rst step when takling various problems inextreme value analysis, suh as the estimation of extreme quantiles of Y . Reent monographs2



on extreme value theory and espeially univariate extreme-value index estimation inlude Beir-lant et al. [1℄ and de Haan and Ferreira [14℄.In pratial appliations, it may happen that only inomplete information is available. Considerfor instane a medial follow-up study lasting up to time t whih ollets the survival timesof patients for a given hroni disease. If a patient is diagnosed with the disease at time s,his/her survival time is known if and only if he/she dies before time t. If the patient survivesuntil the end of the study, the only information available is that his/her survival time is notless than t− s. This situation is the arhetypal example of right-ensoring, whih shall be thefous of this paper. An interesting problem in this partiular ase is the estimation of extremesurvival times or, in other words, how long an exeptionally strong individual an survive thedisease. A preliminary step neessary to give an answer to this question is to estimate theextreme value index of the survival time Y ; this problem, whih is muh more omplex thanthe estimation of the extreme value index when the data set is omplete, has been investigatedquite reently by Beirlant et al. [2℄ and Einmahl et al. [8℄. Moreover, in the latter study,the authors propose an estimator of extreme quantiles under random right-ensoring, so as toprovide extreme survival times for male patients su�ering from AIDS.Besides, it may well be the ase that the survival time of a patient depends on additionalrandom fators suh as his/her age or the pre-existene of some other medial ondition, forinstane. Our goal in this study is to make it possible to integrate suh information in themodel, by taking into aount the dependeny of Y on a ovariate X. The problem thusbeomes to estimate the onditional extreme-value index γY (x) of Y given X = x. Reentpapers on this subjet when Y is nonensored inlude Wang and Tsai [18℄ who introdueda maximum likelihood approah, Daouia et al. [5℄ who used a �xed number of nonparamet-ri onditional quantile estimators to estimate the onditional extreme-value index, Gardesand Girard [10℄ who generalized the method of [5℄ to the ase when the ovariate spae isin�nite-dimensional, Goegebeur et al. [13℄ who studied a nonparametri regression estimatorand Gardes and Stup�er [11℄ who introdued a smoothed loal Hill estimator (see Hill [15℄).All these papers onsider the ase when Y given X = x belong to the Fréhet MDA; the ase3



when the response distribution belongs to an arbitrary domain of attration is onsidered inDaouia et al. [6℄, who generalized the method of [5℄ to this ontext, and Stup�er [16℄ whointrodued a generalization of the popular moment estimator of Dekkers et al. [7℄. However, tothe best of our knowledge, there is no solution yet to this problem when Y is right-ensored.The outline of this paper is as follows. In Setion 2, we give a preise de�nition of our model.In Setion 3, we de�ne our estimator of the onditional extreme-value index. The pointwiseweak onsisteny and asymptoti normality of the estimator are stated in Setion 4. The�nite sample performane of the estimator is studied in Setion 5. In Setion 6, we revisit themedial data set of [8℄ by integrating additional ovariate information. Proofs are deferred toSetion 7.2 FrameworkLet (X1, Y1, C1), . . . , (Xn, Yn, Cn) be n independent opies of a random vetor (X,Y,C) takingits values in E × (0,∞) × (0,∞) where E is a �nite-dimensional linear spae endowed witha norm ‖ · ‖. We assume that for all x ∈ E, given X = x, Y and C are independent,possess ontinuous probability density funtions (pdfs) and that the related onditional survivalfuntions (sfs) F Y (·|x) = 1−FY (·|x) of Y given X = x and FC(·|x) = 1−FC(·|x) of C given
X = x belong to some domain of attration. Spei�ally, we shall work in the following setting,where we reall that the left-ontinuous inverse of a nondereasing funtion f is the funtion
z 7→ inf{y ∈ R | f(y) ≥ z}:

(M1) Y and C are positive random variables and for every x ∈ E, there exist real numbers
γY (x), γC(x) and positive funtions aY (·|x), aC(·|x) suh that the left-ontinuous inverses
UY (·|x) of 1/F Y (·|x) and UC(·|x) of 1/FC(·|x) satisfy

lim
t→∞

UY (tz|x)− UY (t|x)
aY (t|x)

= DγY (x)(z) and lim
t→∞

UC(tz|x) − UC(t|x)
aC(t|x)

= DγC(x)(z)for every z > 0, where
Dγ(z) =





zγ − 1

γ
if γ 6= 0

log z if γ = 0.

(1)4



Model (M1) is the onditional analogue of the lassial extreme-value framework for Y and
C, see for instane [14℄, p.19. In this model, for every x ∈ E, the funtions UY (·|x) and
UC(·|x) have positive limits UY (∞|x) and UC(∞|x) at in�nity; the funtions x 7→ UY (∞|x)and x 7→ UC(∞|x), whih are suh that

UY (∞|x) = sup{t ∈ R |F Y (t|x) > 0} and UC(∞|x) = sup{t ∈ R |FC(t|x) > 0}are respetively alled the onditional right endpoints of Y and C.We assume that we only observe the random vetors (Xi, Ti, δi) with Ti = Yi ∧ Ci, where wedenote by s ∧ t the minimum of s and t, and δi = I{Yi≤Ci}. Suppose as well that the followingondition holds:
(H) For every x ∈ E, the distribution of T given X = x belongs to some domain ofattration D(GγT (x)) and we have either
• γY (x) > 0 and γC(x) > 0;
• γY (x) < 0, γC(x) < 0 and 0 < UY (∞|x) = UC(∞|x) < ∞;
• γY (x) = γC(x) = 0 and UY (∞|x) = UC(∞|x) = ∞.As mentioned in [8℄, if (M1) and (H) hold then T has onditional right endpoint UY (∞|x) =

UC(∞|x) and onditional extreme-value index
γT (x) =

γY (x)γC(x)

γY (x) + γC(x)with the onvention γT (x) = 0 if γY (x) = γC(x) = 0. In other words, if F T (·|x) is the sf of
T given X = x, there exists a positive funtion aT (·|x) suh that the left-ontinuous inverse
UT (·|x) of 1/F T (·|x) satis�es

∀z > 0, lim
t→∞

UT (tz|x)− UT (t|x)
aT (t|x)

= DγT (x)(z).3 The estimatorsTo takle the problem, we start by introduing an estimator of the onditional extreme-valueindex γT . For x ∈ E and a sequene h = h(n) onverging to 0 as n → ∞, we let Nn(x, h) be5



the total number of observations in the losed ball B(x, h) with enter x and radius h:
Nn(x, h) =

n∑

i=1

I{Xi∈B(x,h)} with B(x, h) = {x′ ∈ E | ‖x− x′‖ ≤ h},where I{·} is the indiator funtion. The bandwidth sequene h(n) makes it possible to seletthose ovariates whih are lose enough to x. Given Nn(x, h) = l ≥ 1, we let, for i = 1, . . . , l,
(Ti,∆i) = (Ti(x, h),∆i(x, h)) be the response pairs whose assoiated ovariates Xi = Xi(x, h)belong to the ball B(x, h). Let T1,l ≤ · · · ≤ Tl,l be the order statistis assoiated with thesample (T1, . . . ,Tl) � note that this way of denoting order statistis shall be used throughoutthe paper � and set for j = 1, 2

M (j)
n (x, kx, h) =

1

kx

kx∑

i=1

[log(Tl−i+1,l)− log(Tl−kx,l)]
jif kx ∈ {1, . . . , l − 1} and 0 otherwise. De�ne

γ̂T,n(x, kx, h) = γ̂T,n,+(x, kx, h) + γ̂T,n,−(x, kx, h)where γ̂T,n,+(x, kx, h) = M (1)
n (x, kx, h)and γ̂T,n,−(x, kx, h) = 1− 1

2


1−

[
M

(1)
n (x, kx, h)

]2

M
(2)
n (x, kx, h)




−1

if [M (1)
n (x, kx, h)

]2
6= M

(2)
n (x, kx, h), with γ̂T,n,−(x, kx, h) = 0 otherwise. The estimator

γ̂T,n(x, kx, h) is an adaptation of the moment estimator of [7℄ to the presene of a randomovariate; it follows from [16℄ that, under mild onditions, this quantity is a pointwise onsis-tent estimator of the extreme-value index γT (x) of T given X = x.To obtain an estimator of γY (x), we adapt an idea of [8℄. Given Nn(x, h) = l, let ∆[1:l], . . . ,∆[l:l]be the order statistis indued by the sample (T1, . . . ,Tl), namely ∆[i:l] is the random variableassoiated with Ti,l. We de�ne
p̂n(x, kx, h) =

