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Estimating the 
onditional extreme-value index under randomright-
ensoringGilles Stup�erAix Marseille Université, CERGAM, EA 4225,15-19 allée Claude Forbin, 13628 Aix-en-Proven
e Cedex 1, Fran
eAbstra
t. In extreme value theory, the extreme-value index is a parameter that 
ontrolsthe behavior of a 
umulative distribution fun
tion in its right tail. Estimating this parameter isthus the �rst step when ta
kling a number of problems related to extreme events. In this paper,we introdu
e an estimator of the extreme-value index in the presen
e of a random 
ovariatewhen the response variable is right-
ensored, whether its 
onditional distribution belongs tothe Fré
het, Weibull or Gumbel max-domain of attra
tion. The pointwise weak 
onsisten
yand asymptoti
 normality of the proposed estimator are established. Some illustrations onsimulations are provided and we show
ase the estimator on a real set of medi
al data.AMS Subje
t Classi�
ations: 62G05, 62G20, 62G30, 62G32, 62N01, 62N02.Keywords: Extreme-value index, random 
ovariate, random right-
ensoring, 
onsisten
y,asymptoti
 normality.1 Introdu
tionStudying extreme events is relevant in numerous �elds of statisti
al appli
ations. One 
an thinkabout hydrology, where it is of interest to estimate the maximum level rea
hed by seawateralong a 
oast over a given period, or to study extreme rainfall at a given lo
ation; in a
tuarial1



s
ien
e, a major problem for an insuran
e �rm is to estimate the probability that a 
laim solarge that it represents a threat to its solven
y is �led. The fo
us in this type of problem isnot in the estimation of �
entral� parameters of the random variable of interest, su
h as itsmean or median, but rather in the understanding of its behavior in its right tail. The basi
result in extreme value theory, known as the Fisher-Tippett-Gnedenko theorem (Fisher andTippett [9℄, Gnedenko [12℄) states that if (Yn) is an independent sequen
e of random 
opies ofa random variable Y su
h that there exist normalizing nonrandom sequen
es of real numbers
(an) and (bn), with an > 0 and su
h that the sequen
e

1

an

(
max
1≤i≤n

Yi − bn

)
onverges in distribution to some nondegenerate limit, then the 
umulative distribution fun
-tion (
df) of this limit 
an ne
essarily be written y 7→ GγY (ay + b), with a > 0 and b, γY ∈ Rwhere
GγY (y) =





exp
(
−(1 + γY y)

−1/γY
) if γY 6= 0 and 1 + γY y > 0,

exp (− exp(−y)) if γY = 0.If the aforementioned 
onvergen
e holds, we shall say that Y (or equivalently, its 
df FY )belongs to the max-domain of attra
tion (MDA) of GγY , with γY being the so-
alled extreme-value index of Y , and we write FY ∈ D(GγY ). The parameter γY drives the behavior of GγY(and thus of FY ) in its right tail:
• if γY > 0, namely Y belongs to the Fré
het MDA, then 1 −GγY is heavy-tailed, i.e. ithas a polynomial de
ay;
• if γY < 0, namely Y belongs to the Weibull MDA, then 1 − GγY is short-tailed, i.e. ithas a support bounded to the right;
• if γY = 0, namely Y belongs to the Gumbel MDA, then 1 − GγY has an exponentialde
ay.This makes it 
lear that the estimation of γY is a �rst step when ta
kling various problems inextreme value analysis, su
h as the estimation of extreme quantiles of Y . Re
ent monographs2



on extreme value theory and espe
ially univariate extreme-value index estimation in
lude Beir-lant et al. [1℄ and de Haan and Ferreira [14℄.In pra
ti
al appli
ations, it may happen that only in
omplete information is available. Considerfor instan
e a medi
al follow-up study lasting up to time t whi
h 
olle
ts the survival timesof patients for a given 
hroni
 disease. If a patient is diagnosed with the disease at time s,his/her survival time is known if and only if he/she dies before time t. If the patient survivesuntil the end of the study, the only information available is that his/her survival time is notless than t− s. This situation is the ar
hetypal example of right-
ensoring, whi
h shall be thefo
us of this paper. An interesting problem in this parti
ular 
ase is the estimation of extremesurvival times or, in other words, how long an ex
eptionally strong individual 
an survive thedisease. A preliminary step ne
essary to give an answer to this question is to estimate theextreme value index of the survival time Y ; this problem, whi
h is mu
h more 
omplex thanthe estimation of the extreme value index when the data set is 
omplete, has been investigatedquite re
ently by Beirlant et al. [2℄ and Einmahl et al. [8℄. Moreover, in the latter study,the authors propose an estimator of extreme quantiles under random right-
ensoring, so as toprovide extreme survival times for male patients su�ering from AIDS.Besides, it may well be the 
ase that the survival time of a patient depends on additionalrandom fa
tors su
h as his/her age or the pre-existen
e of some other medi
al 
ondition, forinstan
e. Our goal in this study is to make it possible to integrate su
h information in themodel, by taking into a

ount the dependen
y of Y on a 
ovariate X. The problem thusbe
omes to estimate the 
onditional extreme-value index γY (x) of Y given X = x. Re
entpapers on this subje
t when Y is non
ensored in
lude Wang and Tsai [18℄ who introdu
eda maximum likelihood approa
h, Daouia et al. [5℄ who used a �xed number of nonparamet-ri
 
onditional quantile estimators to estimate the 
onditional extreme-value index, Gardesand Girard [10℄ who generalized the method of [5℄ to the 
ase when the 
ovariate spa
e isin�nite-dimensional, Goegebeur et al. [13℄ who studied a nonparametri
 regression estimatorand Gardes and Stup�er [11℄ who introdu
ed a smoothed lo
al Hill estimator (see Hill [15℄).All these papers 
onsider the 
ase when Y given X = x belong to the Fré
het MDA; the 
ase3



when the response distribution belongs to an arbitrary domain of attra
tion is 
onsidered inDaouia et al. [6℄, who generalized the method of [5℄ to this 
ontext, and Stup�er [16℄ whointrodu
ed a generalization of the popular moment estimator of Dekkers et al. [7℄. However, tothe best of our knowledge, there is no solution yet to this problem when Y is right-
ensored.The outline of this paper is as follows. In Se
tion 2, we give a pre
ise de�nition of our model.In Se
tion 3, we de�ne our estimator of the 
onditional extreme-value index. The pointwiseweak 
onsisten
y and asymptoti
 normality of the estimator are stated in Se
tion 4. The�nite sample performan
e of the estimator is studied in Se
tion 5. In Se
tion 6, we revisit themedi
al data set of [8℄ by integrating additional 
ovariate information. Proofs are deferred toSe
tion 7.2 FrameworkLet (X1, Y1, C1), . . . , (Xn, Yn, Cn) be n independent 
opies of a random ve
tor (X,Y,C) takingits values in E × (0,∞) × (0,∞) where E is a �nite-dimensional linear spa
e endowed witha norm ‖ · ‖. We assume that for all x ∈ E, given X = x, Y and C are independent,possess 
ontinuous probability density fun
tions (pdfs) and that the related 
onditional survivalfun
tions (
sfs) F Y (·|x) = 1−FY (·|x) of Y given X = x and FC(·|x) = 1−FC(·|x) of C given
X = x belong to some domain of attra
tion. Spe
i�
ally, we shall work in the following setting,where we re
all that the left-
ontinuous inverse of a nonde
reasing fun
tion f is the fun
tion
z 7→ inf{y ∈ R | f(y) ≥ z}:

(M1) Y and C are positive random variables and for every x ∈ E, there exist real numbers
γY (x), γC(x) and positive fun
tions aY (·|x), aC(·|x) su
h that the left-
ontinuous inverses
UY (·|x) of 1/F Y (·|x) and UC(·|x) of 1/FC(·|x) satisfy

lim
t→∞

UY (tz|x)− UY (t|x)
aY (t|x)

= DγY (x)(z) and lim
t→∞

UC(tz|x) − UC(t|x)
aC(t|x)

= DγC(x)(z)for every z > 0, where
Dγ(z) =





zγ − 1

γ
if γ 6= 0

log z if γ = 0.

