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Estimating the conditional extreme-value index under random

right-censoring

Gilles Stupfler

Aix Marseille Université, CERGAM, EA 4225,

15-19 allée Claude Forbin, 13628 Aix-en-Provence Cedex 1, France

Abstract. In extreme value theory, the extreme-value index is a parameter that controls
the behavior of a cumulative distribution function in its right tail. Estimating this parameter is
thus the first step when tackling a number of problems related to extreme events. In this paper,
we introduce an estimator of the extreme-value index in the presence of a random covariate
when the response variable is right-censored, whether its conditional distribution belongs to
the Fréchet, Weibull or Gumbel max-domain of attraction. The pointwise weak consistency
and asymptotic normality of the proposed estimator are established. Some illustrations on

simulations are provided and we showcase the estimator on a real set of medical data.
AMS Subject Classifications: 62G05, 62G20, 62G30, 62G32, 62N01, 62N02.

Keywords: Extreme-value index, random covariate, random right-censoring, consistency,

asymptotic normality.

1 Introduction

Studying extreme events is relevant in numerous fields of statistical applications. One can think
about hydrology, where it is of interest to estimate the maximum level reached by seawater

along a coast over a given period, or to study extreme rainfall at a given location; in actuarial



science, a major problem for an insurance firm is to estimate the probability that a claim so
large that it represents a threat to its solvency is filed. The focus in this type of problem is
not in the estimation of “central” parameters of the random variable of interest, such as its
mean or median, but rather in the understanding of its behavior in its right tail. The basic
result in extreme value theory, known as the Fisher-Tippett-Gnedenko theorem (Fisher and
Tippett [9], Gnedenko [12]) states that if (Y},) is an independent sequence of random copies of
a random variable Y such that there exist normalizing nonrandom sequences of real numbers

(an) and (by,), with a, > 0 and such that the sequence

1
— (max Y, — bn>
ay \1<i<n
converges in distribution to some nondegenerate limit, then the cumulative distribution func-

tion (cdf) of this limit can necessarily be written y — G, (ay +b), with a > 0 and b, v € R

where

exp (—(1+ yyy)—l/w) if yv #0and 1+ yyy > 0,
G’yy(y) =

exp (—exp(—y)) if vy = 0.
If the aforementioned convergence holds, we shall say that Y (or equivalently, its cdf Fy-)

belongs to the max-domain of attraction (MDA) of G.,., with vy being the so-called extreme-

Ty
value index of Y, and we write Fy € D(G,, ). The parameter vy drives the behavior of G,

(and thus of Fy) in its right tail:

e if 7y > 0, namely Y belongs to the Fréchet MDA, then 1 — G, is heavy-tailed, i.e. it

has a polynomial decay;

e if vy < 0, namely Y belongs to the Weibull MDA, then 1 — G, is short-tailed, i.e. it

has a support bounded to the right;

e if 7y = 0, namely Y belongs to the Gumbel MDA, then 1 — G, has an exponential
decay.

This makes it clear that the estimation of vy is a first step when tackling various problems in

extreme value analysis, such as the estimation of extreme quantiles of Y. Recent monographs



on extreme value theory and especially univariate extreme-value index estimation include Beir-

lant et al. |1] and de Haan and Ferreira [14].

In practical applications, it may happen that only incomplete information is available. Consider
for instance a medical follow-up study lasting up to time ¢ which collects the survival times
of patients for a given chronic disease. If a patient is diagnosed with the disease at time s,
his/her survival time is known if and only if he/she dies before time ¢. If the patient survives
until the end of the study, the only information available is that his/her survival time is not
less than ¢t — s. This situation is the archetypal example of right-censoring, which shall be the
focus of this paper. An interesting problem in this particular case is the estimation of extreme
survival times or, in other words, how long an exceptionally strong individual can survive the
disease. A preliminary step necessary to give an answer to this question is to estimate the
extreme value index of the survival time Y; this problem, which is much more complex than
the estimation of the extreme value index when the data set is complete, has been investigated
quite recently by Beirlant et al. [2] and Einmahl et al. [8]. Moreover, in the latter study,
the authors propose an estimator of extreme quantiles under random right-censoring, so as to

provide extreme survival times for male patients suffering from AIDS.

Besides, it may well be the case that the survival time of a patient depends on additional
random factors such as his/her age or the pre-existence of some other medical condition, for
instance. Our goal in this study is to make it possible to integrate such information in the
model, by taking into account the dependency of Y on a covariate X. The problem thus
becomes to estimate the conditional extreme-value index vy (z) of Y given X = z. Recent
papers on this subject when Y is noncensored include Wang and Tsai [18] who introduced
a maximum likelihood approach, Daouia et al. [5] who used a fixed number of nonparamet-
ric conditional quantile estimators to estimate the conditional extreme-value index, Gardes
and Girard [10| who generalized the method of [5] to the case when the covariate space is
infinite-dimensional, Goegebeur et al. [13] who studied a nonparametric regression estimator
and Gardes and Stupfler [11] who introduced a smoothed local Hill estimator (see Hill [15]).

All these papers consider the case when Y given X = x belong to the Fréchet MDA; the case



when the response distribution belongs to an arbitrary domain of attraction is considered in
Daouia et al. |6], who generalized the method of [5] to this context, and Stupfler [16] who
introduced a generalization of the popular moment estimator of Dekkers et al. |7|. However, to

the best of our knowledge, there is no solution yet to this problem when Y is right-censored.

The outline of this paper is as follows. In Section 2, we give a precise definition of our model.
In Section 3, we define our estimator of the conditional extreme-value index. The pointwise
weak consistency and asymptotic normality of the estimator are stated in Section 4. The
finite sample performance of the estimator is studied in Section 5. In Section 6, we revisit the
medical data set of |8] by integrating additional covariate information. Proofs are deferred to

Section 7.

2 Framework

Let (X1,Y1,C1), ..., (Xp, Ya, Cy) be n independent copies of a random vector (X,Y, C) taking
its values in E x (0,00) x (0,00) where E is a finite-dimensional linear space endowed with
a norm || - |. We assume that for all z € E, given X = z, ¥ and C are independent,
possess continuous probability density functions (pdfs) and that the related conditional survival
functions (csfs) Fy (-|z) = 1 — Fy (:|x) of Y given X = z and F¢(-|x) = 1 — Fo(:|z) of C given
X =z belong to some domain of attraction. Specifically, we shall work in the following setting,
where we recall that the left-continuous inverse of a nondecreasing function f is the function

z—inf{y € R| f(y) > z}:

(M;) Y and C are positive random variables and for every x € E, there exist real numbers
vy (x), vo(x) and positive functions ay (+|z), ac(:|x) such that the left-continuous inverses
Uy (|z) of 1/Fy(-|z) and Uc(-|x) of 1/F¢(-|z) satisfy

Uy (tz]z) — Uy (t|x) Uc(tz|x) — Uc(t|x)

BT e PreE e T Pew®
for every z > 0, where
v
21 ify#0
Dy(z)=4 7 (1)

log z ifv=0.



Model (M) is the conditional analogue of the classical extreme-value framework for Y and
C, see for instance [14], p.19. In this model, for every z € E, the functions Uy (-|z) and
Uc(+|x) have positive limits Uy (co|z) and Ug(oo|z) at infinity; the functions z — Uy (oo|x)

and z — Uc(oco|z), which are such that
Uy (cc|z) = sup{t € R| Fy(t|x) > 0} and Ug(co|x) = sup{t € R| F¢(t|z) > 0}
are respectively called the conditional right endpoints of Y and C.