1

kx

kx∑

i=1

∆[l−i+1:l],the proportion of nonensored observations among Tl−kx+1,l, . . . ,Tl,l when kx ∈ {1, . . . , l −
1} and 0 otherwise. This estimator is the adaptation to the random ovariate ase of the6



estimator p̂ of [8℄: we shall show (see the proof of Theorem 1 below) that under some onditions,
p̂n(x, kx, h) is a onsistent estimator of γC(x)/(γY (x)+γC(x)). Our estimator of γY (x) is then

γ̂Y,n(x, kx, h) =
γ̂T,n(x, kx, h)

p̂n(x, kx, h)if p̂n(x, kx, h) > 0 and 0 otherwise.4 Main results4.1 Weak onsistenyWe start by giving a pointwise weak onsisteny result for our estimator. To this end let
nx = nx(n, h) = nP(X ∈ B(x, h)) be the average total number of points in the ball B(x, h)and assume that nx(n, h) > 0 for every n. Let kx = kx(n) be a sequene of positive inte-gers, FT,h(·|x) be the df of T given X ∈ B(x, h), UT,h(·|x) be the left-ontinuous inverse of
1/F T,h(·|x). We introdue the funtions p(·|x), ph(·|x) de�ned by

p(t|x) =
d

dt
P(δ = 1, T ≤ t |X = x)

/
d

dt
FT (t|x)and ph(t|x) =

d

dt
P(δ = 1, T ≤ t |X ∈ B(x, h))

/
d

dt
FT,h(t|x)for every t > 0 suh that the denominator is nonzero, and p(x) := γC(x)/(γY (x) + γC(x))otherwise. It follows from Lemma 1 (see Setion 7) that if (M1), (H) hold and γY (x) 6= 0,then the �rst of these two quantities onverges to the positive limit p(x) as t → UT (∞|x)and from Lemma 2 that the seond quantity is indeed well-de�ned. Assume that in the ase

γY (x) = γC(x) = 0, the funtion p(·|x) also onverges to a positive limit at in�nity, whihwe denote by p(x) for the sake of onsisteny. The funtion x 7→ p(x) is understood as theonditional perentage of ensoring in the right tail of Y . For u, v ∈ (1,∞) suh that u < v,we introdue the quantities
ω(logUT , u, v, x, h) = sup

t∈[u,v]

∣∣∣∣log
UT,h(t|x)
UT (t|x)

∣∣∣∣and ω(p ◦ UT , u, v, x, h) = sup
t∈[u,v]

|ph(UT,h(t|x)|x) − p(x)| .Our onsisteny result is then: 7



Theorem 1. Assume that (M1) and (H) hold. For some x ∈ E, assume that nx → ∞,
kx → ∞, kx/nx → 0 and for some η > 0

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞ (2)and ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞. (3)Then it holds that γ̂Y,n(x, kx, h) P−→ γY (x) as n → ∞.Conditions kx → ∞ and kx/nx → 0 in Theorem 1 are standard hypotheses for the estimationof the onditional extreme-value index. Moreover, ondition nx → ∞ is neessary to makesure that there are su�iently many observations lose to x, whih is a standard assumptionin the random ovariate ase.We onlude this setion by analyzing onditions (2) and (3). We assume that

(A1) For every x ∈ E, it holds that for all t ∈ (0, UT (∞|x)), fY (t|x) > 0 and fC(t|x) > 0.
(A2) The funtions γY and γC are ontinuous funtions on E.
(A3) If n is large enough then for every x′ ∈ B(x, h) and r > 0, we have P(X ∈ B(x′, r)) > 0.
(A4) For every y ∈ R, the funtion F T (y|·) is ontinuous on E.Note that hypothesis (A1) implies that the sf F T (·|x) is a ontinuous dereasing funtion on

(0, UT (∞|x)) and hypothesis (A2) entails that the funtion γT is ontinuous. Hypotheses (A3)and (A4) are tehnial onditions; see Proposition 1 in [16℄ for analogues of these assumptionsin the nonensored ase. We an draw two onsequenes from this remark:1. If γY (x) > 0 and γC(x) > 0 then γY (x
′) > 0, γC(x′) > 0 and γT (x

′) > 0 for x′ loseenough to x. Corollary 1.2.10 in [14℄, p.23 thus yields for n large enough and every
x′ ∈ B(x, h)

∀z > 1, UT (z|x′) = zγT (x′)LUT
(z|x′)where for every x′ ∈ B(x, h), LUT

(·|x′) is a slowly varying funtion at in�nity, and
∀t > 0, F Y (t|x′) = t−1/γY (x′)LFY

(t|x′) and FC(t|x′) = t−1/γC(x′)LFC
(t|x′)8



where LFY
(·|x′) and LFC

(·|x′) are ontinuously derivable slowly varying funtions atin�nity. Espeially, if
bY (t|x′) = t

L′
FY

(t|x′)
LFY

(t|x′) and bC(t|x′) = t
L′
FC

(t|x′)
LFC

(t|x′)then
∀t > 0, fY (t|x′) =

[
1

γY (x′)
− bY (t|x′)

]
F Y (t|x′)

tand fC(t|x′) =

[
1

γC(x′)
− bC(t|x′)

]
FC(t|x′)

t
.2. If γY (x) < 0 and γC(x) < 0 then γY (x

′) < 0, γC(x′) < 0 and γT (x
′) < 0 for x′ loseenough to x. Corollary 1.2.10 in [14℄, p.23 yields for n large enough and every x′ ∈ B(x, h)that

∀z > 1, UT (∞|x′)− UT (z|x′) = zγT (x′)LUT
(z|x′)where for every x′ ∈ B(x, h), LUT

(·|x′) is a slowly varying funtion at in�nity and
∀t > 0, F Y (UY (∞|x′)− t−1|x′) = t1/γY (x′)LFY

(t|x′)and FC(UC(∞|x′)− t−1|x′) = t1/γC(x′)LFC
(t|x′)where LFY

(·|x′) and LFC
(·|x′) are ontinuously derivable slowly varying funtions atin�nity. In partiular, if

bY (t|x′) =





t
L′
FY

(t|x′)
LFY

(t|x′) if LFY
(t|x′) > 0

0 otherwiseand bC(t|x′) =





t
L′
FC

(t|x′)
LFC

(t|x′) if LFC
(t|x′) > 0

0 otherwise,sine UT (∞|x′) = UY (∞|x′) = UC(∞|x′) for every x′ ∈ B(x, h), one may write
∀t ∈ (0, UT (∞|x′)), fY (t|x′) =

[
− 1

γY (x′)
− bY ((UT (∞|x′)− t)−1|x′)

]
F Y (t|x′)

UT (∞|x′)− tand fC(t|x′) =
[
− 1

γC(x′)
− bC((UT (∞|x′)− t)−1|x′)

]
FC(t|x′)

UT (∞|x′)− t
.9



In this framework, it is possible to reformulate the hypotheses in our main results in a moreonvenient fashion: let Kx,η := [nx/(1 + η)kx, n
1+η
x ] and assume that for some α ∈ (0, 1)

sup
x′∈B(x,h)

|γY (x′)− γY (x)| ∨ |γC(x′)− γC(x)| = O(hα) (4)and sup
z∈Kx,η

sup
x′∈B(x,h)

1

log z

∣∣∣∣log
LUT

(z|x′)
LUT

(z|x)

∣∣∣∣ = O(hα) (5)where we denote by s ∨ t the maximum of two real numbers s and t. Then in ase 1, if
hα log nx → 0 as n → ∞, one has

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα log nx) (6)see the disussion below Proposition 1 in [16℄. In ase 2, if the onditional right endpoint

UT (∞|·) is suh that
sup

x′∈B(x,h)
|UT (∞|x′)− UT (∞|x)| = O(hβ) (7)with β ∈ (0, 1], then if

hα log nx → 0 and (nx/kx)
−γT (x)

LUT
(nx/kx|x)

hβ → 0 as n → ∞ (8)one has
UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O

(
hα log nx ∨

(nx/kx)
−γT (x)