(1)4



Model (M1) is the 
onditional analogue of the 
lassi
al extreme-value framework for Y and
C, see for instan
e [14℄, p.19. In this model, for every x ∈ E, the fun
tions UY (·|x) and
UC(·|x) have positive limits UY (∞|x) and UC(∞|x) at in�nity; the fun
tions x 7→ UY (∞|x)and x 7→ UC(∞|x), whi
h are su
h that

UY (∞|x) = sup{t ∈ R |F Y (t|x) > 0} and UC(∞|x) = sup{t ∈ R |FC(t|x) > 0}are respe
tively 
alled the 
onditional right endpoints of Y and C.We assume that we only observe the random ve
tors (Xi, Ti, δi) with Ti = Yi ∧ Ci, where wedenote by s ∧ t the minimum of s and t, and δi = I{Yi≤Ci}. Suppose as well that the following
ondition holds:
(H) For every x ∈ E, the distribution of T given X = x belongs to some domain ofattra
tion D(GγT (x)) and we have either
• γY (x) > 0 and γC(x) > 0;
• γY (x) < 0, γC(x) < 0 and 0 < UY (∞|x) = UC(∞|x) < ∞;
• γY (x) = γC(x) = 0 and UY (∞|x) = UC(∞|x) = ∞.As mentioned in [8℄, if (M1) and (H) hold then T has 
onditional right endpoint UY (∞|x) =

UC(∞|x) and 
onditional extreme-value index
γT (x) =

γY (x)γC(x)

γY (x) + γC(x)with the 
onvention γT (x) = 0 if γY (x) = γC(x) = 0. In other words, if F T (·|x) is the 
sf of
T given X = x, there exists a positive fun
tion aT (·|x) su
h that the left-
ontinuous inverse
UT (·|x) of 1/F T (·|x) satis�es

∀z > 0, lim
t→∞

UT (tz|x)− UT (t|x)
aT (t|x)

= DγT (x)(z).3 The estimatorsTo ta
kle the problem, we start by introdu
ing an estimator of the 
onditional extreme-valueindex γT . For x ∈ E and a sequen
e h = h(n) 
onverging to 0 as n → ∞, we let Nn(x, h) be5



the total number of observations in the 
losed ball B(x, h) with 
enter x and radius h:
Nn(x, h) =

n∑

i=1

I{Xi∈B(x,h)} with B(x, h) = {x′ ∈ E | ‖x− x′‖ ≤ h},where I{·} is the indi
ator fun
tion. The bandwidth sequen
e h(n) makes it possible to sele
tthose 
ovariates whi
h are 
lose enough to x. Given Nn(x, h) = l ≥ 1, we let, for i = 1, . . . , l,
(Ti,∆i) = (Ti(x, h),∆i(x, h)) be the response pairs whose asso
iated 
ovariates Xi = Xi(x, h)belong to the ball B(x, h). Let T1,l ≤ · · · ≤ Tl,l be the order statisti
s asso
iated with thesample (T1, . . . ,Tl) � note that this way of denoting order statisti
s shall be used throughoutthe paper � and set for j = 1, 2

M (j)
n (x, kx, h) =

1

kx

kx∑

i=1

[log(Tl−i+1,l)− log(Tl−kx,l)]
jif kx ∈ {1, . . . , l − 1} and 0 otherwise. De�ne

γ̂T,n(x, kx, h) = γ̂T,n,+(x, kx, h) + γ̂T,n,−(x, kx, h)where γ̂T,n,+(x, kx, h) = M (1)
n (x, kx, h)and γ̂T,n,−(x, kx, h) = 1− 1

2


1−

[
M

(1)
n (x, kx, h)

]2

M
(2)
n (x, kx, h)




−1

if [M (1)
n (x, kx, h)

]2
6= M

(2)
n (x, kx, h), with γ̂T,n,−(x, kx, h) = 0 otherwise. The estimator

γ̂T,n(x, kx, h) is an adaptation of the moment estimator of [7℄ to the presen
e of a random
ovariate; it follows from [16℄ that, under mild 
onditions, this quantity is a pointwise 
onsis-tent estimator of the extreme-value index γT (x) of T given X = x.To obtain an estimator of γY (x), we adapt an idea of [8℄. Given Nn(x, h) = l, let ∆[1:l], . . . ,∆[l:l]be the order statisti
s indu
ed by the sample (T1, . . . ,Tl), namely ∆[i:l] is the random variableasso
iated with Ti,l. We de�ne
p̂n(x, kx, h) =

1

kx

kx∑

i=1

∆[l−i+1:l],the proportion of non
ensored observations among Tl−kx+1,l, . . . ,Tl,l when kx ∈ {1, . . . , l −
1} and 0 otherwise. This estimator is the adaptation to the random 
ovariate 
ase of the6



estimator p̂ of [8℄: we shall show (see the proof of Theorem 1 below) that under some 
onditions,
p̂n(x, kx, h) is a 
onsistent estimator of γC(x)/(γY (x)+γC(x)). Our estimator of γY (x) is then

γ̂Y,n(x, kx, h) =
γ̂T,n(x, kx, h)

p̂n(x, kx, h)if p̂n(x, kx, h) > 0 and 0 otherwise.4 Main results4.1 Weak 
onsisten
yWe start by giving a pointwise weak 
onsisten
y result for our estimator. To this end let
nx = nx(n, h) = nP(X ∈ B(x, h)) be the average total number of points in the ball B(x, h)and assume that nx(n, h) > 0 for every n. Let kx = kx(n) be a sequen
e of positive inte-gers, FT,h(·|x) be the 
df of T given X ∈ B(x, h), UT,h(·|x) be the left-
ontinuous inverse of
1/F T,h(·|x). We introdu
e the fun
tions p(·|x), ph(·|x) de�ned by

p(t|x) =
d

dt
P(δ = 1, T ≤ t |X = x)

/
d

dt
FT (t|x)and ph(t|x) =

d

dt
P(δ = 1, T ≤ t |X ∈ B(x, h))

/
d

dt
FT,h(t|x)for every t > 0 su
h that the denominator is nonzero, and p(x) := γC(x)/(γY (x) + γC(x))otherwise. It follows from Lemma 1 (see Se
tion 7) that if (M1), (H) hold and γY (x) 6= 0,then the �rst of these two quantities 
onverges to the positive limit p(x) as t → UT (∞|x)and from Lemma 2 that the se
ond quantity is indeed well-de�ned. Assume that in the 
ase

γY (x) = γC(x) = 0, the fun
tion p(·|x) also 
onverges to a positive limit at in�nity, whi
hwe denote by p(x) for the sake of 
onsisten
y. The fun
tion x 7→ p(x) is understood as the
onditional per
entage of 
ensoring in the right tail of Y . For u, v ∈ (1,∞) su
h that u < v,we introdu
e the quantities
ω(logUT , u, v, x, h) = sup

t∈[u,v]

∣∣∣∣log
UT,h(t|x)
UT (t|x)

∣∣∣∣and ω(p ◦ UT , u, v, x, h) = sup
t∈[u,v]

|ph(UT,h(t|x)|x) − p(x)| .Our 
onsisten
y result is then: 7



Theorem 1. Assume that (M1) and (H) hold. For some x ∈ E, assume that nx → ∞,
kx → ∞, kx/nx → 0 and for some η > 0

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞ (2)and ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞. (3)Then it holds that γ̂Y,n(x, kx, h) P−→ γY (x) as n → ∞.Conditions kx → ∞ and kx/nx → 0 in Theorem 1 are standard hypotheses for the estimationof the 
onditional extreme-value index. Moreover, 
ondition nx → ∞ is ne
essary to makesure that there are su�
iently many observations 
lose to x, whi
h is a standard assumptionin the random 
ovariate 
ase.We 
on
lude this se
tion by analyzing 
onditions (2) and (3). We assume that

(A1) For every x ∈ E, it holds that for all t ∈ (0, UT (∞|x)), fY (t|x) > 0 and fC(t|x) > 0.
(A2) The fun
tions γY and γC are 
ontinuous fun
tions on E.
(A3) If n is large enough then for every x′ ∈ B(x, h) and r > 0, we have P(X ∈ B(x′, r)) > 0.
(A4) For every y ∈ R, the fun
tion F T (y|·) is 
ontinuous on E.Note that hypothesis (A1) implies that the 
sf F T (·|x) is a 
ontinuous de
reasing fun
tion on

(0, UT (∞|x)) and hypothesis (A2) entails that the fun
tion γT is 
ontinuous. Hypotheses (A3)and (A4) are te
hni
al 
onditions; see Proposition 1 in [16℄ for analogues of these assumptionsin the non
ensored 
ase. We 
an draw two 
onsequen
es from this remark:1. If γY (x) > 0 and γC(x) > 0 then γY (x
′) > 0, γC(x′) > 0 and γT (x

′) > 0 for x′ 
loseenough to x. Corollary 1.2.10 in [14℄, p.23 thus yields for n large enough and every
x′ ∈ B(x, h)

∀z > 1, UT (z|x′) = zγT (x′)LUT
(z|x′)where for every x′ ∈ B(x, h), LUT

(·|x′) is a slowly varying fun
tion at in�nity, and
∀t > 0, F Y (t|x′) = t−1/γY (x′)LFY

(t|x′) and FC(t|x′) = t−1/γC(x′)LFC
(t|x′)8



where LFY
(·|x′) and LFC

(·|x′) are 
ontinuously derivable slowly varying fun
tions atin�nity. Espe
ially, if
bY (t|x′) = t