We assume that we only observe the random vectors (X;,T;,d;) with T; = Y; A C;, where we
denote by s At the minimum of s and ¢, and d; = Ijy,<¢,}. Suppose as well that the following

condition holds:

(H) For every x € FE, the distribution of 7" given X = x belongs to some domain of

attraction D(G.,.()) and we have either
e Yy (z) > 0 and yo(x) > 0;
e Yy (z) <0, vo(x) <0 and 0 < Uy(oco|z) = Uo(oo|z) < o0
e vy (z) =~vo(x) =0 and Uy (co|x) = Ua(oo|z) = 0.
As mentioned in [8], if (M) and (H) hold then 7" has conditional right endpoint Uy (co|x) =

Uc(oolz) and conditional extreme-value index

_ w(@)ye(n)
1) = ) T e

with the convention vr(x) = 0 if 4y (x) = yc(x) = 0. In other words, if Fr(-|z) is the csf of
T given X = x, there exists a positive function ap(-|z) such that the left-continuous inverse

Ur(-|x) of 1/Fr(-|x) satisfies

x>0, lim Ur(tz|x) — Up(t|z)
t=00 ar(t|z)

= D’YT(»’C)(Z)'
3 The estimators

To tackle the problem, we start by introducing an estimator of the conditional extreme-value

index yr. For € F and a sequence h = h(n) converging to 0 as n — oo, we let Ny (x,h) be



the total number of observations in the closed ball B(z, h) with center x and radius h:

n

Np(z,h) = ZH{XiEB(x,h)} with B(z,h) = {2’ € E|||z — 2| < h},

i=1
where I is the indicator function. The bandwidth sequence h(n) makes it possible to select
those covariates which are close enough to z. Given N, (z,h) =1> 1, we let, fori =1,...,,
(Ti, A;) = (Ti(z, h), Ai(z, h)) be the response pairs whose associated covariates X; = X;(x, h)
belong to the ball B(x,h). Let T;; < --- < T;; be the order statistics associated with the
sample (71,...,7;) — note that this way of denoting order statistics shall be used throughout

the paper — and set for j = 1,2

o
MY (2, kg, h) = . > llog(Ti—is14) — log(Ti—k, 1))
T =1

if ky €{1,...,0 — 1} and 0 otherwise. Define

:Y\Tm (‘Ta kl‘u h) - ;Y\T,n7+(x7 k:ﬁ h) + :Y\Tm,—(xa kl‘u h)

where 7, 4 (x, ke, h) = MUY (x, kg, h)
2\ —1
. 1 [Mél) (‘Tu kl‘u h’)]
and Yrg,,—(z,ky,h) = 1—-|[1— o)
2 Mn (‘Takl‘7h)

2
if M}Ll)(x,kx,h)] # M}Lz)(x,kx,h), with 7, —(z,ky,h) = 0 otherwise. The estimator
Arn(x, kg, h) is an adaptation of the moment estimator of [7] to the presence of a random
covariate; it follows from [16] that, under mild conditions, this quantity is a pointwise consis-

tent estimator of the extreme-value index yp(z) of T given X = x.

To obtain an estimator of vy (x), we adapt an idea of [8]. Given Ny (x,h) =1, let Ay, ..., Apy
be the order statistics induced by the sample (71,...,7;), namely A is the random variable
associated with 7;;. We define

ke
. 1
pn(xykxvh) = k_ E A[l—i—i—l:l]a
Ti=1

the proportion of noncensored observations among Tj_j,114,...,7; when k; € {1,...,1 —

1} and 0 otherwise. This estimator is the adaptation to the random covariate case of the



estimator p of [8]: we shall show (see the proof of Theorem 1 below) that under some conditions,

Pn(x, kz, h) is a consistent estimator of yo(z)/(yy (z) +vo(2)). Our estimator of vy (z) is then

~ :Y\Tn(x7kx7h)
n(T, ke h) = ——————=
7 (x ) pn(x, kg, h)

if pp(x,kz, h) > 0 and 0 otherwise.

4 Main results

4.1 Weak consistency

We start by giving a pointwise weak consistency result for our estimator. To this end let
ng = ng(n,h) = nP(X € B(x,h)) be the average total number of points in the ball B(z,h)
and assume that ng;(n,h) > 0 for every n. Let k, = k;(n) be a sequence of positive inte-
gers, Frrp(-|z) be the cdf of T given X € B(xz,h), Ury(-|z) be the left-continuous inverse of
1/Fr,(-|x). We introduce the functions p(-|z), pn(-|z) defined by

d d
plile) = SPG=1.7<t|X =)/ Lrrtlo
d d
and pp(tlx) = E]P’(é =1,T <t|X € B(z,h)) EFTJL(tL/E)

for every ¢ > 0 such that the denominator is nonzero, and p(z) = yo(z)/(vy () + vo(x))
otherwise. It follows from Lemma 1 (see Section 7) that if (M7), (%) hold and ~yy(x) # 0,
then the first of these two quantities converges to the positive limit p(x) as t — Up(oo|z)
and from Lemma 2 that the second quantity is indeed well-defined. Assume that in the case
v (z) = vo(z) = 0, the function p(-|z) also converges to a positive limit at infinity, which
we denote by p(z) for the sake of consistency. The function = — p(x) is understood as the
conditional percentage of censoring in the right tail of Y. For u, v € (1,00) such that u < v,

we introduce the quantities

Ur p(t|z)
w(log Up,u,v,z,h) = sup |log ———-
teu,v] UT(t|£L‘)
and W(pOUT,U,’U,.’L',h) = SFp] ’ph(UT,h(t‘.’L’)‘.’L’) _p(‘r)’
telu,v

Our consistency result is then:



Theorem 1. Assume that (My) and (H) hold. For some © € E, assume that n, — oo,

ky — 00, ky/ny — 0 and for some n > 0

Ur(na/ks|7) < Ty 1 >

— L2 (logUp, ——=—— n ™ 2 h)] — 0 — 2

ar(na k) BT T e e @
and w(poUT,ﬁ,nfm,:n,h) — 0 as n — oo. (3)

Then it holds that Yy n(x, ks, h) N vy (x) as n — oo.

Conditions k, — oo and k;/n, — 0 in Theorem 1 are standard hypotheses for the estimation
of the conditional extreme-value index. Moreover, condition n, — oo is necessary to make
sure that there are sufficiently many observations close to x, which is a standard assumption

in the random covariate case.

We conclude this section by analyzing conditions (2) and (3). We assume that
(A1) For every x € E, it holds that for all ¢ € (0, Up(oo|z)), fy(t|x) > 0 and fo(t|z) > 0.
(A2) The functions vy and ¢ are continuous functions on F.
(As) If n is large enough then for every ' € B(z, h) and r > 0, we have P(X € B(2/,r)) > 0.
(A4) For every y € R, the function F'7(y|-) is continuous on E.

Note that hypothesis (A1) implies that the csf Frp(-|r) is a continuous decreasing function on
(0, Up(oo|z)) and hypothesis (As) entails that the function 7 is continuous. Hypotheses (As)
and (A4) are technical conditions; see Proposition 1 in [16] for analogues of these assumptions

in the noncensored case. We can draw two consequences from this remark:

1. If vy (x) > 0 and ye(x) > 0 then vy (2') > 0, vo(2') > 0 and yp(z') > 0 for 2’ close
enough to x. Corollary 1.2.10 in [14], p.23 thus yields for n large enough and every
z' € B(z,h)

Vz> 1, Up(z|r') = ZVT(II)LUT(zM')

where for every 2’ € B(z,h), Ly, (-|2’) is a slowly varying function at infinity, and
¥t >0, Fy(tla') =t~/ Ly (ta') and Fe(tla') =t /e) Ly (t]2)

8



where Lz (|2') and Lz (|2) are continuously derivable slowly varying functions at

infinity. Especially, if

. Lk (ta!) L ()
by (t|z") = tm and bo(t|z') = tLFC )

then
V0 ) = |- e
N 1 / Fc(t|3§’)

I yy(x) < 0 and yeo(z) < 0 then vy (2') < 0, vo(2') < 0 and vyp(2’) < 0 for 2’ close
enough to x. Corollary 1.2.10 in [14], p.23 yields for n large enough and every 2’ € B(x, h)
that

Vz > 1, Ur(ocla’) — Ur(zl2) = 27 Ly, (z|")

where for every 2’ € B(z, h), Ly, (-|z’) is a slowly varying function at infinity and