LUT
(nx/kx|x)

hβ

)
, (9)see again the disussion below Proposition 1 in [16℄.The next result gives an analogue of these estimations when onsidering hypothesis (3).Proposition 1. Assume that onditions (M1), (H), (A1), (A2), (A3), (A4) hold and that forsome α ∈ (0, 1) and η > 0, onditions (4) and (5) are satis�ed.1. In ase 1 above assume that for x′ lose enough to x, |bY (·|x′)|, |bC(·|x′)| are regularlyvarying funtions at in�nity with respetive indies ρY (x′)/γY (x′), ρC(x′)/γC(x′), that is

|bY (t|x′)| = tρY (x′)/γY (x′)LbY (t|x′) and |bC(t|x′)| = tρC(x′)/γC (x′)LbC (t|x′) (10)10



with the so-alled onditional seond-order parameters ρY , ρC and the slowly varyingfuntions LbY (·|x′), LbC (·|x′) satisfying, for some η > 0,
sup

x′∈B(x,h)
|ρY (x′)− ρY (x)| ∨ |ρC(x′)− ρC(x)| = O(hα) , (11)

sup
t∈UT (Kx,η |x)

sup
x′∈B(x,h)

1

log t

[∣∣∣∣log
LbY (t|x′)
LbY (t|x)

∣∣∣∣ ∨
∣∣∣∣log

LbC (t|x′)
LbC (t|x)

∣∣∣∣
]

= O(hα) (12)where UT (Kx,η|x) is the image of the interval Kx,η by the funtion UT (·|x). If ρY (x) and
ρC(x) are negative, hα log nx → 0 and the sequene

δn := |bY (UT (nx/kx|x)|x)| ∨ |bC(UT (nx/kx|x)|x)|onverges to 0 then, for η > 0 small enough, one has, as n → ∞:
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα log nx ∨ δn) .2. In ase 2 above, assume that onditions (7) and (8) are satis�ed. Assume moreover thatfor x′ lose enough to x, |bY (·|x′)| and |bC(·|x′)| are regularly varying funtions at in�nitywith respetive indies −ρY (x

′)/γY (x
′) and −ρC(x

′)/γC(x
′), namely

|bY (t|x′)| = t−ρY (x′)/γY (x′)LbY (t|x′) and |bC(t|x′)| = t−ρC(x′)/γC(x′)LbC (t|x′) (13)with the onditional seond-order parameters ρY , ρC satisfying (11) and the slowly vary-ing funtions LbY (·|x′), LbC (·|x′) being suh that for some η ∈ (0, 1)

sup
t∈Jx,η

sup
x′∈B(x,h)

1

log t

[∣∣∣∣log
LbY (t|x′)
LbY (t|x)

∣∣∣∣ ∨
∣∣∣∣log

LbC (t|x′)
LbC (t|x)

∣∣∣∣
]
= O(hα) (14)where Jx,η := [(1 − η)[UT (∞|x) − UT (nx/kx|x)]−1,∞). If ρY (x) and ρC(x) are negativeand the sequene

δn := |bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| ∨ |bC((UT (∞|x)− UT (nx/kx|x))−1|x)|onverges to 0 then one has, as n → ∞:
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα log nx ∨ δn) .This result relates hypothesis (3) in Theorem 1 to the various funtions involved in the usualparametrization of the problem. It shall allow us to reover the optimal rate of onvergene ofthe estimator, see Theorem 2 and the developments below for details.11



4.2 Asymptoti normalityTo prove a pointwise asymptoti normality result for our estimator, we need to introdue aseond-order ondition on the funtion UT (·|x):
(M2) Conditions (M1) and (H) hold and for every x ∈ E, there exist a real number

ρT (x) ≤ 0 and a funtion AT (·|x) of onstant sign onverging to 0 at in�nity suh that thefuntion UT (·|x) satis�es
∀z > 0, lim

t→∞

1

AT (t|x)

[
UT (tz|x)− UT (t|x)

aT (t|x)
− zγT (x) − 1

γT (x)

]
= HγT (x),ρT (x)(z)where

HγT (x),ρT (x)(z) =

∫ z

1
rγT (x)−1

[∫ r

1
sρT (x)−1ds

]
dr.Hypothesis (M2) is the onditional analogue of a lassial seond-order ondition, see forinstane De�nition 2.3.1 and Corollary 2.3.4 in [14℄, pp.44�45: the parameter ρT (x) is theso-alled seond-order parameter of T given X = x. Note that Theorem 2.3.3 in [14℄, p.44shows that the funtion |AT (·|x)| is regularly varying at in�nity with index ρT (x). Moreover,as shown in Lemma B.3.16 p.397 therein, if (M2) holds with γT (x) 6= ρT (x) and ρT (x) < 0 if

γT (x) > 0, then de�ning qT (·|x) = aT (·|x)/UT (·|x), a seond-order ondition also holds for thefuntion logUT (·|x), namely:
∀z > 0, lim

t→∞

1

QT (t|x)

[
logUT (tz|x) − logUT (t|x)

qT (t|x)
− zγT,−(x) − 1

γT,−(x)

]
= HγT,−(x),ρ′

T
(x)(z)with γT,−(x) = (−γT (x)) ∨ 0,

ρ′T (x) =





ρT (x) if γT (x) < ρT (x) ≤ 0

γT (x) if ρT (x) < γT (x) ≤ 0

−γT (x) if 0 < γT (x) < −ρT (x) and ℓT (x) 6= 0

ρT (x) if (0 < γT (x) < −ρT (x) and ℓT (x) = 0) or 0 < −ρT (x) ≤ γT (x)where we have de�ned
ℓT (x) = lim

t→∞

(
UT (t|x)−

aT (t|x)
γT (x)

)12



and QT (·|x) has ultimately onstant sign, onverges to 0 at in�nity and is suh that |QT (·|x)|is regularly varying at in�nity with index ρ′T (x). Note that Lemma B.3.16 in [14℄, p.397 entailsthat one an hoose
QT (t|x) =





AT (t|x) if γT (x) < ρT (x) ≤ 0

γT,+(x)−
aT (t|x)
UT (t|x)

if ρT (x) < γT (x) ≤ 0or 0 < γT (x) < −ρT (x) and ℓT (x) 6= 0or 0 < γT (x) = −ρT (x)

ρT (x)

γT (x) + ρT (x)
AT (t|x)

if 0 < γT (x) < −ρT (x) and ℓT (x) = 0or 0 < −ρT (x) < γT (x)with γT,+(x) = γT (x) ∨ 0. Besides, if γT (x) > 0 and ρT (x) = 0, then one has
∀z > 0, lim

t→∞

1

QT (t|x)

[
logUT (tz|x)− logUT (t|x)

qT (t|x)
− log z

]
= 0for every funtion QT (·|x) suh that AT (t|x) = O(QT (t|x)) as t → ∞; espeially, we an take

QT (·|x) = AT (·|x) in this ase.We an now state the asymptoti normality of our estimator.Theorem 2. Assume that (M2) holds. For some x ∈ E, assume that nx → ∞, kx → ∞,
kx/nx → 0, √kx QT (nx/kx|x) → 0 and for some η > 0

√
kx

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞ (15)and √

kx ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞. (16)Then if γT (x) 6= ρT (x), it holds that

√
kx [γ̂Y,n(x, kx, h) − γY (x)]

d−→ N
(
0,

1

p2(x)

[
V (γT (x)) +

γ2T (x)

p(x)
(1− p(x))

])where we have set
V (γT (x)) =





γ2T (x) + 1 if γT (x) ≥ 0

(1− γT (x))
2(1− 2γT (x))(1 − γT (x) + 6γ2T (x))

(1− 3γT (x))(1 − 4γT (x))
if γT (x) < 0.13



Theorem 2 is the onditional analogue of the asymptoti normality result stated in [8℄. Inpartiular, the asymptoti variane of our estimator is similar to the one obtained when thereis no ovariate. Besides, ondition √
kx QT (nx/kx|x) → 0 as n → ∞ in Theorem 2 is a standardondition needed to ontrol the bias of the estimator.We onlude this paragraph by showing how Theorem 2 an be used to obtain optimal rates ofonvergene for our estimator. We assume that E = R

d, d ≥ 1 is equipped with the standardEulidean distane and that X has a probability density funtion f on R
d whih is ontinuouson its support S, assumed to have nonempty interior. If x is a point lying in the interior of Swhih is suh that f(x) > 0, it is straightforward to show that (A3) holds and that

nx = n

∫

B(x,h)
f(u)du = nhdVf(x)(1 + o(1)) as n → ∞with V being the volume of the unit ball in R

d. Set k = kx/(h
dVf(x)); it is then lear that

kx = khdVf(x) and that hypotheses nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞ areequivalent to khd → ∞ and k/n → 0 as n → ∞. If k and h have respetive order na and n−b,with a, b > 0, the rate of onvergene of the estimator γ̂Y,n(x, kx, h) to γY (x) is then n(a−bd)/2.Under the hypotheses of Theorem 2, provided that (A1), (A2) and (A4) hold, one an �nd theoptimal values for a and b in the Fréhet and Weibull domains of attration:
• If γY (x) > 0 and γC(x) > 0, then under the Hölder onditions (4) and (5), hypothesis (15)shall be satis�ed if √khdhα log(nhd) → 0 as n → ∞. Besides, under assumption (10) andthe Hölder onditions (11) and (12), Proposition 1 gives that hypothesis (16) is impliedby