L′
FY

(t|x′)
LFY

(t|x′) and bC(t|x′) = t
L′
FC

(t|x′)
LFC

(t|x′)then
∀t > 0, fY (t|x′) =

[
1

γY (x′)
− bY (t|x′)

]
F Y (t|x′)

tand fC(t|x′) =

[
1

γC(x′)
− bC(t|x′)

]
FC(t|x′)

t
.2. If γY (x) < 0 and γC(x) < 0 then γY (x

′) < 0, γC(x′) < 0 and γT (x
′) < 0 for x′ 
loseenough to x. Corollary 1.2.10 in [14℄, p.23 yields for n large enough and every x′ ∈ B(x, h)that

∀z > 1, UT (∞|x′)− UT (z|x′) = zγT (x′)LUT
(z|x′)where for every x′ ∈ B(x, h), LUT

(·|x′) is a slowly varying fun
tion at in�nity and
∀t > 0, F Y (UY (∞|x′)− t−1|x′) = t1/γY (x′)LFY

(t|x′)and FC(UC(∞|x′)− t−1|x′) = t1/γC(x′)LFC
(t|x′)where LFY

(·|x′) and LFC
(·|x′) are 
ontinuously derivable slowly varying fun
tions atin�nity. In parti
ular, if

bY (t|x′) =





t
L′
FY

(t|x′)
LFY

(t|x′) if LFY
(t|x′) > 0

0 otherwiseand bC(t|x′) =





t
L′
FC

(t|x′)
LFC

(t|x′) if LFC
(t|x′) > 0

0 otherwise,sin
e UT (∞|x′) = UY (∞|x′) = UC(∞|x′) for every x′ ∈ B(x, h), one may write
∀t ∈ (0, UT (∞|x′)), fY (t|x′) =

[
− 1

γY (x′)
− bY ((UT (∞|x′)− t)−1|x′)

]
F Y (t|x′)

UT (∞|x′)− tand fC(t|x′) =
[
− 1

γC(x′)
− bC((UT (∞|x′)− t)−1|x′)

]
FC(t|x′)

UT (∞|x′)− t
.9



In this framework, it is possible to reformulate the hypotheses in our main results in a more
onvenient fashion: let Kx,η := [nx/(1 + η)kx, n
1+η
x ] and assume that for some α ∈ (0, 1)

sup
x′∈B(x,h)

|γY (x′)− γY (x)| ∨ |γC(x′)− γC(x)| = O(hα) (4)and sup
z∈Kx,η

sup
x′∈B(x,h)

1

log z

∣∣∣∣log
LUT

(z|x′)
LUT

(z|x)

∣∣∣∣ = O(hα) (5)where we denote by s ∨ t the maximum of two real numbers s and t. Then in 
ase 1, if
hα log nx → 0 as n → ∞, one has

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα log nx) (6)see the dis
ussion below Proposition 1 in [16℄. In 
ase 2, if the 
onditional right endpoint

UT (∞|·) is su
h that
sup

x′∈B(x,h)
|UT (∞|x′)− UT (∞|x)| = O(hβ) (7)with β ∈ (0, 1], then if

hα log nx → 0 and (nx/kx)
−γT (x)

LUT
(nx/kx|x)

hβ → 0 as n → ∞ (8)one has
UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O

(
hα log nx ∨

(nx/kx)
−γT (x)

LUT
(nx/kx|x)

hβ

)
, (9)see again the dis
ussion below Proposition 1 in [16℄.The next result gives an analogue of these estimations when 
onsidering hypothesis (3).Proposition 1. Assume that 
onditions (M1), (H), (A1), (A2), (A3), (A4) hold and that forsome α ∈ (0, 1) and η > 0, 
onditions (4) and (5) are satis�ed.1. In 
ase 1 above assume that for x′ 
lose enough to x, |bY (·|x′)|, |bC(·|x′)| are regularlyvarying fun
tions at in�nity with respe
tive indi
es ρY (x′)/γY (x′), ρC(x′)/γC(x′), that is

|bY (t|x′)| = tρY (x′)/γY (x′)LbY (t|x′) and |bC(t|x′)| = tρC(x′)/γC (x′)LbC (t|x′) (10)10



with the so-
alled 
onditional se
ond-order parameters ρY , ρC and the slowly varyingfun
tions LbY (·|x′), LbC (·|x′) satisfying, for some η > 0,
sup

x′∈B(x,h)
|ρY (x′)− ρY (x)| ∨ |ρC(x′)− ρC(x)| = O(hα) , (11)

sup
t∈UT (Kx,η |x)

sup
x′∈B(x,h)

1

log t

[∣∣∣∣log
LbY (t|x′)
LbY (t|x)

∣∣∣∣ ∨
∣∣∣∣log

LbC (t|x′)
LbC (t|x)

∣∣∣∣
]

= O(hα) (12)where UT (Kx,η|x) is the image of the interval Kx,η by the fun
tion UT (·|x). If ρY (x) and
ρC(x) are negative, hα log nx → 0 and the sequen
e

δn := |bY (UT (nx/kx|x)|x)| ∨ |bC(UT (nx/kx|x)|x)|
onverges to 0 then, for η > 0 small enough, one has, as n → ∞:
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα log nx ∨ δn) .2. In 
ase 2 above, assume that 
onditions (7) and (8) are satis�ed. Assume moreover thatfor x′ 
lose enough to x, |bY (·|x′)| and |bC(·|x′)| are regularly varying fun
tions at in�nitywith respe
tive indi
es −ρY (x

′)/γY (x
′) and −ρC(x

′)/γC(x
′), namely

|bY (t|x′)| = t−ρY (x′)/γY (x′)LbY (t|x′) and |bC(t|x′)| = t−ρC(x′)/γC(x′)LbC (t|x′) (13)with the 
onditional se
ond-order parameters ρY , ρC satisfying (11) and the slowly vary-ing fun
tions LbY (·|x′), LbC (·|x′) being su
h that for some η ∈ (0, 1)

sup
t∈Jx,η

sup
x′∈B(x,h)

1

log t

[∣∣∣∣log
LbY (t|x′)
LbY (t|x)

∣∣∣∣ ∨
∣∣∣∣log

LbC (t|x′)
LbC (t|x)

∣∣∣∣
]
= O(hα) (14)where Jx,η := [(1 − η)[UT (∞|x) − UT (nx/kx|x)]−1,∞). If ρY (x) and ρC(x) are negativeand the sequen
e

δn := |bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| ∨ |bC((UT (∞|x)− UT (nx/kx|x))−1|x)|
onverges to 0 then one has, as n → ∞:
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O(hα log nx ∨ δn) .This result relates hypothesis (3) in Theorem 1 to the various fun
tions involved in the usualparametrization of the problem. It shall allow us to re
over the optimal rate of 
onvergen
e ofthe estimator, see Theorem 2 and the developments below for details.11



4.2 Asymptoti
 normalityTo prove a pointwise asymptoti
 normality result for our estimator, we need to introdu
e ase
ond-order 
ondition on the fun
tion UT (·|x):
(M2) Conditions (M1) and (H) hold and for every x ∈ E, there exist a real number

ρT (x) ≤ 0 and a fun
tion AT (·|x) of 
onstant sign 
onverging to 0 at in�nity su
h that thefun
tion UT (·|x) satis�es
∀z > 0, lim

t→∞

1

AT (t|x)

[
UT (tz|x)− UT (t|x)

aT (t|x)
− zγT (x) − 1

γT (x)

]
= HγT (x),ρT (x)(z)where

HγT (x),ρT (x)(z) =

∫ z

1
rγT (x)−1

[∫ r

1
sρT (x)−1ds

]
dr.Hypothesis (M2) is the 
onditional analogue of a 
lassi
al se
ond-order 
ondition, see forinstan
e De�nition 2.3.1 and Corollary 2.3.4 in [14℄, pp.44�45: the parameter ρT (x) is theso-
alled se
ond-order parameter of T given X = x. Note that Theorem 2.3.3 in [14℄, p.44shows that the fun
tion |AT (·|x)| is regularly varying at in�nity with index ρT (x). Moreover,as shown in Lemma B.3.16 p.397 therein, if (M2) holds with γT (x) 6= ρT (x) and ρT (x) < 0 if

γT (x) > 0, then de�ning qT (·|x) = aT (·|x)/UT (·|x), a se
ond-order 
ondition also holds for thefun
tion logUT (·|x), namely:
∀z > 0, lim

t→∞

1

QT (t|x)

[
logUT (tz|x) − logUT (t|x)

qT (t|x)
− zγT,−(x) − 1

γT,−(x)

]
= HγT,−(x),ρ′

T
(x)(z)with γT,−(x) = (−γT (x)) ∨ 0,

ρ′T (x) =





ρT (x) if γT (x) < ρT (x) ≤ 0

γT (x) if ρT (x) < γT (x) ≤ 0

−γT (x) if 0 < γT (x) < −ρT (x) and ℓT (x) 6= 0

ρT (x) if (0 < γT (x) < −ρT (x) and ℓT (x) = 0) or 0 < −ρT (x) ≤ γT (x)where we have de�ned
ℓT (x) = lim

t→∞

(
UT (t|x)−

aT (t|x)
γT (x)