Vt >0, Fy (Uy(colz’) —t ') /@ L (ta')

and Feo(Uo(oola') — t71|2") /e Ly (ta')

where Lz (|2') and Lz (|2') are continuously derivable slowly varying functions at

infinity. In particular, if

L. (t|2)
Fy . /
t——— if Ly (tj2') >0
by (tle) = { Lz, () By

0 otherwise

L% (tla')

t—"C— if Ly, (t2') >0
and bo(tlz') = Lp,, (ta")

0 otherwise,

since Up(oolz’) = Uy (oo|z’) = Ug(oo|z’) for every 2’ € B(x, h), one may write

vt € (0,Ur(ocla")), fy(tla') = [‘ﬁ — by (Ur(eola’) = t>—1\x’>] %
and fo(th) = [~ — bo((Un(eela®) ~ 1)) L



In this framework, it is possible to reformulate the hypotheses in our main results in a more

convenient fashion: let K , := [n,/(1 4+ n)k,, ns™) and assume that for some o € (0,1)
sup |y (@) — w (@) V [ye@) —ve(@)] = O(h) (4)
x'e€B(x,h)
Ly, (z]2')
and sup  sup log —+ = 0O(hn” 5
2 o 0wz |8 Loy Gle) " ®)

where we denote by sV t the maximum of two real numbers s and t. Then in case 1, if

h%logn, — 0 as n — 0o, one has

Ur(ng/kz|x)

w ( log Up, nfm,:p,h) = O(h*logng 6
ar(ng/k.|z) < sor (h* log n.:) (6)

_r
(L+n)ks’
see the discussion below Proposition 1 in [16]. In case 2, if the conditional right endpoint
Ur(ool) is such that

sup |Ur(oola’) — Ur(colz)| = O(h?) (7)
xz'e€B(z,h)

with 8 € (0, 1], then if

(nx/k:x)_“fT(m)

~rr) BB 50 as n— oo 8
Ly (na/ka o) ®)

h*logn, — 0 and

one has

Ur(ng/kz|v) ( Ty 1+ ) (nx/kz)_w(m)
T/ Balt) s (og Up, —% b1 p ) = O [ B logn, v 2@) T p8) (g
ar (g ko) &V T ks &1 Y T (nwka ) )

see again the discussion below Proposition 1 in [16].
The next result gives an analogue of these estimations when considering hypothesis (3).

Proposition 1. Assume that conditions (My), (H), (A1), (A2), (As), (A4) hold and that for
some « € (0,1) and n > 0, conditions (4) and (5) are satisfied.

1. In case 1 above assume that for x' close enough to x, |by (-|2')], |bc(-|2')| are regularly

varying functions at infinity with respective indices py (z') /vy (2'), pc(x’) /vc(x'), that is

by (tl2")| = ¢ VI Ly (') and [bo(tla’)| = 20N Ly (ta!) - (10)

10



with the so-called conditional second-order parameters py, pc and the slowly varying

functions Ly, (-|2'), Ly, (-|2") satisfying, for some n >0,

sup |py (2) = py (@) V |pc(2') — po(2)] = O(n%),  (11)
xz'e€B(x,h)
L ! L !
sup sup H by (|2 v‘logM] = 0(h%)  (12)
€U (Kp.ple) o/ B(a,h) 1081 Ly, (t|z) Ly (t]z)

where Up (K, p|x) is the image of the interval K, by the function Up(-|z). If py (z) and

pc(x) are negative, h*logn, — 0 and the sequence
On := by (Ur(ne/ke|x)|2)| V [bo (Ur (ng /ke |2)|2)]

converges to 0 then, for n > 0 small enough, one has, as n — 0o:

Ty

© <po U ok

nit h> = O (h%logng V op) .

. In case 2 above, assume that conditions (7) and (8) are satisfied. Assume moreover that
for @' close enough to x, |by (-|2")| and |bc(-|2")| are reqularly varying functions at infinity

with respective indices —py (2') /vy (2') and —pc () /ve (), namely
by (t]a')| = ¢~ EI L (ta!) and |be(tla’)| = PN L (Ha) - (13)

with the conditional second-order parameters py, pc satisfying (11) and the slowly vary-
ing functions Ly, (-|x"), Ly (-|z") being such that for some n € (0,1)

L [fog 2021 | ct8)

Loy (1) | |® T (tl)

sup  sup 1
tEJx,n Z'IEB(Z‘,h) Ogt

| =0 (14

where Jy, = [(1 — n)[Ur(oc|z) — Ur(ng/ks|z)] 7, 00). If py (z) and pc(z) are negative
and the sequence

8n = [by (Ur(oola) — Ur(ng/ke|2)) " a)| V be (Ur(colz) — Ur(ng /kela)) )]
converges to 0 then one has, as n — co:

w <p oUr, e it h) =0 (h%logng V o,) .

(I+n)k

This result relates hypothesis (3) in Theorem 1 to the various functions involved in the usual

parametrization of the problem. It shall allow us to recover the optimal rate of convergence of

the estimator, see Theorem 2 and the developments below for details.

11



4.2 Asymptotic normality

To prove a pointwise asymptotic normality result for our estimator, we need to introduce a

second-order condition on the function Up(-|x):

(M3) Conditions (M;) and (#H) hold and for every x € E, there exist a real number
pr(z) < 0 and a function Ap(-|z) of constant sign converging to 0 at infinity such that the

function Up(-|x) satisfies

Vz >0, lim

t—00 AT(t]a:)

Ur(tzlz) — Up(tlz) 27 -1
- = Hyr@)pr()(?)

ar(t]x) r(2)

where

H’YT(x)ypT(I)(z):/l yr(@)—1 [/1 SPT(x)—ldS] dr.

Hypothesis (Mz) is the conditional analogue of a classical second-order condition, see for
instance Definition 2.3.1 and Corollary 2.3.4 in [14], pp.44-45: the parameter pp(z) is the
so-called second-order parameter of 7" given X = z. Note that Theorem 2.3.3 in [14], p.44
shows that the function |Ap(-|x)| is regularly varying at infinity with index pp(z). Moreover,
as shown in Lemma B.3.16 p.397 therein, if (Ms) holds with vr(x) # pr(z) and pr(z) < 0 if
~vr(z) > 0, then defining g7 (-|z) = ap(-|z)/Ur(-|x), a second-order condition also holds for the

function log Up(-|x), namely:

. 1 10g UT(tZ|,ﬁU) — 10g UT(t|$) Z’YT,*(Z') — 1 B
vz>0, tllglo Qr(tlx) qr(t|z) vr— () - H’YT,f(w)vﬁ'T(m)(Z)

with 97, (2) = (~7r(2)) V0,

pr(z)  if yp(z) < pr(z) <0
yr(z)  if pr(z) <yr(z) <0

—yr(x) if 0 <~vyp(x) < —pr(x) and p(x) #0

pr(z) it (0 <~p(x) < —pr(z) and lr(z) =0) or 0 < —pr(z) < yr(x)

where we have defined

fr(z) = lim (UT(t|x) B aT(ﬂﬂJ))

vr(x)

12



and Qr(:|z) has ultimately constant sign, converges to 0 at infinity and is such that |Q7(:|z)]
is regularly varying at infinity with index p/»(z). Note that Lemma B.3.16 in [14], p.397 entails

that one can choose

Ar(t|z) if yr(z) <pr(z) <0
ta) if  pr(z) <yr(z) <0
ar(t|z
Or(tlx) r+(2) — Ur(t[z) or 0<~vp(z) < —pr(x)and bp(x) #0
or 0<nr(z)=—pr()
pr(z) . it 0<~yp(z) < —pr(x)and bp(x) =0
Yr(z) + PT(x)AT(t| ) or 0<—pr(z) <yr(z)

with y7 4 () = yr(x) V 0. Besides, if yp(x) > 0 and pr(xz) = 0, then one has

2 >0, lim 1 log Ur(tz|z) — log Ur(t|z)
t=00 Qr(t|z) qr(t]x)
for every function Qr(-|x) such that Ar(t|z) = O(Qr(t|x)) as t — oo; especially, we can take
Qr(-]x) = Ap(-|z) in this case.