√
kx
[
|bY (UT (nx/kx|x)|x)| ∨ |bC(UT (nx/kx|x)|x)|

]
→ 0 as n → ∞or, equivalently,

√
khd

(n
k

)γC(x)ρY (x)/(γY (x)+γC(x))
LY (n/k|x) → 0and √

khd
(n
k

)γY (x)ρC(x)/(γY (x)+γC (x))
LC(n/k|x) → 0as n → ∞, where LC(·|x) and LY (·|x) are slowly varying funtions at in�nity. Realling14



the bias ondition √
khd QT (n/k|x) → 0 as n → ∞ and letting

ρ′′T (x) =





ρ′T (x) if ρT (x) < 0

0 if ρT (x) = 0the problem is thus to maximize the quantity a − bd under the onstraints a ∈ (0, 1),
a− bd ≥ 0,

a− b(d+ 2α) ≤ 0,

a− bd+ 2(1 − a)
γC(x)ρY (x)

γY (x) + γC(x)
≤ 0,

a− bd+ 2(1 − a)
γY (x)ρC(x)

γY (x) + γC(x)
≤ 0and a− bd+ 2(1− a)ρ′′T (x) ≤ 0.Setting

ρ(x) := max

(
ρ′′T (x),

γC(x)ρY (x)

γY (x) + γC(x)
,

γY (x)ρC(x)

γY (x) + γC(x)

)
≤ 0the onstraints beome a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0 and a− bd+ 2(1 − a)ρ(x) ≤ 0.The solution of this problem is
a∗ =

−(d+ 2α)ρ(x)

α− (d+ 2α)ρ(x)
and b∗ =

−ρ(x)

α− (d+ 2α)ρ(x)for whih
a∗ − b∗d =

−2αρ(x)

α− (d+ 2α)ρ(x)
.The optimal onvergene rate for our estimator in this ase is therefore

n(a∗−b∗d)/2 = n−αρ(x)/(α−(d+2α)ρ(x)) .

• If γY (x) < 0 and γC(x) < 0, then under the Hölder onditions (4), (5) and (7), hypoth-esis (15) shall be satis�ed if (see (8))
√
khdhα log(nhd) → 0 and √

khd
(n/k)−γT (x)

LUT
(n/k|x)h

β → 0 as n → ∞.15



Besides, under assumption (13) and the Hölder onditions (11) and (14), Proposition 1gives that hypothesis (16) is implied by
√

kx
[
|bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| ∨ |bC((UT (∞|x)− UT (nx/kx|x))−1|x)|

]
→ 0or, equivalently,

√
khd

(n
k

)γC(x)ρY (x)/(γY (x)+γC(x))
LY (n/k|x) → 0and √

khd
(n
k

)γY (x)ρC(x)/(γY (x)+γC (x))
LC(n/k|x) → 0as n → ∞, where LC(·|x) and LY (·|x) are slowly varying funtions at in�nity. Reall-ing the bias ondition √

khd QT (n/k|x) → 0 as n → ∞, the problem thus onsists inmaximizing the quantity a− bd under the onstraints a ∈ (0, 1), a− bd ≥ 0,
a− b(d+ 2α) ≤ 0,

a− 2(1− a)γT (x)− b(d+ 2β) ≤ 0,

a− bd+ 2(1 − a)
γC(x)ρY (x)

γY (x) + γC(x)
≤ 0,

a− bd+ 2(1 − a)
γY (x)ρC(x)

γY (x) + γC(x)
≤ 0and a− bd+ 2(1− a)ρ′T (x) ≤ 0.Assume now that the funtions γY and γC are at least as regular as UT (∞|·), namelythat β ≤ α. In this ase, sine γT (x) < 0, the onstraints redue to a ∈ (0, 1), a−bd ≥ 0,

a− bd+ 2(1 − a)ρ(x) ≤ 0and a− 2(1 − a)γT (x)− b(d+ 2β) ≤ 0where
ρ(x) := max

(
ρ′T (x),

γC(x)ρY (x)

γY (x) + γC(x)
,

γY (x)ρC(x)

γY (x) + γC(x)

)
≤ 0.The solution of this problem is

a∗ =
−(d+ 2β)ρ(x) − dγT (x)

β − (d+ 2β)ρ(x)− dγT (x)
and b∗ =

−ρ(x)− γT (x)

β − (d+ 2β)ρ(x) − dγT (x)16



for whih
a∗ − b∗d =

−2βρ(x)

β − (d+ 2β)ρ(x) − dγT (x)
.The optimal onvergene rate for our estimator in this ase is then

n(a∗−b∗d)/2 = n−βρ(x)/(β−(d+2β)ρ(x)−dγT (x)).5 Simulation studyIn this paragraph, we arry out a simulation study to get a grasp of how our estimator behavesin a �nite sample situation. We onsider the ase E = R equipped with the standard Eulideannorm and a ovariate X whih is uniformly distributed on [0, 1] ⊂ E. Moreover, we let
γY : [0, 1] → R and γC : [0, 1] → R be the positive funtions de�ned by

∀x ∈ [0, 1], γY (x) =
2

3
+

1

6
sin(2πx) and γC(x) = 5 +

1

3
sin(2πx).We onsider three di�erent models for the distribution of (Y,C) given X = x:

• the �rst model is
∀t > 0, F Y (t|x) =

(
1 + t−ρ/γY (x)

)1/ρ and FC(t|x) =
(
1 + t−ρ/γC(x)

)1/ρwhere the parameter ρ is hosen to be independent of x, in the set {−1.5,−1,−0.5}. Inpartiular, Y and C given X = x are Burr type XII distributed. In this ase, F Y (·|x)and FC(·|x) both belong to the Fréhet MDA for every x ∈ [0, 1] with related onditionalextreme-value indies γY (x) and γC(x). Finally, the onditional perentage p of ensoringin the right tail is suh that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1];
• the seond model is

∀t ∈ [0, g(x)], F Y (t|x) =
Γ(2/γY (x))

Γ2(1/γY (x))

∫ 1

t/g(x)
v1/γY (x)−1(1− v)1/γY (x)−1dvand FC(t|x) =

Γ(2/γC(x))

Γ2(1/γC (x))

∫ 1

t/g(x)
v1/γC (x)−1(1− v)1/γC (x)−1dvwhere Γ : (0,∞) → R is Euler's Gamma funtion, de�ned by

∀z > 0, Γ(z) =

∫ ∞

0
e−ttz−1dt17



and the onditional right endpoint funtion g is de�ned by
∀x ∈ [0, 1], g(x) = 1− c+ 8cx(1− x)with the onstant c > 0 lying in the set {0.1, 0.2, 0.3}. Here, given X = x, Y/g(x)is a Beta(1/γY (x), 1/γY (x)) random variable and C/g(x) is a Beta(1/γC (x), 1/γC (x))random variable. Espeially, Y and C given X = x belong to the Weibull MDA, withommon onditional right endpoint g(x), respetive onditional extreme-value indies

−γY (x) and −γC(x), and the onditional perentage p of ensoring in the right tailbeing one again suh that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1];
• the third model is

∀t > 0, F Y (t|x) = FC(t|x) =
2

1 + exp(q(x)t)where q is the funtion de�ned by
∀x ∈ [0, 1], q(x) = 1 +

1

2
sin(2πx).In this model, q(x)Y and q(x)C given X = x have a ommon logisti distribution, whihis an example of distribution belonging to the Gumbel MDA. Note that in this ase, thefuntion p is onstant equal to 1/2.Our goal in this study is to estimate the onditional extreme-value index γY on a grid of points