)12



and QT (·|x) has ultimately 
onstant sign, 
onverges to 0 at in�nity and is su
h that |QT (·|x)|is regularly varying at in�nity with index ρ′T (x). Note that Lemma B.3.16 in [14℄, p.397 entailsthat one 
an 
hoose
QT (t|x) =





AT (t|x) if γT (x) < ρT (x) ≤ 0

γT,+(x)−
aT (t|x)
UT (t|x)

if ρT (x) < γT (x) ≤ 0or 0 < γT (x) < −ρT (x) and ℓT (x) 6= 0or 0 < γT (x) = −ρT (x)

ρT (x)

γT (x) + ρT (x)
AT (t|x)

if 0 < γT (x) < −ρT (x) and ℓT (x) = 0or 0 < −ρT (x) < γT (x)with γT,+(x) = γT (x) ∨ 0. Besides, if γT (x) > 0 and ρT (x) = 0, then one has
∀z > 0, lim

t→∞

1

QT (t|x)

[
logUT (tz|x)− logUT (t|x)

qT (t|x)
− log z

]
= 0for every fun
tion QT (·|x) su
h that AT (t|x) = O(QT (t|x)) as t → ∞; espe
ially, we 
an take

QT (·|x) = AT (·|x) in this 
ase.We 
an now state the asymptoti
 normality of our estimator.Theorem 2. Assume that (M2) holds. For some x ∈ E, assume that nx → ∞, kx → ∞,
kx/nx → 0, √kx QT (nx/kx|x) → 0 and for some η > 0

√
kx

UT (nx/kx|x)
aT (nx/kx|x)

ω

(
logUT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞ (15)and √

kx ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
→ 0 as n → ∞. (16)Then if γT (x) 6= ρT (x), it holds that

√
kx [γ̂Y,n(x, kx, h) − γY (x)]

d−→ N
(
0,

1

p2(x)

[
V (γT (x)) +

γ2T (x)

p(x)
(1− p(x))

])where we have set
V (γT (x)) =





γ2T (x) + 1 if γT (x) ≥ 0

(1− γT (x))
2(1− 2γT (x))(1 − γT (x) + 6γ2T (x))

(1− 3γT (x))(1 − 4γT (x))
if γT (x) < 0.13



Theorem 2 is the 
onditional analogue of the asymptoti
 normality result stated in [8℄. Inparti
ular, the asymptoti
 varian
e of our estimator is similar to the one obtained when thereis no 
ovariate. Besides, 
ondition √
kx QT (nx/kx|x) → 0 as n → ∞ in Theorem 2 is a standard
ondition needed to 
ontrol the bias of the estimator.We 
on
lude this paragraph by showing how Theorem 2 
an be used to obtain optimal rates of
onvergen
e for our estimator. We assume that E = R

d, d ≥ 1 is equipped with the standardEu
lidean distan
e and that X has a probability density fun
tion f on R
d whi
h is 
ontinuouson its support S, assumed to have nonempty interior. If x is a point lying in the interior of Swhi
h is su
h that f(x) > 0, it is straightforward to show that (A3) holds and that

nx = n

∫

B(x,h)
f(u)du = nhdVf(x)(1 + o(1)) as n → ∞with V being the volume of the unit ball in R

d. Set k = kx/(h
dVf(x)); it is then 
lear that

kx = khdVf(x) and that hypotheses nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞ areequivalent to khd → ∞ and k/n → 0 as n → ∞. If k and h have respe
tive order na and n−b,with a, b > 0, the rate of 
onvergen
e of the estimator γ̂Y,n(x, kx, h) to γY (x) is then n(a−bd)/2.Under the hypotheses of Theorem 2, provided that (A1), (A2) and (A4) hold, one 
an �nd theoptimal values for a and b in the Fré
het and Weibull domains of attra
tion:
• If γY (x) > 0 and γC(x) > 0, then under the Hölder 
onditions (4) and (5), hypothesis (15)shall be satis�ed if √khdhα log(nhd) → 0 as n → ∞. Besides, under assumption (10) andthe Hölder 
onditions (11) and (12), Proposition 1 gives that hypothesis (16) is impliedby

√
kx
[
|bY (UT (nx/kx|x)|x)| ∨ |bC(UT (nx/kx|x)|x)|

]
→ 0 as n → ∞or, equivalently,

√
khd

(n
k

)γC(x)ρY (x)/(γY (x)+γC(x))
LY (n/k|x) → 0and √

khd
(n
k

)γY (x)ρC(x)/(γY (x)+γC (x))
LC(n/k|x) → 0as n → ∞, where LC(·|x) and LY (·|x) are slowly varying fun
tions at in�nity. Re
alling14



the bias 
ondition √
khd QT (n/k|x) → 0 as n → ∞ and letting

ρ′′T (x) =





ρ′T (x) if ρT (x) < 0

0 if ρT (x) = 0the problem is thus to maximize the quantity a − bd under the 
onstraints a ∈ (0, 1),
a− bd ≥ 0,

a− b(d+ 2α) ≤ 0,

a− bd+ 2(1 − a)
γC(x)ρY (x)

γY (x) + γC(x)
≤ 0,

a− bd+ 2(1 − a)
γY (x)ρC(x)

γY (x) + γC(x)
≤ 0and a− bd+ 2(1− a)ρ′′T (x) ≤ 0.Setting

ρ(x) := max

(
ρ′′T (x),

γC(x)ρY (x)

γY (x) + γC(x)
,

γY (x)ρC(x)

γY (x) + γC(x)

)
≤ 0the 
onstraints be
ome a ∈ (0, 1), a− bd ≥ 0,

a− b(d+ 2α) ≤ 0 and a− bd+ 2(1 − a)ρ(x) ≤ 0.The solution of this problem is
a∗ =

−(d+ 2α)ρ(x)

α− (d+ 2α)ρ(x)
and b∗ =

−ρ(x)

α− (d+ 2α)ρ(x)for whi
h
a∗ − b∗d =

−2αρ(x)

α− (d+ 2α)ρ(x)
.The optimal 
onvergen
e rate for our estimator in this 
ase is therefore

n(a∗−b∗d)/2 = n−αρ(x)/(α−(d+2α)ρ(x)) .

• If γY (x) < 0 and γC(x) < 0, then under the Hölder 
onditions (4), (5) and (7), hypoth-esis (15) shall be satis�ed if (see (8))
√
khdhα log(nhd) → 0 and √

khd
(n/k)−γT (x)

LUT
(n/k|x)h

β → 0 as n → ∞.15



Besides, under assumption (13) and the Hölder 
onditions (11) and (14), Proposition 1gives that hypothesis (16) is implied by
√

kx
[
|bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| ∨ |bC((UT (∞|x)− UT (nx/kx|x))−1|x)|

]
→ 0or, equivalently,

√
khd

(n
k

)γC(x)ρY (x)/(γY (x)+γC(x))
LY (n/k|x) → 0and √

khd
(n
k

)γY (x)ρC(x)/(γY (x)+γC (x))
LC(n/k|x) → 0as n → ∞, where LC(·|x) and LY (·|x) are slowly varying fun
tions at in�nity. Re
all-ing the bias 
ondition √

khd QT (n/k|x) → 0 as n → ∞, the problem thus 
onsists inmaximizing the quantity a− bd under the 
onstraints a ∈ (0, 1), a− bd ≥ 0,
a− b(d+ 2α) ≤ 0,

a− 2(1− a)γT (x)− b(d+ 2β) ≤ 0,

a− bd+ 2(1 − a)
γC(x)ρY (x)

γY (x) + γC(x)
≤ 0,

a− bd+ 2(1 − a)
γY (x)ρC(x)

γY (x) + γC(x)
≤ 0and a− bd+ 2(1− a)ρ′T (x) ≤ 0.Assume now that the fun
tions γY and γC are at least as regular as UT (∞|·), namelythat β ≤ α. In this 
ase, sin
e γT (x) < 0, the 
onstraints redu
e to a ∈ (0, 1), a−bd ≥ 0,

a− bd+ 2(1 − a)ρ(x) ≤ 0and a− 2(1 − a)γT (x)− b(d+ 2β) ≤ 0where
ρ(x) := max

(
ρ′T (x),

γC(x)ρY (x)

γY (x) + γC(x)
,

γY (x)ρC(x)

γY (x) + γC(x)

)
≤ 0.The solution of this problem is

a∗ =
−(d+ 2β)ρ(x) − dγT (x)

β − (d+ 2β)ρ(x)− dγT (x)
and b∗ =

−ρ(x)− γT (x)