—logz| =0

We can now state the asymptotic normality of our estimator.

Theorem 2. Assume that (Ms) holds. For some x € E, assume that n, — oo, k, — oo,

ky/ng — 0, Vs Qr(ng/kz|x) — 0 and for some n > 0

Ur(ng/ke|2) Ny 1+
xX 1 M ) 777 7h ]'
aT(nx/kx\x)w og Up e ny T — 0 as n— (15)
and Vkzw <po Ur, ﬁ,n?",x,h) — 0 as n — oo. (16)

Then if vr(xz) # pr(x), it holds that

~ ()] G 1 oy @
VI Byt = 2y @] 5 4 (0, Vo) + ZE 1 - pio)] )
where we have set
v3(z) + 1 if yr(x) > 0

(1 —r(@))*(1 = 297(2))(1 — yr(z) + 677 (2))
(1 =3yr(x)(1 = dyr(z))

if yr(z) < 0.

13



Theorem 2 is the conditional analogue of the asymptotic normality result stated in [8]. In
particular, the asymptotic variance of our estimator is similar to the one obtained when there
is no covariate. Besides, condition vk; Q7 (ns/ks|z) — 0 as n — oo in Theorem 2 is a standard

condition needed to control the bias of the estimator.

We conclude this paragraph by showing how Theorem 2 can be used to obtain optimal rates of
convergence for our estimator. We assume that £ = R? d > 1 is equipped with the standard
Euclidean distance and that X has a probability density function f on R? which is continuous
on its support S, assumed to have nonempty interior. If x is a point lying in the interior of S

which is such that f(z) > 0, it is straightforward to show that (As) holds and that
Ny :n/ f(w)du = nh®Vf(z)(1+0(1)) as n — oo
B(z,h)

with V being the volume of the unit ball in R%. Set k = k,/(h4Vf(x)); it is then clear that
ky = kh®Vf(z) and that hypotheses n, — oo, k; — oo and ky/n, — 0 as n — oo are
equivalent to kh? — oo and k/n — 0 as n — oo. If k and h have respective order n® and n=?°,
with a, b > 0, the rate of convergence of the estimator Jy.,, (z, ks, h) to vy (z) is then n(@=0d)/2,
Under the hypotheses of Theorem 2, provided that (A;), (Az) and (A4) hold, one can find the

optimal values for a¢ and b in the Fréchet and Weibull domains of attraction:

o If vy (x) > 0and vo(z) > 0, then under the Holder conditions (4) and (5), hypothesis (15)
shall be satisfied if VEheh® log(nh®) — 0 as n — co. Besides, under assumption (10) and
the Holder conditions (11) and (12), Proposition 1 gives that hypothesis (16) is implied
by

\/E[|by(UT(nx/kx|$)|$)| V b (Ur(ng/kg|2)|z)|]] =0 as n — oo

or, equivalently,

@)y (2)/(y (@) 1vc (@)
W(%)”O P e klE) = 0

(@)pc(2)/ (vy (2)+vc ()
and Vkh (%)W permmREe Lo(n/klz) — 0

as n — 0o, where Lo(+|z) and Ly (-|x) are slowly varying functions at infinity. Recalling
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the bias condition Vkh? Qr(n/k|x) — 0 as n — oo and letting

pr(z) if pr(z) <0

0 if pr(z) =0

pr(z) =

the problem is thus to maximize the quantity a — bd under the constraints a € (0, 1),

a—bd >0,

a—b(d+2a)

IN
L

vo(z)py ()
St =

vy (z)pc(x)
@ +re@ =

and a —bd + 2(1 — a)pl(x)

a—bd+2(1—

a—bd+2(1 - a)

IN
o

Setting

" 1c(@)py(x) v (@)pc(x) >
p(z) ;= max | pp(x), , <0
(@) < () @) + 0@ @) + 7o)
the constraints become a € (0,1), a — bd > 0,

a—0b(d+2a) <0 and a—bd+2(1—a)p(z) <O0.

The solution of this problem is

e dt2pe) L —pla)
o — (d+2a)p(z) o — (d+2a)p(z)
for which
a* - b*d _ —2ap(a:)

a— (d+2a)p(x)

The optimal convergence rate for our estimator in this case is therefore
pla*=b*d)/2 _ | —ap(x)/(a—(d+2a)p(z))
o If vy (z) < 0 and yo(x) < 0, then under the Holder conditions (4), (5) and (7), hypoth-
esis (15) shall be satisfied if (see (8))

VEkhdh®log(nh?) — 0 and Vkhd Mhﬁ —0 as n — oo.
Ly (n/k|x)
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Besides, under assumption (13) and the Hélder conditions (11) and (14), Proposition 1
gives that hypothesis (16) is implied by

Ve [|by (Ur(colz) = Ur(ng/kel2)) ™ |2)| V bo((Ur(colz) = Ur(ng /ke|z)) ™ )] — 0

or, equivalently,

T )+ T
M(;{j)%( 2)py (z)/(vy (z)+7yc (2)) Cy(n/klz) — 0
T T x)+ T
and i ( >’YY( Jpc @)/ (vy (2)+c (@) Lom/klz) — 0
as n — 00, where Lo(+|x) and Ly (-|x) are slowly varying functions at infinity. Recall-

ing the bias condition VkheQr(n/klr) — 0 as n — oo, the problem thus consists in

maximizing the quantity a — bd under the constraints a € (0,1), a — bd > 0,

a—bld+2a) < 0,
—2(1 —a)yr(z) —b(d+2p8) < O,
o—bd+2(1 —a) Yo (z)py (2) <0

Yy (z) + e ()

a—bd+2(1— )% < 0

and a —bd +2(1 —a)pp(x) < 0.

Assume now that the functions vy and 7¢ are at least as regular as Up(ool-), namely

that 8 < a. In this case, since yr(x) < 0, the constraints reduce to a € (0,1), a—bd > 0,

a—bd+2(1—a)px) < 0

and a—2(1 —a)yr(z) —=b(d+28) < 0

where

— max [ oo(x yo(x)py () vy (@)po()
plw) = (pT( ) Yy (z) +ve(z) vy (@) +70(<17)> =

The solution of this problem is

o —A2p@) —dyrle) o —pla) — )

- B (d+28)p(x) — dyr (=) B (d+28)p(x) — dyr()
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for which
—28p(x)
B —(d+2B)p(x) — dyr(z)

The optimal convergence rate for our estimator in this case is then

a* —b'd =

pla=b"d)/2 _  =Bp(z)/(B=(d+26)p(z)—dyr(z))

5 Simulation study

In this paragraph, we carry out a simulation study to get a grasp of how our estimator behaves
in a finite sample situation. We consider the case £ = R equipped with the standard Euclidean
norm and a covariate X which is uniformly distributed on [0,1] C E. Moreover, we let

vy :[0,1] = R and v¢ : [0,1] — R be the positive functions defined by
2 1. 1.
Vo € [0,1], y(z) = 3 + 8 sin(2rz) and yo(z) =5+ 3 sin(2mx).
We consider three different models for the distribution of (Y, C) given X = x:

e the first model is

_ 1 _ 1
vt > 07 Fy(t‘x) — (1 +t—p/’yy(.’£)) /p a,nd Fc(t’x) — (1+t_p/70(-'ﬂ)) /P

where the parameter p is chosen to be independent of x, in the set {—1.5,—1,—0.5}. In
particular, Y and C given X = z are Burr type XII distributed. In this case, Fy (-|r)
and F¢(-|z) both belong to the Fréchet MDA for every x € [0, 1] with related conditional
extreme-value indices vy (x) and y¢o(z). Finally, the conditional percentage p of censoring

in the right tail is such that 0.86 < p(x) < 0.91 for all € [0, 1];

e the second model is

1

vt e [0,9(x)], Fy(tls) = % /t/ ( )vl/’YY(x)—l(l o)l @-1g,
T 1

nd Foltle) = % /t/g(x) W@ — o)ty

where I' : (0,00) — R is Euler’s Gamma function, defined by

Vz >0, I'(2) :/ e 't* Lt
0
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and the conditional right endpoint function g is defined by
Vo e [0,1], g(x) =1—c+ 8czx(l —x)

with the constant ¢ > 0 lying in the set {0.1,0.2,0.3}. Here, given X = z, Y/g(z)
is a Beta(1/yy (x),1/vy (z)) random variable and C/g(z) is a Beta(l/vc(z),1/vc(x))
random variable. Especially, Y and C given X = z belong to the Weibull MDA, with
common conditional right endpoint g(x), respective conditional extreme-value indices
—yy(z) and —y¢(x), and the conditional percentage p of censoring in the right tail

being once again such that 0.86 < p(z) < 0.91 for all = € [0, 1];

e the third model is

2

vt >0, Fy(tlz) = Feltle) = 1 rrs

where ¢ is the function defined by
1.
vz € 10,1], g(x) =1+ 5 sin(27x).