{x1, . . . , xM} of [0, 1]. To this aim, two parameters have to be hosen: the bandwidth h andthe number of log-spaings kx. We adapt a seletion proedure that was introdued in [11℄:1) For every bandwidth h in a grid {h1, . . . , hP } of possible values of h, we make a pre-liminary hoie of kx. Let γ̂i,j(k) = γ̂Y,n(xi, k, hj) and ⌊·⌋ denote the �oor funtion: foreah i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and k ∈ {qi,j +1, . . . , Nn(xi, hj)− qi,j}, where qi,j =
⌊Nn(xi, hj)/10⌋ ∨ 1, we introdue the set Ei,j,k = {γ̂i,j(ℓ), ℓ ∈ {k − qi,j, . . . , k + qi,j}}.We ompute the standard deviation Σi,j(k) of the set Ei,j,k for every possible value of kand we reord the number Ki,j for whih this standard deviation reahes its �rst loal18



minimum whih is less than its average value. Namely, Ki,j = qi,j+1 if Σi,j is inreasing,
Ki,j = Nn(xi, hj)− qi,j if Σi,j is dereasing and

Ki,j = min

{
k suh that Σi,j(k) ≤ Σi,j(k − 1) ∧ Σi,j(k + 1)and Σi,j(k) ≤

1

Nn(xi, hj)− 2qi,j

Nn(xi,hj)−qi,j∑

l=qi,j+1

Σi,j(l)

}otherwise, where we extend Σi,j by setting Σi,j(qi,j) = Σi,j(qi,j+1) and Σi,j(Nn(xi, hj)−
qi,j + 1) = Σi,j(Nn(xi, hj) − qi,j). We then selet the value ki,j suh that γ̂i,j(ki,j) isthe median of the set Ei,j,Ki,j

. The main idea of the �rst part of this proedure isthat, for a given point xi and a given bandwidth hj , the number of order statistis ishosen in the �rst reasonable region of stability of the Hill plot related to the funtion
k 7→ γ̂Y,n(xi, k, hj).2) We now selet the bandwidth h: let q′ be a positive integer suh that 2q′+1 < P . For eah
i ∈ {1, . . . ,M} and j ∈ {q′+1, . . . , P − q′}, let Fi,j = {γ̂i,ℓ(ki,ℓ), ℓ ∈ {j − q′, . . . , j + q′}}and ompute the standard deviation σi(j) of Fi,j . Our objetive funtion is then theaverage of these quantities over the grid {x1, . . . , xM}:

σ(j) =
1

M

M∑

i=1

σi(j).We next reord the integer j∗ suh that σ(j∗) is the �rst loal minimum of the appliation
j 7→ σ(j) whih is less than the average value of σ. In other words, j∗ = q′ + 1 if σ isinreasing, j∗ = P − q′ if σ is dereasing and

j∗ = min

{
j suh that σ(j) ≤ σ(j − 1) ∧ σ(j + 1) and σ(j) ≤ 1

P − 2q′

P−q′∑

l=q′+1

σ(l)

}otherwise, where we extend σ by setting σ(q′) = σ(q′+1) and σ(P − q′+1) = σ(P − q′).The seleted bandwidth is then independent of x and is given by h∗ = hj∗ . In doingso, we require that h∗ is not too large, to ensure that the omputation of our estimatoris arried out only using ovariates whih are lose to x, and the estimation arried outfor bandwidths in a neigborhood of h∗ is reasonably stable. The seleted number oflog-spaings is thus given, for x = xi, by k∗xi
= ki,j∗ .19



This estimation proedure is arried out on N = 100 independent samples of size n = 1000.The onditional extreme-value index is estimated on a grid of M = 50 evenly spaed pointsin [0, 1]. Regarding the seletion proedure, we test P = 25 evenly spaed values of h rangingfrom 0.05 to 0.25 and we set q′ = 1.We give in Table 1 the empirial mean squared errors (MSEs) of our estimator, averaged overthe M points of the grid, along with the minimal and maximal MSEs obtained. One ansee that in the Fréhet MDA, the MSE of our estimator inreases as |ρ| approahes 0: thisis not surprising sine ρ is the onditional seond-order parameter of Y and C given X = x(see [1℄, p.93) whih is known to play a major role in the performane of the estimators ofthe extreme-value index. Some illustrations are given in Figures 1�3, where the estimationsorresponding to the median of the MSE are represented in eah ase for our estimator.6 Real data exampleIn this setion, we introdue a medial data set, provided by Dr P. J. Solomon and the Aus-tralian National Centre in HIV Epidemiology and Clinial Researh; see Venables and Rip-ley [17℄ and the data set aids2, part of the pakage MASS in R. In the ontext of extreme valueanalysis, this data set was onsidered by [8℄. The data set ontains information olleted aftera follow-up study on 2843 patients diagnosed with AIDS before July 1st, 1991. Espeially, foreah patient, the data set gives his/her age at the time of diagnosis and, if the patient diedbefore the end of the study, his/her date of death. There are only 89 female patients in thisstudy, so we hose to retain the 2754 male patients of the data set. Our variable of interestis the survival time Y of a patient, whih is randomly right-ensored, as is usually the asein suh follow-up studies. The ovariate we onsider is the age of a patient at the time ofdiagnosis. A satterplot of the data is given in Figure 4.Our �rst goal is to provide an estimate of the onditional extreme-value index of Y using ourestimator. A look at the satterplot shows that data for patients aged either less than 20 ormore than 65 when diagnosed with AIDS is very sare, so we fous on patients aged between20



xmin = 20 and xmax = 65. We use the seletion proedure detailed in Setion 5: the bandwidth
h is hosen among h1 ≤ · · · ≤ h25 where the hi are evenly spaed and

h1 = 0.05(xmax − xmin) and h25 = 0.25(xmax − xmin).This leads us to hoose h∗ = 3.75. The estimate of the onditional extreme-value index γY on25 evenly spaed points in [xmin, xmax] is represented on Figure 5.This estimate is only a �rst step in the assessment of the tail heaviness of the onditionaldistribution of Y given X = x, however. A further step is to estimate onditional extremequantiles of this distribution, where we de�ne the onditional quantile funtion qY (·|x) as thegeneralized inverse of F Y (·|x):
qY (ε|x) = inf{t ∈ R |F Y (t|x) ≤ ε}.To this end, we propose an adaptation of the extreme quantile estimator of [8℄, whih is itself anadaptation of the lassial extreme quantile estimator, see for instane Theorem 4.3.1 in [14℄,p.134. We let F̂ Y,n(·, h|x) be the straightforward onditional adaptation of the Kaplan-Meierestimator for the sf of Y given X = x (see Beran [3℄). Besides, given Nn(x, h) = l, we set for

kx ∈ {1, . . . , l − 1}

ân(x, kx, h) = Tl−kx,l
γ̂T,n,+(x, kx, h)(1 − γ̂T,n,−(x, kx, h))

p̂n(x, kx, h)and 0 otherwise. An estimator of the onditional extreme quantile qY (ε|x), where ε is a smallpositive number, is then
q̂Y,n(ε, x, kx, h) = Tl−kx,l + ân(x, kx, h)Dγ̂T,n(x,kx,h)

(
F̂ Y,n(Tl−kx,l, h|x)/ε

)if kx ∈ {1, . . . , l−1} and 0 otherwise, where the funtion D was introdued in (1). In our ase,we set h = h∗; for x ∈ [xmin, xmax], the number of log-spaings kx is hosen by applying the�rst step of the seletion proedure introdued in Setion 5.We give some results on Figure 6, where we represent estimates x 7→ q̂Y,n(ε, x, k
∗
x, h

∗) of theextreme quantile urve for an exeedane level ε ∈ {0.01, 0.005, 0.002, 0.001}. One an see onthis �gure that these estimates are fairly stable for patients aged between 20 and 53 years and21



derease sharply afterwards. This may be interpreted as a onsequene of immunosenesene,namely the deterioration of the immune system as age inreases. This phenomenon is of ourseespeially ritial in the ase of AIDS, sine HIV targets ells of the immune system. Besides,one an see that the estimate of the extreme quantile urve for ε = 0.001 yields, in the range
[20, 53], survival times around 13 years and as high as 16 years. This is in line with Figure1(b) of [8℄, whih does not onsider any ovariate information and gives a value of this extremesurvival time between 15 and 17 years, while using a di�erent estimator of the extreme valueindex.7 ProofsBefore giving a proof of Theorem 1, we need some preliminary results. Lemma 1, whih isessentially ontained in [8℄, gives a useful representation of p(x).Lemma 1. Let Y , C be two independent positive random variables having respetive sfs F Y ,
FC , respetive pdfs fY , fC and ommon right endpoint U(∞) = UY (∞) = UC(∞). De�ne for
t > 0

p(t) =
d

dt
P(Y ≤ C, Y ∧ C ≤ t)

/
d

dt
P(Y ∧ C ≤ t)whenever the denominator is nonzero, and p := γC/(γY + γC) otherwise. Then one has

p(t) =
FC(t)fY (t)