β − (d+ 2β)ρ(x) − dγT (x)16



for whi
h
a∗ − b∗d =

−2βρ(x)

β − (d+ 2β)ρ(x) − dγT (x)
.The optimal 
onvergen
e rate for our estimator in this 
ase is then

n(a∗−b∗d)/2 = n−βρ(x)/(β−(d+2β)ρ(x)−dγT (x)).5 Simulation studyIn this paragraph, we 
arry out a simulation study to get a grasp of how our estimator behavesin a �nite sample situation. We 
onsider the 
ase E = R equipped with the standard Eu
lideannorm and a 
ovariate X whi
h is uniformly distributed on [0, 1] ⊂ E. Moreover, we let
γY : [0, 1] → R and γC : [0, 1] → R be the positive fun
tions de�ned by

∀x ∈ [0, 1], γY (x) =
2

3
+

1

6
sin(2πx) and γC(x) = 5 +

1

3
sin(2πx).We 
onsider three di�erent models for the distribution of (Y,C) given X = x:

• the �rst model is
∀t > 0, F Y (t|x) =

(
1 + t−ρ/γY (x)

)1/ρ and FC(t|x) =
(
1 + t−ρ/γC(x)

)1/ρwhere the parameter ρ is 
hosen to be independent of x, in the set {−1.5,−1,−0.5}. Inparti
ular, Y and C given X = x are Burr type XII distributed. In this 
ase, F Y (·|x)and FC(·|x) both belong to the Fré
het MDA for every x ∈ [0, 1] with related 
onditionalextreme-value indi
es γY (x) and γC(x). Finally, the 
onditional per
entage p of 
ensoringin the right tail is su
h that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1];
• the se
ond model is

∀t ∈ [0, g(x)], F Y (t|x) =
Γ(2/γY (x))

Γ2(1/γY (x))

∫ 1

t/g(x)
v1/γY (x)−1(1− v)1/γY (x)−1dvand FC(t|x) =

Γ(2/γC(x))

Γ2(1/γC (x))

∫ 1

t/g(x)
v1/γC (x)−1(1− v)1/γC (x)−1dvwhere Γ : (0,∞) → R is Euler's Gamma fun
tion, de�ned by

∀z > 0, Γ(z) =

∫ ∞

0
e−ttz−1dt17



and the 
onditional right endpoint fun
tion g is de�ned by
∀x ∈ [0, 1], g(x) = 1− c+ 8cx(1− x)with the 
onstant c > 0 lying in the set {0.1, 0.2, 0.3}. Here, given X = x, Y/g(x)is a Beta(1/γY (x), 1/γY (x)) random variable and C/g(x) is a Beta(1/γC (x), 1/γC (x))random variable. Espe
ially, Y and C given X = x belong to the Weibull MDA, with
ommon 
onditional right endpoint g(x), respe
tive 
onditional extreme-value indi
es

−γY (x) and −γC(x), and the 
onditional per
entage p of 
ensoring in the right tailbeing on
e again su
h that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1];
• the third model is

∀t > 0, F Y (t|x) = FC(t|x) =
2

1 + exp(q(x)t)where q is the fun
tion de�ned by
∀x ∈ [0, 1], q(x) = 1 +

1

2
sin(2πx).In this model, q(x)Y and q(x)C given X = x have a 
ommon logisti
 distribution, whi
his an example of distribution belonging to the Gumbel MDA. Note that in this 
ase, thefun
tion p is 
onstant equal to 1/2.Our goal in this study is to estimate the 
onditional extreme-value index γY on a grid of points

{x1, . . . , xM} of [0, 1]. To this aim, two parameters have to be 
hosen: the bandwidth h andthe number of log-spa
ings kx. We adapt a sele
tion pro
edure that was introdu
ed in [11℄:1) For every bandwidth h in a grid {h1, . . . , hP } of possible values of h, we make a pre-liminary 
hoi
e of kx. Let γ̂i,j(k) = γ̂Y,n(xi, k, hj) and ⌊·⌋ denote the �oor fun
tion: forea
h i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and k ∈ {qi,j +1, . . . , Nn(xi, hj)− qi,j}, where qi,j =
⌊Nn(xi, hj)/10⌋ ∨ 1, we introdu
e the set Ei,j,k = {γ̂i,j(ℓ), ℓ ∈ {k − qi,j, . . . , k + qi,j}}.We 
ompute the standard deviation Σi,j(k) of the set Ei,j,k for every possible value of kand we re
ord the number Ki,j for whi
h this standard deviation rea
hes its �rst lo
al18



minimum whi
h is less than its average value. Namely, Ki,j = qi,j+1 if Σi,j is in
reasing,
Ki,j = Nn(xi, hj)− qi,j if Σi,j is de
reasing and

Ki,j = min

{
k su
h that Σi,j(k) ≤ Σi,j(k − 1) ∧ Σi,j(k + 1)and Σi,j(k) ≤

1

Nn(xi, hj)− 2qi,j

Nn(xi,hj)−qi,j∑

l=qi,j+1

Σi,j(l)

}otherwise, where we extend Σi,j by setting Σi,j(qi,j) = Σi,j(qi,j+1) and Σi,j(Nn(xi, hj)−
qi,j + 1) = Σi,j(Nn(xi, hj) − qi,j). We then sele
t the value ki,j su
h that γ̂i,j(ki,j) isthe median of the set Ei,j,Ki,j

. The main idea of the �rst part of this pro
edure isthat, for a given point xi and a given bandwidth hj , the number of order statisti
s is
hosen in the �rst reasonable region of stability of the Hill plot related to the fun
tion
k 7→ γ̂Y,n(xi, k, hj).2) We now sele
t the bandwidth h: let q′ be a positive integer su
h that 2q′+1 < P . For ea
h
i ∈ {1, . . . ,M} and j ∈ {q′+1, . . . , P − q′}, let Fi,j = {γ̂i,ℓ(ki,ℓ), ℓ ∈ {j − q′, . . . , j + q′}}and 
ompute the standard deviation σi(j) of Fi,j . Our obje
tive fun
tion is then theaverage of these quantities over the grid {x1, . . . , xM}:

σ(j) =
1

M

M∑

i=1

σi(j).We next re
ord the integer j∗ su
h that σ(j∗) is the �rst lo
al minimum of the appli
ation
j 7→ σ(j) whi
h is less than the average value of σ. In other words, j∗ = q′ + 1 if σ isin
reasing, j∗ = P − q′ if σ is de
reasing and

j∗ = min

{
j su
h that σ(j) ≤ σ(j − 1) ∧ σ(j + 1) and σ(j) ≤ 1

P − 2q′

P−q′∑

l=q′+1

σ(l)

}otherwise, where we extend σ by setting σ(q′) = σ(q′+1) and σ(P − q′+1) = σ(P − q′).The sele
ted bandwidth is then independent of x and is given by h∗ = hj∗ . In doingso, we require that h∗ is not too large, to ensure that the 
omputation of our estimatoris 
arried out only using 
ovariates whi
h are 
lose to x, and the estimation 
arried outfor bandwidths in a neigborhood of h∗ is reasonably stable. The sele
ted number oflog-spa
ings is thus given, for x = xi, by k∗xi
= ki,j∗ .19



This estimation pro
edure is 
arried out on N = 100 independent samples of size n = 1000.The 
onditional extreme-value index is estimated on a grid of M = 50 evenly spa
ed pointsin [0, 1]. Regarding the sele
tion pro
edure, we test P = 25 evenly spa
ed values of h rangingfrom 0.05 to 0.25 and we set q′ = 1.We give in Table 1 the empiri
al mean squared errors (MSEs) of our estimator, averaged overthe M points of the grid, along with the minimal and maximal MSEs obtained. One 
ansee that in the Fré
het MDA, the MSE of our estimator in
reases as |ρ| approa
hes 0: thisis not surprising sin
e ρ is the 
onditional se
ond-order parameter of Y and C given X = x(see [1℄, p.93) whi
h is known to play a major role in the performan
e of the estimators ofthe extreme-value index. Some illustrations are given in Figures 1�3, where the estimations
orresponding to the median of the MSE are represented in ea
h 
ase for our estimator.6 Real data exampleIn this se
tion, we introdu
e a medi
al data set, provided by Dr P. J. Solomon and the Aus-tralian National Centre in HIV Epidemiology and Clini
al Resear
h; see Venables and Rip-ley [17℄ and the data set aids2, part of the pa
kage MASS in R. In the 
ontext of extreme valueanalysis, this data set was 
onsidered by [8℄. The data set 
ontains information 
olle
ted aftera follow-up study on 2843 patients diagnosed with AIDS before July 1st, 1991. Espe
ially, forea
h patient, the data set gives his/her age at the time of diagnosis and, if the patient diedbefore the end of the study, his/her date of death. There are only 89 female patients in thisstudy, so we 
hose to retain the 2754 male patients of the data set. Our variable of interestis the survival time Y of a patient, whi
h is randomly right-
ensored, as is usually the 
asein su
h follow-up studies. The 
ovariate we 
onsider is the age of a patient at the time ofdiagnosis. A s
atterplot of the data is given in Figure 4.Our �rst goal is to provide an estimate of the 
onditional extreme-value index of Y using ourestimator. A look at the s
atterplot shows that data for patients aged either less than 20 ormore than 65 when diagnosed with AIDS is very s
ar
e, so we fo
us on patients aged between20