In this model, ¢(x)Y and ¢(z)C given X = z have a common logistic distribution, which
is an example of distribution belonging to the Gumbel MDA. Note that in this case, the

function p is constant equal to 1/2.

Our goal in this study is to estimate the conditional extreme-value index vy on a grid of points
{x1,...,zp} of [0,1]. To this aim, two parameters have to be chosen: the bandwidth A and

the number of log-spacings k,. We adapt a selection procedure that was introduced in [11]:

1) For every bandwidth A in a grid {hy,...,hp} of possible values of h, we make a pre-
liminary choice of k;. Let 7; ;(k) = Ay n(x;, k, h;) and |-] denote the floor function: for
eachie{l,... M}, je{l,...,Ptand k€ {q;+1,...,Np(xi,hj) —qi;}, where ¢; j =
| Nn (24, h;)/10] vV 1, we introduce the set E; ;1 = {7i;(0), £ € {k—qij,. .. k+qij}}
We compute the standard deviation X; j(k) of the set FE; ; for every possible value of k

and we record the number K;; for which this standard deviation reaches its first local

18



minimum which is less than its average value. Namely, K; ; = ¢; ; +1 if ¥; ; is increasing,

K; ;= Np(x;, hj) — qij if ¥; ; is decreasing and

KZ’J‘ = min {k such that EZJ(]C) < Eid(lﬁ — 1) A Ei,j(k + 1)

1 Nn(zi,hj)—qi,j
and EZ‘, (k‘) § EZ‘, (l)
J Ny(zi, hj) — 25 5 l:quj:H !

otherwise, where we extend X; ; by setting X; ;(¢; ;) = i j(¢ij+1) and 3; ;(Nyp (24, hj) —
gij+1) = 2 j(Nny(zi,hj) — qij). We then select the value k;; such that 7; ;(k; ;) is
the median of the set Ej;k, ;. The main idea of the first part of this procedure is
that, for a given point z; and a given bandwidth hj;, the number of order statistics is
chosen in the first reasonable region of stability of the Hill plot related to the function
k= Fyn(xi k, hj).

We now select the bandwidth h: let ¢’ be a positive integer such that 2¢’+1 < P. For each
XS {17 7M} andj € {q/+17”’7P_q,}7 let EJ = {ai,é(ki/% 14 € {j _q,7”’7j+q/}}
and compute the standard deviation o;(j) of Fj;. Our objective function is then the

average of these quantities over the grid {z1,...,za}:

We next record the integer j* such that 7(j*) is the first local minimum of the application
j + @(j) which is less than the average value of @. In other words, j* = ¢ + 1 if 7 is

increasing, j* = P — ¢ if 7 is decreasing and

P—q
» ) Ny . . 1 _
5% = min {j such that 7(j) <a(j — 1) AT(j+ 1) and 5(j) < P oy l_%;rl a(l)}

otherwise, where we extend @ by setting (¢') =a(¢'+1) and (P —¢' +1) =a(P —¢).
The selected bandwidth is then independent of z and is given by h* = hj«. In doing
so, we require that h* is not too large, to ensure that the computation of our estimator
is carried out only using covariates which are close to z, and the estimation carried out
for bandwidths in a neigborhood of h* is reasonably stable. The selected number of

log-spacings is thus given, for z = x;, by k. = k; j=.
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This estimation procedure is carried out on N = 100 independent samples of size n = 1000.
The conditional extreme-value index is estimated on a grid of M = 50 evenly spaced points
in [0,1]. Regarding the selection procedure, we test P = 25 evenly spaced values of h ranging

from 0.05 to 0.25 and we set ¢/ = 1.

We give in Table 1 the empirical mean squared errors (MSEs) of our estimator, averaged over
the M points of the grid, along with the minimal and maximal MSEs obtained. One can
see that in the Fréchet MDA, the MSE of our estimator increases as |p| approaches 0: this
is not surprising since p is the conditional second-order parameter of Y and C' given X = x
(see [1], p.93) which is known to play a major role in the performance of the estimators of
the extreme-value index. Some illustrations are given in Figures 1-3, where the estimations

corresponding to the median of the MSE are represented in each case for our estimator.

6 Real data example

In this section, we introduce a medical data set, provided by Dr P. J. Solomon and the Aus-
tralian National Centre in HIV Epidemiology and Clinical Research; see Venables and Rip-
ley [17] and the data set aids2, part of the package MASS in R. In the context of extreme value
analysis, this data set was considered by [8]. The data set contains information collected after
a follow-up study on 2843 patients diagnosed with AIDS before July 1st, 1991. Especially, for
each patient, the data set gives his/her age at the time of diagnosis and, if the patient died
before the end of the study, his/her date of death. There are only 89 female patients in this
study, so we chose to retain the 2754 male patients of the data set. Our variable of interest
is the survival time Y of a patient, which is randomly right-censored, as is usually the case
in such follow-up studies. The covariate we consider is the age of a patient at the time of

diagnosis. A scatterplot of the data is given in Figure 4.

Our first goal is to provide an estimate of the conditional extreme-value index of Y using our
estimator. A look at the scatterplot shows that data for patients aged either less than 20 or

more than 65 when diagnosed with AIDS is very scarce, so we focus on patients aged between
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Tmin = 20 and Ty = 65. We use the selection procedure detailed in Section 5: the bandwidth

h is chosen among h; < --- < hos where the h; are evenly spaced and
hi1 = 0.05(Zmax — Tmin) and hos = 0.25(Tmax — Tmin)-

This leads us to choose h* = 3.75. The estimate of the conditional extreme-value index vy on

25 evenly spaced points in [Zmin, Tmax| is represented on Figure 5.

This estimate is only a first step in the assessment of the tail heaviness of the conditional
distribution of Y given X = x, however. A further step is to estimate conditional extreme
quantiles of this distribution, where we define the conditional quantile function gy (-|x) as the

generalized inverse of Fy (-|z):
gy (e|z) = inf{t € R| Fy(t|lz) < e}

To this end, we propose an adaptation of the extreme quantile estimator of [8], which is itself an
adaptation of the classical extreme quantile estimator, see for instance Theorem 4.3.1 in [14],
p.134. We let %ym(', h|z) be the straightforward conditional adaptation of the Kaplan-Meier
estimator for the csf of Y given X = x (see Beran [3]). Besides, given N, (z,h) = [, we set for

ky e {1,...,1—1}

—~ o :V\T,n,—l- ($7 kwa h)(l - :V\T,n,—($7 kwv h‘))
an(x7 k:m h) - ﬁ—kz,l ]/)\n(x, kx, h)

and 0 otherwise. An estimator of the conditional extreme quantile gy (¢|x), where € is a small

positive number, is then
Qvin(&, 2, kyy h) = Tigu 1 + @@, by, R) D3y (2 kg ) <FY,n( l—kz,l,h\x)/ﬁ)

if ky € {1,...,1—1} and 0 otherwise, where the function D was introduced in (1). In our case,
we set h = h*; for £ € [Tmin, Tmax), the number of log-spacings k, is chosen by applying the

first step of the selection procedure introduced in Section 5.