FC(t)fY (t) + F Y (t)fC(t)whenever the denominator is nonzero. In partiular, p(t) ≤ 1 for every t > 0. If moreover Yand C belong respetively to D(GγY ) and D(GγC ) and either
• γY > 0 and γC > 0;
• γY < 0, γC < 0 and 0 < U(∞) < ∞,then p(t) → p as t → U(∞).Lemma 2 is a partial generalization of Lemma 1 to the random ovariate ase.22



Lemma 2. Assume that the funtions (x, t) 7→ fY (t|x) and (x, t) 7→ fC(t|x) are ontinuouson E × (0,∞). Then given X ∈ B(x, h), T has pdf
fT,h(t|x) := E(FC(t|X)fY (t|X) + F Y (t|X)fC(t|X) |X ∈ B(x, h))and we have

∀t > 0, ph(t|x) =
E(FC(t|X)fY (t|X) |X ∈ B(x, h))

E(FC(t|X)fY (t|X) |X ∈ B(x, h)) + E(F Y (t|X)fC(t|X) |X ∈ B(x, h))whenever the denominator is nonzero. In partiular, ph(t|x) ≤ 1 for every t > 0.Proof of Lemma 2. Remark that
FT,h(t|x) = P(Y ≤ C, Y ≤ t |X ∈ B(x, h)) + P(C ≤ Y,C ≤ t |X ∈ B(x, h)).The independene of Y and C given X and Tonelli's theorem yield
P(Y ≤ C, Y ≤ t |X ∈ B(x, h)) = E

(∫ t

0
FC(z|X)fY (z|X)dz |X ∈ B(x, h)

)

=

∫ t

0
E
(
FC(z|X)fY (z|X) |X ∈ B(x, h)

)
dz (17)and P(C ≤ Y,C ≤ t |X ∈ B(x, h)) = E

(∫ t

0
F Y (z|X)fC(z|X)dz |X ∈ B(x, h)

)

=

∫ t

0
E
(
F Y (z|X)fC (z|X) |X ∈ B(x, h)

)
dz.The regularity hypotheses on fY and fC make it lear that both of the above integrands areontinuous as funtions of z, so that FT,h(·|x) has a ontinuous derivative whih is

d

dt
FT,h(t|x) = E(FC(t|X)fY (t|X) + F Y (t|X)fC(t|X) |X ∈ B(x, h)) = fT,h(t|x). (18)This is the �rst desired result. Moreover,

P(δ = 1, T ≤ t |X ∈ B(x, h)) = P(Y ≤ C, Y ≤ t |X ∈ B(x, h)).From (17), we get
d

dt
P(δ = 1, T ≤ t |X ∈ B(x, h)) = E

(
FC(t|X)fY (t|X) |X ∈ B(x, h)

)
. (19)Colleting (18) and (19) onludes the proof. 23



We then state a ouple of useful tehnial results. The �rst one gives the onditional distribu-tion of the random pairs (Ti,∆i).Lemma 3. Given Nn(x, h) = l ≥ 1, the random pairs (Ti,∆i), 1 ≤ i ≤ l, are independentand identially distributed random variables whose ommon distribution is that of (T, δ) given
X ∈ B(x, h).Proof of Lemma 3. The proof of this result is similar to that of Lemma 2 in [16℄: if
(t1, . . . , tl) ∈ R

l and (d1, . . . , dl) ∈ {0, 1}l, then sine the random vetors (Xi, Ti, δi) have thesame distribution, it holds that
P

(
l⋂

i=1

{Ti ≤ ti,∆i = di}, Nn(x, h) = l

)
=

(
n

l

)
P

(
l⋂

i=1

{Ti ≤ ti, δi = di,Xi ∈ B(x, h)}
)

×
n∏

i=l+1

P (Xi /∈ B(x, h)) .The independene of the random pairs (Xi, Ti, δi), i = 1, . . . , n entails that the above proba-bility is
l∏

i=1

P(T ≤ ti, δ = di |X ∈ B(x, h)) ×
[(

n

l

) l∏

i=1

P (Xi ∈ B(x, h)) ×
n∏

i=l+1

P (Xi /∈ B(x, h))

]
.Sine Nn(x, h) is a binomial random variable with parameters n and P(X ∈ B(x, h)), the resultfollows.The next lemma, whose proof an be found in [16℄, is a pivotal tehnial tool for the proofs ofTheorems 1 and 2.Lemma 4. Let (Sn) be a sequene of random variables. Assume that there exist a triangulararray of events (Aij)0≤j≤i and a sequene of non-empty sets (In) ontained in {1, . . . , n} suhthat

• for every n the Anl, 0 ≤ l ≤ n, have positive probability, are pairwise disjoint and
n∑

l=0

P(Anl) = 1;

• it holds that ∑
l∈In

P(Anl) → 1 as n → ∞.24



If one has for every ε > 0

sup
l∈In

P(|Sn| > ε|Anl) → 0 as n → ∞,then Sn
P−→ 0 as n → ∞.Finally, remark that sine Nn(x, h) is a binomial random variable with parameters n and

P(X ∈ B(x, h)), it is a onsequene of Chebyshev's inequality that for all η ∈ (0, 1),
√

n1−η
x

∣∣∣∣
Nn(x, h)

nx
− 1

∣∣∣∣
P−→ 0 as n → ∞.As a onsequene, if Ix = N ∩

[(
1− n

−1/4
x

)
nx,
(
1 + n

−1/4
x

)
nx

] then
∑

l∈Ix

P(Nn(x, h) = l) → 1 as n → ∞.The �nal lemma, ontained in [16℄, makes it possible to understand a bit more about theasymptoti behavior of ertain random variables whih appear in our proofs.Lemma 5. Let Wi, i ≥ 1 be independent standard Pareto random variables, i.e. having df
w 7→ 1− 1/w on (1,∞). Assume that nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞. Then forevery ε > 0 it holds that

sup
l∈Ix

P

(∣∣∣∣
kx
l
Wl−kx,l − 1

∣∣∣∣ > ε

)
→ 0 as n → ∞.We may now prove Theorem 1.Proof of Theorem 1. Write

γ̂Y,n(x, kx, h)− γY (x) =
1

p̂n(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x))−

γT (x)

p(x)
(p̂n(x, kx, h)− p(x))

]
.Following [8℄, we note that if V is a standard uniform random variable whih is independentof (X,Y,C), then:

P(V ≤ ph(T |x), T ≤ t0 |X ∈ B(x, h)) =

∫ t0

0
ph(t|x)fT,h(t|x)dt

= P(δ = 1, T ≤ t0 |X ∈ B(x, h))25



so that given X ∈ B(x, h), the random pairs (T, I{V≤ph(T |x)}) and (T, δ) have the samedistribution. Consequently, if Vi, i ≥ 1 is an independent sequene of standard uniformrandom variables whih are independent of the (Xi, Yi, Ci), then given Nn(x, h) = l, it isa onsequene of Lemma 3 that the distribution of (γ̂T,n(x, kx, h), p̂n(x, kx, h)) is that of
(γ̂T,n(x, kx, h), p̃n(x, kx, h)), with

p̃n(x, kx, h) :=
1

kx

kx∑

i=1

I{V[l−i+1:l]≤ph(Tl−i+1,l|x)}if kx ∈ {1, . . . , l − 1} and 0 otherwise, where V[1:l], . . . , V[l:l] are the order statistis indued by
T1,l, . . . ,Tl,l. Moreover, sine the Vi, i ≥ 1 are standard uniform variables independent of the
(Xi, Yi, Ci), the V[i:l], 1 ≤ i ≤ l are standard uniform variables independent of the (Xi, Yi, Ci)as well. Introduing, given Nn(x, h) = l, the quantity

pn(x, kx, h) :=
1

kx

kx∑

i=1

I{Vi≤ph(Tl−i+1,l|x)}if kx ∈ {1, . . . , l − 1} and 0 otherwise, we obtain
γ̂Y,n(x, kx, h)− γY (x)

d
=

1

pn(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x))−

γT (x)

p(x)
(pn(x, kx, h)− p(x))

]
.It is thus enough to show the onsisteny of γ̂T,n(x, kx, h) and pn(x, kx, h). The onsisteny ofthe former quantity is an immediate onsequene of Theorem 1 in [16℄. To prove the onsistenyof pn(x, kx, h), note that

pn(x, kx, h)− p(x) =

[
Bkx

kx
− p(x)