xmin = 20 and xmax = 65. We use the sele
tion pro
edure detailed in Se
tion 5: the bandwidth
h is 
hosen among h1 ≤ · · · ≤ h25 where the hi are evenly spa
ed and

h1 = 0.05(xmax − xmin) and h25 = 0.25(xmax − xmin).This leads us to 
hoose h∗ = 3.75. The estimate of the 
onditional extreme-value index γY on25 evenly spa
ed points in [xmin, xmax] is represented on Figure 5.This estimate is only a �rst step in the assessment of the tail heaviness of the 
onditionaldistribution of Y given X = x, however. A further step is to estimate 
onditional extremequantiles of this distribution, where we de�ne the 
onditional quantile fun
tion qY (·|x) as thegeneralized inverse of F Y (·|x):
qY (ε|x) = inf{t ∈ R |F Y (t|x) ≤ ε}.To this end, we propose an adaptation of the extreme quantile estimator of [8℄, whi
h is itself anadaptation of the 
lassi
al extreme quantile estimator, see for instan
e Theorem 4.3.1 in [14℄,p.134. We let F̂ Y,n(·, h|x) be the straightforward 
onditional adaptation of the Kaplan-Meierestimator for the 
sf of Y given X = x (see Beran [3℄). Besides, given Nn(x, h) = l, we set for

kx ∈ {1, . . . , l − 1}

ân(x, kx, h) = Tl−kx,l
γ̂T,n,+(x, kx, h)(1 − γ̂T,n,−(x, kx, h))

p̂n(x, kx, h)and 0 otherwise. An estimator of the 
onditional extreme quantile qY (ε|x), where ε is a smallpositive number, is then
q̂Y,n(ε, x, kx, h) = Tl−kx,l + ân(x, kx, h)Dγ̂T,n(x,kx,h)

(
F̂ Y,n(Tl−kx,l, h|x)/ε

)if kx ∈ {1, . . . , l−1} and 0 otherwise, where the fun
tion D was introdu
ed in (1). In our 
ase,we set h = h∗; for x ∈ [xmin, xmax], the number of log-spa
ings kx is 
hosen by applying the�rst step of the sele
tion pro
edure introdu
ed in Se
tion 5.We give some results on Figure 6, where we represent estimates x 7→ q̂Y,n(ε, x, k
∗
x, h

∗) of theextreme quantile 
urve for an ex
eedan
e level ε ∈ {0.01, 0.005, 0.002, 0.001}. One 
an see onthis �gure that these estimates are fairly stable for patients aged between 20 and 53 years and21



de
rease sharply afterwards. This may be interpreted as a 
onsequen
e of immunosenes
en
e,namely the deterioration of the immune system as age in
reases. This phenomenon is of 
ourseespe
ially 
riti
al in the 
ase of AIDS, sin
e HIV targets 
ells of the immune system. Besides,one 
an see that the estimate of the extreme quantile 
urve for ε = 0.001 yields, in the range
[20, 53], survival times around 13 years and as high as 16 years. This is in line with Figure1(b) of [8℄, whi
h does not 
onsider any 
ovariate information and gives a value of this extremesurvival time between 15 and 17 years, while using a di�erent estimator of the extreme valueindex.7 ProofsBefore giving a proof of Theorem 1, we need some preliminary results. Lemma 1, whi
h isessentially 
ontained in [8℄, gives a useful representation of p(x).Lemma 1. Let Y , C be two independent positive random variables having respe
tive 
sfs F Y ,
FC , respe
tive pdfs fY , fC and 
ommon right endpoint U(∞) = UY (∞) = UC(∞). De�ne for
t > 0

p(t) =
d

dt
P(Y ≤ C, Y ∧ C ≤ t)

/
d

dt
P(Y ∧ C ≤ t)whenever the denominator is nonzero, and p := γC/(γY + γC) otherwise. Then one has

p(t) =
FC(t)fY (t)

FC(t)fY (t) + F Y (t)fC(t)whenever the denominator is nonzero. In parti
ular, p(t) ≤ 1 for every t > 0. If moreover Yand C belong respe
tively to D(GγY ) and D(GγC ) and either
• γY > 0 and γC > 0;
• γY < 0, γC < 0 and 0 < U(∞) < ∞,then p(t) → p as t → U(∞).Lemma 2 is a partial generalization of Lemma 1 to the random 
ovariate 
ase.22



Lemma 2. Assume that the fun
tions (x, t) 7→ fY (t|x) and (x, t) 7→ fC(t|x) are 
ontinuouson E × (0,∞). Then given X ∈ B(x, h), T has pdf
fT,h(t|x) := E(FC(t|X)fY (t|X) + F Y (t|X)fC(t|X) |X ∈ B(x, h))and we have

∀t > 0, ph(t|x) =
E(FC(t|X)fY (t|X) |X ∈ B(x, h))

E(FC(t|X)fY (t|X) |X ∈ B(x, h)) + E(F Y (t|X)fC(t|X) |X ∈ B(x, h))whenever the denominator is nonzero. In parti
ular, ph(t|x) ≤ 1 for every t > 0.Proof of Lemma 2. Remark that
FT,h(t|x) = P(Y ≤ C, Y ≤ t |X ∈ B(x, h)) + P(C ≤ Y,C ≤ t |X ∈ B(x, h)).The independen
e of Y and C given X and Tonelli's theorem yield
P(Y ≤ C, Y ≤ t |X ∈ B(x, h)) = E

(∫ t

0
FC(z|X)fY (z|X)dz |X ∈ B(x, h)

)

=

∫ t

0
E
(
FC(z|X)fY (z|X) |X ∈ B(x, h)

)
dz (17)and P(C ≤ Y,C ≤ t |X ∈ B(x, h)) = E

(∫ t

0
F Y (z|X)fC(z|X)dz |X ∈ B(x, h)

)

=

∫ t

0
E
(
F Y (z|X)fC (z|X) |X ∈ B(x, h)

)
dz.The regularity hypotheses on fY and fC make it 
lear that both of the above integrands are
ontinuous as fun
tions of z, so that FT,h(·|x) has a 
ontinuous derivative whi
h is

d

dt
FT,h(t|x) = E(FC(t|X)fY (t|X) + F Y (t|X)fC(t|X) |X ∈ B(x, h)) = fT,h(t|x). (18)This is the �rst desired result. Moreover,

P(δ = 1, T ≤ t |X ∈ B(x, h)) = P(Y ≤ C, Y ≤ t |X ∈ B(x, h)).From (17), we get
d

dt
P(δ = 1, T ≤ t |X ∈ B(x, h)) = E

(
FC(t|X)fY (t|X) |X ∈ B(x, h)

)
. (19)Colle
ting (18) and (19) 
on
ludes the proof. 23



We then state a 
ouple of useful te
hni
al results. The �rst one gives the 
onditional distribu-tion of the random pairs (Ti,∆i).Lemma 3. Given Nn(x, h) = l ≥ 1, the random pairs (Ti,∆i), 1 ≤ i ≤ l, are independentand identi
ally distributed random variables whose 
ommon distribution is that of (T, δ) given
X ∈ B(x, h).Proof of Lemma 3. The proof of this result is similar to that of Lemma 2 in [16℄: if
(t1, . . . , tl) ∈ R

l and (d1, . . . , dl) ∈ {0, 1}l, then sin
e the random ve
tors (Xi, Ti, δi) have thesame distribution, it holds that
P

(
l⋂

i=1

{Ti ≤ ti,∆i = di}, Nn(x, h) = l

)
=

(
n

l

)
P

(
l⋂

i=1

{Ti ≤ ti, δi = di,Xi ∈ B(x, h)}
)

×
n∏

i=l+1

P (Xi /∈ B(x, h)) .The independen
e of the random pairs (Xi, Ti, δi), i = 1, . . . , n entails that the above proba-bility is
l∏

i=1

P(T ≤ ti, δ = di |X ∈ B(x, h)) ×
[(

n

l

) l∏

i=1

P (Xi ∈ B(x, h)) ×
n∏

i=l+1

P (Xi /∈ B(x, h))

]
.Sin
e Nn(x, h) is a binomial random variable with parameters n and P(X ∈ B(x, h)), the resultfollows.The next lemma, whose proof 
an be found in [16℄, is a pivotal te
hni
al tool for the proofs ofTheorems 1 and 2.Lemma 4. Let (Sn) be a sequen
e of random variables. Assume that there exist a triangulararray of events (Aij)0≤j≤i and a sequen
e of non-empty sets (In) 
ontained in {1, . . . , n} su
hthat