We give some results on Figure 6, where we represent estimates z — gy, (e, z, k%, h*) of the
extreme quantile curve for an exceedance level ¢ € {0.01,0.005,0.002,0.001}. One can see on

this figure that these estimates are fairly stable for patients aged between 20 and 53 years and
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decrease sharply afterwards. This may be interpreted as a consequence of immunosenescence,
namely the deterioration of the immune system as age increases. This phenomenon is of course
especially critical in the case of AIDS, since HIV targets cells of the immune system. Besides,
one can see that the estimate of the extreme quantile curve for € = 0.001 yields, in the range
[20, 53], survival times around 13 years and as high as 16 years. This is in line with Figure
1(b) of [8], which does not consider any covariate information and gives a value of this extreme
survival time between 15 and 17 years, while using a different estimator of the extreme value

index.

7 Proofs

Before giving a proof of Theorem 1, we need some preliminary results. Lemma 1, which is

essentially contained in [8], gives a useful representation of p(z).

Lemma 1. Let Y, C be two independent positive random variables having respective csfs Fy,
Fc, respective pdfs fy, fo and common right endpoint U(oo) = Uy (00) = Uc(o0). Define for
t>0

d

MQZEMYSQYACSO/%MYACSO

whenever the denominator is nonzero, and p := vo/(vy + vc) otherwise. Then one has

B Fo(t) fy (t)
p(t) = Fo)fy(t) + Fy(t)fo(t)

whenever the denominator is nonzero. In particular, p(t) < 1 for every t > 0. If moreover Y

and C belong respectively to D(G., ) and D(G..) and either
e vy >0 and y¢ > 0;
e 1y <0,v <0 and 0 < U(x) < o0,

then p(t) — p as t — U(o0).

Lemma 2 is a partial generalization of Lemma 1 to the random covariate case.

22



Lemma 2. Assume that the functions (x,t) — fy(t|z) and (x,t) — fo(t|z) are continuous

on E x (0,00). Then given X € B(x,h), T has pdf
Frp(tle) = E(Fc(tX) fy (11X) + Fy ({1 X) fo(t|X) | X € B(z, h))

and we have

E(Fc(t|X)fy (t|X)| X € B(z,h))
E(Fc(t1X)fy (t|X)| X € B(z,h)) + E(Fy (t|X)fc(t|X) | X € B(z,h))

YVt >0, pp(t|z) =
whenever the denominator is nonzero. In particular, pp(tlx) <1 for every t > 0.
Proof of Lemma 2. Remark that
Frip(tle) =P(Y <C,Y <t|X € B(z,h)) +P(C <Y,C <t|X € B(z,h)).
The independence of Y and C' given X and Tonelli’s theorem yield
P(Y <CY <t|X € B(z,h)) = E (/Otf(;(z]X)fy(z]X)dz]X € B(a;,h))
_ /OtE (Fo(21X) fy (2X)| X € B(z,h))d= (17)
and P(C<Y,C<t|X e B(z,h)) = E (/Otfy(z|X)fc(z|X)dz|X € B(:E,h))
_ /OtE (Fy (=1X)fo(21X) | X € B(x, h)) d.

The regularity hypotheses on fy and fo make it clear that both of the above integrands are

continuous as functions of z, so that Frp(-|x) has a continuous derivative which is

& Fr(tle) = E(Fo(t1X)fy (11X) + Py (1X) o (t1X) | X € B, m) = fraltle).  (18)

This is the first desired result. Moreover,
P(6=1,T<t|X € B(z,h)) =P(Y <C,Y <t|X € B(z,h)).

From (17), we get

d —
%P(a =1,T <t|X € B(z,h)) =E (Fo(t|X)fy (t|X)| X € B(z,h)) . (19)
Collecting (18) and (19) concludes the proof. ]
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We then state a couple of useful technical results. The first one gives the conditional distribu-

tion of the random pairs (7;, A;).

Lemma 3. Given Ny(z,h) =1 > 1, the random pairs (T;,A;), 1 < i < I, are independent
and identically distributed random variables whose common distribution is that of (T,0) given

X € B(z,h).

Proof of Lemma 3. The proof of this result is similar to that of Lemma 2 in [16]: if
(t1,...,t;)) € Rl and (dy,...,d;) € {0,1}!, then since the random vectors (X;,T},d;) have the
same distribution, it holds that

! I
P (ﬂ{ﬁ <ti, Aj = d;i}, Np(z,h) = l) = <7>P (ﬂ {T; < t3,0i = di, X; € B(x,h)})

i=1 i=1
n

[ Bxi ¢ Bl ).

i=l+1

X

The independence of the random pairs (X;,T;,0;), ¢ = 1,...,n entails that the above proba-
bility is

l l n
[[P( <t;,6=di| X € B(z,h)) x [(7) [[PXieB(.n)x [[ P(Xi¢ B(:z;,h))] .
-1 i=1 i=l+1

Since Ny, (z, h) is a binomial random variable with parameters n and P(X € B(z, h)), the result

follows. u

The next lemma, whose proof can be found in [16], is a pivotal technical tool for the proofs of

Theorems 1 and 2.

Lemma 4. Let (S,) be a sequence of random variables. Assume that there exist a triangular
array of events (A;j)o<j<i and a sequence of non-empty sets (I,) contained in {1,...,n} such

that

o for every n the Ay, 0 <1 <n, have positive probability, are pairwise disjoint and
n
> P(An) = 1
1=0

e it holds that Z P(A,;) — 1 as n — oo.
lel,
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If one has for every e >0

sup P(|Sn| > €|An) =0 as n — oo,
leln

thenSni>0 as n — oo.

Finally, remark that since N,(z,h) is a binomial random variable with parameters n and

P(X € B(xz,h)), it is a consequence of Chebyshev’s inequality that for all n € (0,1),

Ny (z,h)

Ty

1_
ng !

—1'&0 as n — oo.

As a consequence, if [, = NN [(1 — n;1/4) Ny, <1 + n;1/4) nw} then

Z]P’(Nn(x,h) =1)—1 as n— oc.
lel,

The final lemma, contained in [16], makes it possible to understand a bit more about the

asymptotic behavior of certain random variables which appear in our proofs.

Lemma 5. Let W;, i > 1 be independent standard Pareto random variables, i.e. having cdf
wi—1—1/w on (1,00). Assume that ny — 00, ky — 00 and ky/n, — 0 as n — oo. Then for

every € > 0 1t holds that

k
sup]P’(—mVVl_kxl—l >€>—>0 as n — oo.
lel, ! ’

We may now prove Theorem 1.

Proof of Theorem 1. Write

_
O

yr(z)
p(z)

A e, B) — () = [(%,n(x, ks ) — 12(2)) — 28 G e, h) — ()

Following [8|, we note that if V' is a standard uniform random variable which is independent

of (X,Y,C), then:

to
P(V < pp(T|2), T < to| X € B(x,h)) = /0 pu(t|x) frp(tlz)dt

— P(6=1,T <ty| X € B(z,h))
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so that given X € B(z,h), the random pairs (T, Iyy<,, (7)2)}) and (T,6) have the same
distribution. Consequently, if V;, ¢ > 1 is an independent sequence of standard uniform
random variables which are independent of the (X;,Y;, C;), then given Ny (z,h) = [, it is
a consequence of Lemma 3 that the distribution of (37, (x, ks, h),Dn (2, kz, b)) is that of
(1 (@, ko, h), Py (2, bz, b)), with

ka
_ 1
pn(@, kg, h) = T Z H{V[zﬂ'ﬂ;z] <pr(Ti—it1,1l2)}
Ti=1

if ky € {1,...,1 =1} and 0 otherwise, where Vj1.5},. .., Vj; are the order statistics induced by
Tii,---,Ti;. Moreover, since the V;, i > 1 are standard uniform variables independent of the
(Xi,Y;, C;), the Vi), 1 < i <[ are standard uniform variables independent of the (X;,Y;, C;)

as well. Introducing, given N, (x,h) = [, the quantity

k
Pn(@, kyy h) = = Z ]I{Viﬁph(ﬂfiﬂ,l\x)}
Ti=1

if ky € {1,...,1— 1} and 0 otherwise, we obtain

yr(z)
p(z)

d 1
B pn(x7 k:"[;’ h)