]
− Sn,1 + Sn,2where

Bkx =

kx∑

i=1

I{Vi≤p(x)}, (20)
Sn,1 =

[
kx∑

i=1

I{Vi≤p(x)}

]
I{Nn(x,h)≤kx} (21)and Sn,2 =

n∑

l=kx+1

[
1

kx

kx∑

i=1

I{Vi≤ph(Tl−i+1,l|x)} − I{Vi≤p(x)}

]
I{Nn(x,h)=l}. (22)26



As a onsequene, Bkx is a binomial random variable with parameters kx and p(x) whih isindependent of γ̂T,n(x, kx, h) and Thebyhev's inequality entails
pn(x, kx, h)− p(x) = −Sn,1 + Sn,2 + oP(1) as n → ∞.Further, for every ε > 0,

P(|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞so that Sn,1
P−→ 0 as n → ∞. Besides, if Wi, i ≥ 1 are independent standard Pareto randomvariables, then the distribution of the random vetor (T1, . . . ,Tl) given Nn(x, h) = l ≥ 1 is thedistribution of the random vetor (UT,h(W1|x), . . . , UT,h(Wl|x)), see Lemma 3. Let n be solarge that kx < inf Ix. The equality

∀a, b ∈ [0, 1], E
∣∣I{V≤a} − I{V ≤b}

∣∣ = |a− b|valid for every standard uniform random variable V , entails for every l ∈ Ix

E(|Sn,2| |Nn(x, h) = l) ≤ 1

kx

kx∑

i=1

E|ph(Tl−i+1,l|x)− p(x)|

=
1

kx

kx∑

i=1

E|ph(UT,h(Wl−i+1,l|x)|x) − p(x)|.Clearly, for every κ > 0, if n is so large that
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
≤ κ

2we have by Lemma 2 that
E(|Sn,2| |Nn(x, h) = l) ≤ κ

2
+ 2 sup

l∈Ix

P
(
{Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η

x }
)
. (23)Lemma 5 entails

sup
l∈Ix

P(Wl−kx+1,l < nx/(1 + η)kx) = sup
l∈Ix

P

(
kx
nx

Wl−kx+1,l − 1 < − η

1 + η

)
→ 0 as n → ∞,and sine W is standard Pareto distributed, we get

sup
l∈Ix

P
(
Wl,l > n1+η

x

)
= sup

l∈Ix

[
1−

(
1− n−1−η

x

)l] ≤ 1−
(
1− n−1−η

x

)3nx/2 → 0 as n → ∞.27



In other words
sup
l∈Ix

P({Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η
x }) ≤ κ

4
(24)for n large enough, so that olleting (23) and (24), we �nd that E(|Sn,2| |Nn(x, h) = l) → 0uniformly in l ∈ Ix as n → ∞. Aording to Markov's inequality, we have for every ε > 0

sup
l∈Ix

P(|Sn,2| > ε |Nn(x, h) = l) ≤ sup
l∈Ix

E(|Sn,2| |Nn(x, h) = l)

ε
→ 0 as n → ∞.Lemma 4 then entails Sn,2

P−→ 0 as n → ∞ and the proof is omplete.We proeed by proving the pointwise asymptoti normality of the estimator.Proof of Theorem 2. Reall from the proof of Theorem 1 the equality
γ̂Y,n(x, kx, h)− γY (x)

d
=

1

pn(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x))−

γT (x)

p(x)
(pn(x, kx, h)− p(x))

]
.The asymptoti normality of γ̂T,n(x, kx, h),

√
kx [γ̂T,n(x, kx, h)− γT (x)]

d−→ N (0, V (γT (x))) (25)is ontained in Theorem 2 of [16℄. We now reall the representation
pn(x, kx, h)− p(x) =

[
Bkx

kx
− p(x)

]
− Sn,1 + Sn,2with Bkx , Sn,1 and Sn,2 as in (20), (21) and (22). Note that, from (21), one has for every ε > 0

P(
√

kx|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞so that √kx|Sn,1| P−→ 0 as n → ∞. Let n be so large that kx < inf Ix. Let further Wi, i ≥ 1be independent standard Pareto random variables whih are independent of the Vi and notethat, from Lemma 3 and (22), one has given Nn(x, h) = l ∈ Ix:
Sn,2

d
=

1

kx

kx∑

i=1

I{Vi≤ph(UT,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)} =: S′
n.

28



Further,
√

kx|S′
n| ≤ 2

√
kxI{Wl−kx+1,l<nx/(1+η)kx}∪{Wl,l>n1+η

x }

+
√

kx

[
1

kx

kx∑

i=1

∣∣∣I{Vi≤ph(UT,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)}

∣∣∣
]

× I{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η
x }.Sine the expetation of the seond term on the right-hand side of this inequality is

1√
kx

kx∑

i=1

E

[
|ph(UT,h(Wl−i+1,l|x)|x)− p(x)|I{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η

x }

]we may, for every κ > 0, use Lemma 2 to bound it from above by
√

kxω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
≤ κ

2for n su�iently large. From (24) and Markov's inequality, we get for every ε > 0

sup
l∈Ix

P(
√
kx|Sn,2| > ε |Nn(x, h) = l) ≤ κif n is large enough. By Lemma 4, this entails √kx|Sn,2| P−→ 0 as n → ∞. Consequently

√
kx [pn(x, kx, h) − p(x)] =

√
kx

[
Bkx

kx
− p(x)

]
+ oP(1).Reall from the proof of Theorem 1 that Bkx is a binomial random variable with parameters

kx and p(x) whih is independent of γ̂T,n(x, kx, h). Sine
√

kx

[
Bkx

kx
− p(x)

]
d−→ N (0, p(x)(1 − p(x))), (26)as n → ∞, the onvergenes (25), (26) and Slutsky's lemma entails

√
kx [γ̂Y,n(x, kx, h) − γY (x)]

d−→ N
(
0,

1

p2(x)

[
V (γT (x)) +

γ2T (x)

p(x)
(1− p(x))

])as n → ∞, whih is the result.The last lemma is the onverse statement of Lemma 9 in [16℄. It is an element neessary toprove Proposition 1. 29



Lemma 6. Let F be a sf on R and U be the left-ontinuous inverse of 1/F .1. If F is suh that
∀y ∈ R, F (y) ∈ (0, 1) ⇒ ∀δ > 0, F (y + δ) < F (y)then U is a ontinuous funtion on (1,∞).2. If F is ontinuous on R then U is an inreasing funtion on (1,∞).Proof of Lemma 6. To prove the �rst statement, pik α0 ∈ (1,∞) and assume that U is notontinuous at α0. In partiular, sine U is left-ontinuous and nondereasing,

lim
α→α0
α>α0

U(α)− U(α0) > 0.Then neessarily 0 < F (U(α0)) ≤ 1/α0 < 1. Moreover, the above inequality entails, sine Uis nondereasing,
∃δ > 0, ∀α > α0, U(α) > U(α0) + δ.Using the de�nition of the funtion U , we obtain

∀α > α0, α0 ≤
1

F (U(α0))
≤ 1

F (U(α0) + δ)
< α.Taking the limit α ↓ α0 gives F (U(α0) + δ) = F (U(α0)), whih is a ontradition.To show the seond statement, assume that α, β are suh that 1 < α < β and U(α) = U(β).Then sine F is right-ontinuous and noninreasing, we get

F (U(α)) = F (U(β)) ≤ 1

β
<

1

α
≤ lim

t→U(α)
t<U(α)

F (t).Hene F is not ontinuous at U(α), whih is a ontradition.Proof of Proposition 1. We start by onsidering ase 1. For n large enough and for every
x′ ∈ B(x, h), one has

FC(t|x′)fY (t|x′)−
1

γY (x)
G(t|x′) = rY (t, x, x

′)G(t|x′)and F Y (t|x′)fC(t|x′)−
1

γC(x)
G(t|x′) = rC(t, x, x

′)G(t|x′)30



with G(t|x′) = t−1/γY (x′)−1/γC(x′)−1LFY
(t|x′)LFC

(t|x′),
rY (t, x, x

′) =
1

γY (x′)
− 1

γY (x)
− bY (t|x′)and rC(t, x, x

′) =
1

γC(x′)
− 1

γC(x)
− bC(t|x′).From Lemma 2, we obtain the equality

ph(t|x) =

1

γY (x)
+

E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

1

γY (x)
+

1

γC(x)
+

E([rY (t, x,X) + rC(t, x,X)]G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