• for every n the Anl, 0 ≤ l ≤ n, have positive probability, are pairwise disjoint and
n∑

l=0

P(Anl) = 1;

• it holds that ∑
l∈In

P(Anl) → 1 as n → ∞.24



If one has for every ε > 0

sup
l∈In

P(|Sn| > ε|Anl) → 0 as n → ∞,then Sn
P−→ 0 as n → ∞.Finally, remark that sin
e Nn(x, h) is a binomial random variable with parameters n and

P(X ∈ B(x, h)), it is a 
onsequen
e of Chebyshev's inequality that for all η ∈ (0, 1),
√

n1−η
x

∣∣∣∣
Nn(x, h)

nx
− 1

∣∣∣∣
P−→ 0 as n → ∞.As a 
onsequen
e, if Ix = N ∩

[(
1− n

−1/4
x

)
nx,
(
1 + n

−1/4
x

)
nx

] then
∑

l∈Ix

P(Nn(x, h) = l) → 1 as n → ∞.The �nal lemma, 
ontained in [16℄, makes it possible to understand a bit more about theasymptoti
 behavior of 
ertain random variables whi
h appear in our proofs.Lemma 5. Let Wi, i ≥ 1 be independent standard Pareto random variables, i.e. having 
df
w 7→ 1− 1/w on (1,∞). Assume that nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞. Then forevery ε > 0 it holds that

sup
l∈Ix

P

(∣∣∣∣
kx
l
Wl−kx,l − 1

∣∣∣∣ > ε

)
→ 0 as n → ∞.We may now prove Theorem 1.Proof of Theorem 1. Write

γ̂Y,n(x, kx, h)− γY (x) =
1

p̂n(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x))−

γT (x)

p(x)
(p̂n(x, kx, h)− p(x))

]
.Following [8℄, we note that if V is a standard uniform random variable whi
h is independentof (X,Y,C), then:

P(V ≤ ph(T |x), T ≤ t0 |X ∈ B(x, h)) =

∫ t0

0
ph(t|x)fT,h(t|x)dt

= P(δ = 1, T ≤ t0 |X ∈ B(x, h))25



so that given X ∈ B(x, h), the random pairs (T, I{V≤ph(T |x)}) and (T, δ) have the samedistribution. Consequently, if Vi, i ≥ 1 is an independent sequen
e of standard uniformrandom variables whi
h are independent of the (Xi, Yi, Ci), then given Nn(x, h) = l, it isa 
onsequen
e of Lemma 3 that the distribution of (γ̂T,n(x, kx, h), p̂n(x, kx, h)) is that of
(γ̂T,n(x, kx, h), p̃n(x, kx, h)), with

p̃n(x, kx, h) :=
1

kx

kx∑

i=1

I{V[l−i+1:l]≤ph(Tl−i+1,l|x)}if kx ∈ {1, . . . , l − 1} and 0 otherwise, where V[1:l], . . . , V[l:l] are the order statisti
s indu
ed by
T1,l, . . . ,Tl,l. Moreover, sin
e the Vi, i ≥ 1 are standard uniform variables independent of the
(Xi, Yi, Ci), the V[i:l], 1 ≤ i ≤ l are standard uniform variables independent of the (Xi, Yi, Ci)as well. Introdu
ing, given Nn(x, h) = l, the quantity

pn(x, kx, h) :=
1

kx

kx∑

i=1

I{Vi≤ph(Tl−i+1,l|x)}if kx ∈ {1, . . . , l − 1} and 0 otherwise, we obtain
γ̂Y,n(x, kx, h)− γY (x)

d
=

1

pn(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x))−

γT (x)

p(x)
(pn(x, kx, h)− p(x))

]
.It is thus enough to show the 
onsisten
y of γ̂T,n(x, kx, h) and pn(x, kx, h). The 
onsisten
y ofthe former quantity is an immediate 
onsequen
e of Theorem 1 in [16℄. To prove the 
onsisten
yof pn(x, kx, h), note that

pn(x, kx, h)− p(x) =

[
Bkx

kx
− p(x)

]
− Sn,1 + Sn,2where

Bkx =

kx∑

i=1

I{Vi≤p(x)}, (20)
Sn,1 =

[
kx∑

i=1

I{Vi≤p(x)}

]
I{Nn(x,h)≤kx} (21)and Sn,2 =

n∑

l=kx+1

[
1

kx

kx∑

i=1

I{Vi≤ph(Tl−i+1,l|x)} − I{Vi≤p(x)}

]
I{Nn(x,h)=l}. (22)26



As a 
onsequen
e, Bkx is a binomial random variable with parameters kx and p(x) whi
h isindependent of γ̂T,n(x, kx, h) and T
heby
hev's inequality entails
pn(x, kx, h)− p(x) = −Sn,1 + Sn,2 + oP(1) as n → ∞.Further, for every ε > 0,

P(|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞so that Sn,1
P−→ 0 as n → ∞. Besides, if Wi, i ≥ 1 are independent standard Pareto randomvariables, then the distribution of the random ve
tor (T1, . . . ,Tl) given Nn(x, h) = l ≥ 1 is thedistribution of the random ve
tor (UT,h(W1|x), . . . , UT,h(Wl|x)), see Lemma 3. Let n be solarge that kx < inf Ix. The equality

∀a, b ∈ [0, 1], E
∣∣I{V≤a} − I{V ≤b}

∣∣ = |a− b|valid for every standard uniform random variable V , entails for every l ∈ Ix

E(|Sn,2| |Nn(x, h) = l) ≤ 1

kx

kx∑

i=1

E|ph(Tl−i+1,l|x)− p(x)|

=
1

kx

kx∑

i=1

E|ph(UT,h(Wl−i+1,l|x)|x) − p(x)|.Clearly, for every κ > 0, if n is so large that
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
≤ κ

2we have by Lemma 2 that
E(|Sn,2| |Nn(x, h) = l) ≤ κ

2
+ 2 sup

l∈Ix

P
(
{Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η

x }
)
. (23)Lemma 5 entails

sup
l∈Ix

P(Wl−kx+1,l < nx/(1 + η)kx) = sup
l∈Ix

P

(
kx
nx

Wl−kx+1,l − 1 < − η

1 + η

)
→ 0 as n → ∞,and sin
e W is standard Pareto distributed, we get

sup
l∈Ix

P
(
Wl,l > n1+η

x

)
= sup

l∈Ix

[
1−

(
1− n−1−η

x

)l] ≤ 1−
(
1− n−1−η

x

)3nx/2 → 0 as n → ∞.27



In other words
sup
l∈Ix

P({Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η
x }) ≤ κ

4
(24)for n large enough, so that 
olle
ting (23) and (24), we �nd that E(|Sn,2| |Nn(x, h) = l) → 0uniformly in l ∈ Ix as n → ∞. A

ording to Markov's inequality, we have for every ε > 0

sup
l∈Ix

P(|Sn,2| > ε |Nn(x, h) = l) ≤ sup
l∈Ix

E(|Sn,2| |Nn(x, h) = l)

ε
→ 0 as n → ∞.Lemma 4 then entails Sn,2

P−→ 0 as n → ∞ and the proof is 
omplete.We pro
eed by proving the pointwise asymptoti
 normality of the estimator.Proof of Theorem 2. Re
all from the proof of Theorem 1 the equality
γ̂Y,n(x, kx, h)− γY (x)

d
=

1

pn(x, kx, h)

[
(γ̂T,n(x, kx, h)− γT (x))−

γT (x)

p(x)
(pn(x, kx, h)− p(x))

]
.The asymptoti
 normality of γ̂T,n(x, kx, h),

√
kx [γ̂T,n(x, kx, h)− γT (x)]

d−→ N (0, V (γT (x))) (25)is 
ontained in Theorem 2 of [16℄. We now re
all the representation
pn(x, kx, h)− p(x) =

[
Bkx

kx
− p(x)

]
− Sn,1 + Sn,2with Bkx , Sn,1 and Sn,2 as in (20), (21) and (22). Note that, from (21), one has for every ε > 0

P(
√

kx|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞so that √kx|Sn,1| P−→ 0 as n → ∞. Let n be so large that kx < inf Ix. Let further Wi, i ≥ 1be independent standard Pareto random variables whi
h are independent of the Vi and notethat, from Lemma 3 and (22), one has given Nn(x, h) = l ∈ Ix:
Sn,2

d
=

1

kx

kx∑

i=1

I{Vi≤ph(UT,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)} =: S′
n.