;Y\Y,n(xv kﬂﬁv h) - ’YY(‘T) |:(3T,n(x7 kaﬁ h) - ’YT(x)) - (ﬁn(‘% kx? h) - p(x))

It is thus enough to show the consistency of 47, (x, ks, h) and p,(x, ky, h). The consistency of
the former quantity is an immediate consequence of Theorem 1 in [16]. To prove the consistency

of p,(x, kz, h), note that

B
Pl enh) = ) = | 252 = 3(a)| = S0+ 5,
where
ka
Br, = Y Lvi<pw)s (20)
=1
ka
Sn1 = [Z H{Viﬁp(x)}] LN ) <ha} (21)
=1
n 1 ks
and Spp= ) [k— DLV T} — Lot} | L=y (22)
I=kz+1 L% i=1
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As a consequence, By, is a binomial random variable with parameters k, and p(z) which is

independent of 7, (x, kz, h) and Tchebychev’s inequality entails
Pp(x, kg, h) —p(x) = =Sp1 + Sn2 +op(l) as n — oo.
Further, for every € > 0,
P(|Sp1] >¢€) <P(Np(x,h) <kz) =0 as n— oo

so that Sy 1 L 0asn— oo Besides, if W;, ¢ > 1 are independent standard Pareto random
variables, then the distribution of the random vector (71,...,7;) given Ny (z,h) =1> 11is the
distribution of the random vector (Ur,(Wil|z),...,Urp(Wi|x)), see Lemma 3. Let n be so

large that k, < inf I,. The equality
Va,b € [0,1], E |Liy<qy — Liy<py| = la —b]

valid for every standard uniform random variable V', entails for every [ € I,

k
1 T
E(Sn2l | Na(z,h) =1) - < k_ZE|ph( 1—it1,]T) — p()]
T =1
1 &=
Tk Zz:;E’ph(UT,h(Wl—i+1,l’x)’$) —p(z)|.

Clearly, for every k > 0, if n is so large that

Ny 1+ K
Up, —2& _ pl4n oop) <&
UJ(pO T, (1+n)km7nm » Ly >_ 2

we have by Lemma 2 that
K
E(|Sn,2| [ Nnfz,h) =1) < 5 + 2supP ({Wimkor10 <m0/ (L4 n)ke} U{Wi > 0™ 0 (23)
€l

Lemma 5 entails

kg
sup P(Wi_p, 411 < ng/(1 +n)k;) = supP (—VVl_sz,z —-1< —L> —0 as n — oo,

lel, lel, \Nz I+n

and since W is standard Pareto distributed, we get

3ng /2

supP (Wy; > nit) = sup [1 - (1- ngl_”)l} <1—(1—-nz'") —0 as n — oo.

lel, lel,
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In other words

sup P({Wl—kz—i-l,l < nx/(l + ﬂ)kx} U {WU > n}ﬁ"}) <

K
— 24
lel, 4 (24)

for n large enough, so that collecting (23) and (24), we find that E(|S, 2| | Np(z,h) =1) = 0

uniformly in [ € I, as n — oco. According to Markov’s inequality, we have for every € > 0

—0 as n — oco.

E(|S,, of | Nz, h) = I
Sup B8] > €| Na(, h) = 1) < sup meom2l [ Nn(@:h) = 1
lel, lel, €

Lemma 4 then entails S, 2 i> 0 as n — oo and the proof is complete. [ ]

We proceed by proving the pointwise asymptotic normality of the estimator.

Proof of Theorem 2. Recall from the proof of Theorem 1 the equality

in( ) = 2 (0) £ s | Gl ) = 0(0) ~ 2 ) — )
The asymptotic normality of yp ,(x, ks, h),
Vs B (2, ko, ) = yr(2)] ~5 N0,V (77(2))) (25)

is contained in Theorem 2 of [16]. We now recall the representation

By,
ks

Pl l) = pa) = |25 = pla)| = S0+ 5,

with By, Sp.1 and Sy, 2 as in (20), (21) and (22). Note that, from (21), one has for every € > 0
P(Vkg|Sni| >€) <P(Np(z,h) <kz) -0 as n— o0

so that /kg|Sn1] L. 0asn — oo Let n beso large that k, < inf I,. Let further W;, ¢ > 1
be independent standard Pareto random variables which are independent of the V; and note

that, from Lemma 3 and (22), one has given N, (z,h) =1 € I;:

ka

a1

S = = D MV Ura (Wi i)l — Wvizpa) = She
T =1
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Further,

/ / /
kx’S"’ < 2 kx]I{Wlsz+1,l<nfc/(1+77)kw}U{Wl,l>nalc+n}
k
1 xT
+ Ve [k—Z Lvi<onUraWisspaalo)la)} —H{vigp(x)}‘]
T =1
X

H{”x/(1+77)kx Wik 1 1 <Wy<ny 1}

Since the expectation of the second term on the right-hand side of this inequality is

k

1 x

T ZE Dph(UT,h(Wl—z‘—l-l,l’x)’x) - p(x)’H{nz/(1+n)kzSszsz,zSWz,zSni*”}]
=1

x_

we may, for every x > 0, use Lemma 2 to bound it from above by

V kmw <p° UT) ﬁ,ni'm,x,h) < g

for n sufficiently large. From (24) and Markov’s inequality, we get for every € > 0

sup P(\/kz|Sn 2| > €| Np(z,h) =1) < K
lel,

if n is large enough. By Lemma 4, this entails v/k;|Sy 2| L 0asn - . Consequently

VI e ) = ()] = Vs | 5 )| + 0e()

Recall from the proof of Theorem 1 that By, is a binomial random variable with parameters

ky and p(x) which is independent of 47, (z, kz, h). Since

VI |3 = )| < NO.p(a)(1 = (o) (20

as n — 00, the convergences (25), (26) and Slutsky’s lemma entails

~ ()] G 1 oy @
VI Byt = 2y @] 5 4 (0, Vo) + ZE 1 - pioy)] )
as n — oo, which is the result. [ |

The last lemma is the converse statement of Lemma 9 in [16]. It is an element necessary to

prove Proposition 1.
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Lemma 6. Let F be a csf on R and U be the left-continuous inverse of 1/F.
1. If F is such that
Vy €R, F(y) € (0,1) = V5 >0, F(y+9) < F(y)
then U is a continuous function on (1,00).

2. If F is continuous on R then U is an increasing function on (1,00).

Proof of Lemma 6. To prove the first statement, pick o € (1,00) and assume that U is not

continuous at ag. In particular, since U is left-continuous and nondecreasing,

ali—>Ha10 U(a) — U(ap) > 0.
a>oq

Then necessarily 0 < F(U(ag)) < 1/ag < 1. Moreover, the above inequality entails, since U
is nondecreasing,

36 > 0, Ya > ap, U(a) > U(ap) + 9.

Using the definition of the function U, we obtain

1 1
Ya > ap, ag < = < = < .
"= F(U(a0) T F(U(ap) +9)

Taking the limit « | o gives F(U(ap) + §) = F(U(ap)), which is a contradiction.

To show the second statement, assume that «, 8 are such that 1 < a <  and U(«a) = U(S).