.If we an prove that for η > 0 small enough
sup

t∈UT,h(Kx,η|x)
sup

x′∈B(x,h)
(|bY | ∨ |bC |)(t|x′) = O(hα log nx ∨ δn) → 0 (27)as n → ∞, with UT,h(Kx,η|x) being the image of the interval Kx,η by the funtion UT,h(·|x),then the fat that G(·|X) is nonnegative shall entail

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O

(
hα ∨ sup

t∈UT,h(Kx,η |x)
sup

x′∈B(x,h)
(|bY | ∨ |bC |)(t|x′)

)

= O(hα log nx ∨ δn)whih is the result. To this end, we start by noting that beause (see Lemma 1.2.9 in [14℄,p.22)
UT (nx/kx|x)
aT (nx/kx|x)

→ 1

γT (x)
as n → ∞,it is a onsequene of (6) and of the mean value theorem that

sup
z∈Kx,η

∣∣∣∣
UT,h(z|x)
UT (z|x)

− 1

∣∣∣∣→ 0 as n → ∞.Using the fat that UT (·|x) is regularly varying at in�nity with index γT (x) > 0, we get for nlarge enough
UT,h(Kx,η|x) ⊂ UT (Kx,2η|x).This proves that for n large enough

sup
t∈UT,h(Kx,η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) ≤ sup
t∈UT (Kx,2η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′).31



Letting η > 0 be so small that ondition (12) holds with η replaed by 2η and using this Hölderondition along with (11) we dedue that
sup

t∈UT,h(Kx,η |x)
sup

x′∈B(x,h)
(|bY | ∨ |bC |)(t|x′)

= O

(
hα log nx ∨ sup

t∈UT (Kx,2η |x)
|bY (t|x)| ∨ sup

t∈UT (Kx,2η |x)
|bC(t|x)|

)
.Finally, Potter bounds for the regularly varying funtions |bY (·|x)| and |bC(·|x)| (see Binghamet al. [4℄, p.25) entail

lim sup
n→∞

sup
t∈UT (Kx,2η |x)

|bY (t|x)|
|bY (UT (nx/kx|x)|x)|

∨ |bC(t|x)|
|bC(UT (nx/kx|x)|x)|

< ∞whih yields (27) and the result in this ase.We now turn to ase 2. We remark that
FC(t|x′)fY (t|x′) +

1

γY (x)
G(t|x′) = rY (t, x, x

′)G(t|x′)and F Y (t|x′)fC(t|x′) +
1

γC(x)
G(t|x′) = rC(t, x, x

′)G(t|x′)with
G(t|x′) =





LFY
((UT (∞|x′)− t)−1|x′)LFC

((UT (∞|x′)− t)−1|x′)
(UT (∞|x′)− t)1/γY (x′)+1/γC (x′)+1

if 0 < t < UT (∞|x′)

0 otherwiseand
rY (t, x, x

′) =
1

γY (x)
− 1

γY (x′)
− bY ((UT (∞|x′)− t)−1|x′),

rC(t, x, x
′) =

1

γC(x)
− 1

γC(x′)
− bC((UT (∞|x′)− t)−1|x′).A partiular onsequene of this is, aording to Lemma 2:

ph(t|x) =
− 1

γY (x)
+

E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

− 1

γY (x)
− 1

γC(x)
+

E([rY (t, x,X) + rC(t, x,X)]G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

.De�ne Ix,x′,η = [UT,h(nx/(1 + η)kx|x), UT (∞|x′)). We shall now prove that
sup

x′∈B(x,h)
sup

t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′) = O(hα log nx ∨ δn) → 0 (28)32



as n → ∞. The fat that G(·|X) is nonnegative shall then yield
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)

= O

(
hα ∨ sup

x′∈B(x,h)
sup

t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′)
)

= O(hα log nx ∨ δn)whih is what we want to prove. To this aim, remark that one has (see Lemma 1.2.9 in [14℄,p.22)
UT (nx/kx|x)
aT (nx/kx|x)

= −UT (∞|x)
γT (x)

[UT (∞|x)− UT (nx/kx|x)]−1(1 + o(1)) as n → ∞.Using (9), it is a onsequene of the mean value theorem that
sup

z∈Kx,η

∣∣∣∣
UT,h(z|x)
UT (z|x)

− 1

∣∣∣∣ = o(UT (∞|x)− UT (nx/kx|x)) = o

([
nx

kx

]γT (x)

LUT
(nx/kx|x)

)as n → ∞. Espeially, (7) and (8) entail that
UT (∞|x′)− UT,h(nx/(1 + η)kx|x) =

UT (∞|x)− UT (nx/kx|x)
(1 + η)γT (x)

(1 + o(1)) as n → ∞.Therefore, Ix,x′,η is indeed well-de�ned for all n large enough and x′ ∈ B(x, h). Moreover,de�ning εn(x) := UT (∞|x) − UT (nx/kx|x) whih onverges to 0 as n → ∞, this yields for nlarge enough and every x′ ∈ B(x, h)

Ix,x′,η ⊂ [(1− εn(x))UT (nx/(1 + η)kx|x), UT (∞|x′)]whih may be used together with (8) to show that there exists some onstant η′ > 0 suh thatfor n large enough
∀x′ ∈ B(x, h), t ∈ Ix,x′,η ⇒ (UT (∞|x′)− t)−1 ∈ Jx,η′ =

[
1− η′

UT (∞|x)− UT (nx/kx|x)
,∞
)
.This proves that for n large enough

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′) ≤ sup
z∈Jx,η′

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(z|x′)|.33



Conditions (11) and (14) then entail
sup

x′∈B(x,h)
sup

t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′)

= O

(
hα log nx ∨ sup

z∈Jx,η′
|bY (z|x)| ∨ sup

z∈Jx,η′
|bC(z|x)|

)
.We onlude by using Potter bounds for the regularly varying funtions |bY (·|x)| and |bC(·|x)|to get

lim sup
n→∞

sup
t∈Jx,η′

|bY (t|x)|
|bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| < ∞and lim sup

n→∞
sup

t∈Jx,η′

|bC(t|x)|
|bC((UT (∞|x)− UT (nx/kx|x))−1|x)| < ∞of whih (28) is a diret onsequene.Referenes[1℄ Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J. (2004). Statistis of Extremes, JohnWiley and Sons.[2℄ Beirlant, J., Guillou, A., Dierkx, G., Fils-Villetard, A. (2007). Estimation of the extremevalue index and extreme quantiles under random ensoring, Extremes 10: 151�174.[3℄ Beran, R. (1981). Nonparametri regression with randomly ensored data, tehnial re-port, University of California at Berkeley.[4℄ Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987). Regular Variation, Cambridge, U.K.:Cambridge University Press.[5℄ Daouia, A., Gardes, L., Girard, S., Lekina, A. (2011). Kernel estimators of extreme levelurves, Test 20(2): 311�333.[6℄ Daouia, A., Gardes, L., Girard, S. (2013). On kernel smoothing for extremal quantileregression, Bernoulli, to appear. 34
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Situation Moment estimator γ̂YModel 1
ρ = −0.5 0.177 [0.0138, 0.550]

ρ = −1 0.0639 [0.0139, 0.170]

ρ = −1.5 0.0491 [0.00563, 0.146]Model 2
c = 0.1 0.0451 [0.00956, 0.138]

c = 0.2 0.0505 [0.0146, 0.165]

c = 0.3 0.0494 [0.0125, 0.137]Model 3 0.0840 [0.0172, 0.334]Table 1: MSEs assoiated to the estimator γ̂Y in all ases. Between brakets: minimal andmaximal squared error reorded.
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Figure 1: Model 1, ase ρ = −1: the true funtion γY (solid line) and its estimator γ̂Y (dashedline) orresponding to the median of the MSE.36
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Figure 2: Model 2, ase c = 0.1: the true funtion γY (solid line) and its estimator γ̂Y (dashedline) orresponding to the median of the MSE.
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Figure 3: Model 3: the true funtion γY (solid line) and its estimator γ̂Y (dashed line) orre-sponding to the median of the MSE. 37
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Figure 4: Satterplot of the AIDS data: x−axis: age of the patient at the time of diagnosis,
y−axis: survival time (in years).
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Figure 5: AIDS data: estimator γ̂Y . x−axis: age of the patient at the time of diagnosis.38
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Figure 6: AIDS data: estimation of the onditional extreme quantile of the survival time. Fullline: level ε = 0.01, dashed line: level ε = 0.005, dashed-dotted line: ε = 0.002, dotted line:level ε = 0.001. x−axis: age of the patient at the time of diagnosis, y−axis: survival time (inyears).
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