Then since F' is right-continuous and nonincreasing, we get

— — 1 1
FU =FU <—-<—< lim F(t
U@) =FUE) <5<+ < lm T
t<U(a)
Hence F is not continuous at U(«), which is a contradiction. |

Proof of Proposition 1. We start by considering case 1. For n large enough and for every

x’ € B(z,h), one has
Foltl) fyr(tla)) — ——G(tle') = ry(tz,2)G(ta!)
Yy (x

and Fy(t|2') fo(t|z') — G(tlx) = re(t,z,2))G(t]x)

)
1
Yo()

3

0



/ o 1 . . z
(A% (ta T, T ) - vy (.Z',) vy (x) by (t‘ )
A SRR U

and ro(t,z,2") = o@) " 7e@ bo(t|z")

From Lemma 2, we obtain the equality

1 E(ry(t,z, X)GE|X)| X € B(z,h))

b I 1 E(v(teX) et X)GUX) [X € B h)
w(@) | e E(G({|X)| X € B(x,h))

If we can prove that for n > 0 small enough
sup sup (|by| V |[be|)(t|z") = O(h*logn, V 6,) — 0 (27)
teUrp p Kz p|z) ' €B(x,h)

as n — 0o, with Uz (K, y|z) being the image of the interval K, by the function Urp(-|x),
then the fact that G(:|X) is nonnegative shall entail

Ny 14+n > _ a /
w|poUp,—————,n; ",z,h| = O[|A"V sup sup (|by]| V b)) (t|x
( (1 +n)k, < teUp p(Ka,ylz) x’EB(x,h)(| [V Ibeh )

= O(h*logngy V d0,)

which is the result. To this end, we start by noting that because (see Lemma 1.2.9 in [14],
p.22)

Ur(ng/k:|x) 1
%
ar(na/kelv) — yr(z)
it is a consequence of (6) and of the mean value theorem that

Urn(2]7)
Ur(z|x)

as n — oo,

sup
z€Kqy n

—1'—)0 as n — oo.

Using the fact that Up(-|z) is regularly varying at infinity with index vyr(x) > 0, we get for n
large enough

UT,h(Kx,n’x) C UT(Kx727]’x).

This proves that for n large enough

sup sup ([by| V[bc|)(tlz") < sup sup  ([by| V [bel)(tlz").
teUr p(Kz,nl|z) 2’ €B(z,h) teUr (K oy|) 2/ € B(z,h)
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Letting 7 > 0 be so small that condition (12) holds with 7 replaced by 27 and using this Holder

condition along with (11) we deduce that

sup sup  ([by |V [be)(ta)
tEUT,h(Kz,n|-'E) z'€B(z,h)

= O h%logn,V sup |by (t|z)| Vv sup |bo(t|z)] ] -
teUT(KCE,Qn‘x) teUT(KCL‘Qn‘x)

Finally, Potter bounds for the regularly varying functions |by (-|x)| and |bo(+|z)| (see Bingham
et al. [4], p.25) entail

R, byl |, Jboltla)]
w0ty Y O e R D)) e U (g R 1)

< 00

which yields (27) and the result in this case.

We now turn to case 2. We remark that

Fo(tle) fy () + ——G(tla) = ry(t,z,a))G(t]z')

Yy ()
and Fy(t|:n’)fc(t|x')+LG(H:E') = ro(t,z,2")G(t|2")
Yo()
with
L= (Up(oolz!) — )Y\ L= _ ((Up(oolz’) — t) " a!
7, (Ur(oclz’) — )7 )FC,(( 7( |,) )" Hz") i 0 <t < Up(oola’)
G(t‘.’,l',) _ (UT(OO|$/) — t)l/“/Y(m )+1/vo (2')+1
0 otherwise
and
(ba,a) = —— — —— — by (Up(oola’) — ) o),
()  v(e)
1 1

ro(t, =, z’) — bo((Up(colz’) — t)~Ha!).

o(x)  vela)
A particular consequence of this is, according to Lemma 2:

1 E(ry(t,z, X)G(t|X)| X € B(z, h))

Ph ~ 11 E(vteX) trete, X)GUX) X € B, b))
wr) o) E(G(t|X)|X € B(x,h))

Define I, o, = [Urp(ne/(1 + n)ky|x), Ur(oo|z’)). We shall now prove that

sup  sup (|by|V |be|)(Ur(oolz’) — )7 z') = O(h*logng V 6,) — 0 (28)
z'€B(z,h) tel, o
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as n — o0o. The fact that G(-|X) is nonnegative shall then yield

Ty 1+n h
w<poUT7(1+n)kx7nx , L, >

= O<hav sup  sup (!by\V\bc\)((UT(OO\SC/)—t)_l\x/)>

x'€B(x,h) tel, .1
= O (h%logng V dy,)

which is what we want to prove. To this aim, remark that one has (see Lemma 1.2.9 in [14],

p.22)

Vel ) __UT(OO|x) |r) — n x)] ! 0 as n — 00
i TEe) ) r(eeke) = Un(na k)] (14 0(1)) s oo.

Using (9), it is a consequence of the mean value theorem that

Urn(z|z)

8 | Ur(zl)

ZGKz,n

as n — oo. Especially, (7) and (8) entail that

Ur(oo|x) — Up(ng /ks|x)

Ur(oolz”) — Upp(ng /(1 +n)ks|z) = (1+ )

(I+0(1)) as n — oo.

Therefore, I, is indeed well-defined for all n large enough and 2’ € B(z,h). Moreover,
defining &, (x) := Up(oco|z) — Up(ny/kz|x) which converges to 0 as n — oo, this yields for n

large enough and every 2’ € B(z, h)

Iy C (1= en(@))Ur(na/(1+ n)ke|), Ur(cola’)]

which may be used together with (8) to show that there exists some constant " > 0 such that

for n large enough

1—7 oo)
Ur(oolz) — Ur(ng/kelz)” )

Va' € B(x,h), t € I = (Ur(oolz’) —t) ™' € T,y =
This proves that for n large enough

sup  sup (Jby|V [be)((Ur(cofa’) =) 7Ha') < sup  sup (|by|V [be)(z]a")].
z'€B(x,h) tel, 41 z€Jd, v x'€B(z,h)
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Conditions (11) and (14) then entail

sup  sup (Jby| V [be)((Ur(oola’) —)"|')
' €B(w,h) t€ly 41

= O(ho‘lognx\/ sup |by(z|x)| vV sup \bdz\x)\)

zEsz/ zE z,n’

We conclude by using Potter bounds for the regularly varying functions |by (-|z)| and |bco(-|x)]

to get
: by (¢[)]
limsup sup < o>
noo ted, , by (Ur(oolz) = Ur(ne/ke|2))~! )]
: bo ()]
and limsup sup < 0
n—oo ted,, |be((Ur(oolr) — Ur(na/kelx))~!|z)|
of which (28) is a direct consequence. |
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Situation | Moment estimator 7y

Model 1
p=—0.5| 0.177 [0.0138,0.550]

p=—1 | 0.0639 [0.0139,0.170]
p=—1.5|0.0491 [0.00563,0.146]

Model 2
c=0.1 | 0.0451 [0.00956,0.138]
c=0.2 | 0.0505 [0.0146,0.165]
c¢=0.3 | 0.0494 [0.0125,0.137]
Model 3 | 0.0840 [0.0172,0.334]

Table 1: MSEs associated to the estimator 7y in all cases. Between brackets: minimal and

maximal squared error recorded.

Figure 1: Model 1, case p = —1: the true function vy (solid line) and its estimator 7y (dashed

line) corresponding to the median of the MSE.
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Figure 2: Model 2, case ¢ = 0.1: the true function ~y (solid line) and its estimator 7y (dashed

line) corresponding to the median of the MSE.
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Figure 3: Model 3: the true function vy (solid line) and its estimator 7y (dashed line) corre-

sponding to the median of the MSE.
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90

Figure 4: Scatterplot of the AIDS data: x—axis: age of the patient at the time of diagnosis,

y—axis: survival time (in years).

20 25 30 35 40 45 50 55 60 65

Figure 5: AIDS data: estimator 7y . z—axis: age of the patient at the time of diagnosis.
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Figure 6: AIDS data: estimation of the conditional extreme quantile of the survival time. Full
line: level € = 0.01, dashed line: level € = 0.005, dashed-dotted line: € = 0.002, dotted line:
level € = 0.001. x—axis: age of the patient at the time of diagnosis, y—axis: survival time (in

years).
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