28



Further,
√

kx|S′
n| ≤ 2

√
kxI{Wl−kx+1,l<nx/(1+η)kx}∪{Wl,l>n1+η

x }

+
√

kx

[
1

kx

kx∑

i=1

∣∣∣I{Vi≤ph(UT,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)}

∣∣∣
]

× I{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η
x }.Sin
e the expe
tation of the se
ond term on the right-hand side of this inequality is

1√
kx

kx∑

i=1

E

[
|ph(UT,h(Wl−i+1,l|x)|x)− p(x)|I{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η

x }

]we may, for every κ > 0, use Lemma 2 to bound it from above by
√

kxω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
≤ κ

2for n su�
iently large. From (24) and Markov's inequality, we get for every ε > 0

sup
l∈Ix

P(
√
kx|Sn,2| > ε |Nn(x, h) = l) ≤ κif n is large enough. By Lemma 4, this entails √kx|Sn,2| P−→ 0 as n → ∞. Consequently

√
kx [pn(x, kx, h) − p(x)] =

√
kx

[
Bkx

kx
− p(x)

]
+ oP(1).Re
all from the proof of Theorem 1 that Bkx is a binomial random variable with parameters

kx and p(x) whi
h is independent of γ̂T,n(x, kx, h). Sin
e
√

kx

[
Bkx

kx
− p(x)

]
d−→ N (0, p(x)(1 − p(x))), (26)as n → ∞, the 
onvergen
es (25), (26) and Slutsky's lemma entails

√
kx [γ̂Y,n(x, kx, h) − γY (x)]

d−→ N
(
0,

1

p2(x)

[
V (γT (x)) +

γ2T (x)

p(x)
(1− p(x))

])as n → ∞, whi
h is the result.The last lemma is the 
onverse statement of Lemma 9 in [16℄. It is an element ne
essary toprove Proposition 1. 29



Lemma 6. Let F be a 
sf on R and U be the left-
ontinuous inverse of 1/F .1. If F is su
h that
∀y ∈ R, F (y) ∈ (0, 1) ⇒ ∀δ > 0, F (y + δ) < F (y)then U is a 
ontinuous fun
tion on (1,∞).2. If F is 
ontinuous on R then U is an in
reasing fun
tion on (1,∞).Proof of Lemma 6. To prove the �rst statement, pi
k α0 ∈ (1,∞) and assume that U is not
ontinuous at α0. In parti
ular, sin
e U is left-
ontinuous and nonde
reasing,

lim
α→α0
α>α0

U(α)− U(α0) > 0.Then ne
essarily 0 < F (U(α0)) ≤ 1/α0 < 1. Moreover, the above inequality entails, sin
e Uis nonde
reasing,
∃δ > 0, ∀α > α0, U(α) > U(α0) + δ.Using the de�nition of the fun
tion U , we obtain

∀α > α0, α0 ≤
1

F (U(α0))
≤ 1

F (U(α0) + δ)
< α.Taking the limit α ↓ α0 gives F (U(α0) + δ) = F (U(α0)), whi
h is a 
ontradi
tion.To show the se
ond statement, assume that α, β are su
h that 1 < α < β and U(α) = U(β).Then sin
e F is right-
ontinuous and nonin
reasing, we get

F (U(α)) = F (U(β)) ≤ 1

β
<

1

α
≤ lim

t→U(α)
t<U(α)

F (t).Hen
e F is not 
ontinuous at U(α), whi
h is a 
ontradi
tion.Proof of Proposition 1. We start by 
onsidering 
ase 1. For n large enough and for every
x′ ∈ B(x, h), one has

FC(t|x′)fY (t|x′)−
1

γY (x)
G(t|x′) = rY (t, x, x

′)G(t|x′)and F Y (t|x′)fC(t|x′)−
1

γC(x)
G(t|x′) = rC(t, x, x

′)G(t|x′)30



with G(t|x′) = t−1/γY (x′)−1/γC(x′)−1LFY
(t|x′)LFC

(t|x′),
rY (t, x, x

′) =
1

γY (x′)
− 1

γY (x)
− bY (t|x′)and rC(t, x, x

′) =
1

γC(x′)
− 1

γC(x)
− bC(t|x′).From Lemma 2, we obtain the equality

ph(t|x) =

1

γY (x)
+

E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

1

γY (x)
+

1

γC(x)
+

E([rY (t, x,X) + rC(t, x,X)]G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

.If we 
an prove that for η > 0 small enough
sup

t∈UT,h(Kx,η|x)
sup

x′∈B(x,h)
(|bY | ∨ |bC |)(t|x′) = O(hα log nx ∨ δn) → 0 (27)as n → ∞, with UT,h(Kx,η|x) being the image of the interval Kx,η by the fun
tion UT,h(·|x),then the fa
t that G(·|X) is nonnegative shall entail

ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)
= O

(
hα ∨ sup

t∈UT,h(Kx,η |x)
sup

x′∈B(x,h)
(|bY | ∨ |bC |)(t|x′)

)

= O(hα log nx ∨ δn)whi
h is the result. To this end, we start by noting that be
ause (see Lemma 1.2.9 in [14℄,p.22)
UT (nx/kx|x)
aT (nx/kx|x)

→ 1

γT (x)
as n → ∞,it is a 
onsequen
e of (6) and of the mean value theorem that

sup
z∈Kx,η

∣∣∣∣
UT,h(z|x)
UT (z|x)

− 1

∣∣∣∣→ 0 as n → ∞.Using the fa
t that UT (·|x) is regularly varying at in�nity with index γT (x) > 0, we get for nlarge enough
UT,h(Kx,η|x) ⊂ UT (Kx,2η|x).This proves that for n large enough

sup
t∈UT,h(Kx,η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) ≤ sup
t∈UT (Kx,2η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′).31



Letting η > 0 be so small that 
ondition (12) holds with η repla
ed by 2η and using this Hölder
ondition along with (11) we dedu
e that
sup

t∈UT,h(Kx,η |x)
sup

x′∈B(x,h)
(|bY | ∨ |bC |)(t|x′)

= O

(
hα log nx ∨ sup

t∈UT (Kx,2η |x)
|bY (t|x)| ∨ sup

t∈UT (Kx,2η |x)
|bC(t|x)|

)
.Finally, Potter bounds for the regularly varying fun
tions |bY (·|x)| and |bC(·|x)| (see Binghamet al. [4℄, p.25) entail

lim sup
n→∞

sup
t∈UT (Kx,2η |x)

|bY (t|x)|
|bY (UT (nx/kx|x)|x)|

∨ |bC(t|x)|
|bC(UT (nx/kx|x)|x)|

< ∞whi
h yields (27) and the result in this 
ase.We now turn to 
ase 2. We remark that
FC(t|x′)fY (t|x′) +

1

γY (x)
G(t|x′) = rY (t, x, x

′)G(t|x′)and F Y (t|x′)fC(t|x′) +
1

γC(x)
G(t|x′) = rC(t, x, x

′)G(t|x′)with
G(t|x′) =





LFY
((UT (∞|x′)− t)−1|x′)LFC

((UT (∞|x′)− t)−1|x′)
(UT (∞|x′)− t)1/γY (x′)+1/γC (x′)+1

if 0 < t < UT (∞|x′)

0 otherwiseand
rY (t, x, x

′) =
1

γY (x)
− 1

γY (x′)
− bY ((UT (∞|x′)− t)−1|x′),

rC(t, x, x
′) =

1

γC(x)
− 1

γC(x′)
− bC((UT (∞|x′)− t)−1|x′).A parti
ular 
onsequen
e of this is, a

ording to Lemma 2:

ph(t|x) =
− 1

γY (x)
+

E(rY (t, x,X)G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

− 1

γY (x)
− 1

γC(x)
+

E([rY (t, x,X) + rC(t, x,X)]G(t|X) |X ∈ B(x, h))

E(G(t|X) |X ∈ B(x, h))

.De�ne Ix,x′,η = [UT,h(nx/(1 + η)kx|x), UT (∞|x′)). We shall now prove that
sup

x′∈B(x,h)
sup

t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′) = O(hα log nx ∨ δn) → 0 (28)32



as n → ∞. The fa
t that G(·|X) is nonnegative shall then yield
ω

(
p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h

)

= O

(
hα ∨ sup

x′∈B(x,h)
sup

t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′)
)

= O(hα log nx ∨ δn)whi
h is what we want to prove. To this aim, remark that one has (see Lemma 1.2.9 in [14℄,p.22)
UT (nx/kx|x)
aT (nx/kx|x)

= −UT (∞|x)
γT (x)

[UT (∞|x)− UT (nx/kx|x)]−1(1 + o(1)) as n → ∞.Using (9), it is a 
onsequen
e of the mean value theorem that
sup

z∈Kx,η

∣∣∣∣
UT,h(z|x)
UT (z|x)

− 1

∣∣∣∣ = o(UT (∞|x)− UT (nx/kx|x)) = o

([
nx

kx

]γT (x)

LUT
(nx/kx|x)

)as n → ∞. Espe
ially, (7) and (8) entail that
UT (∞|x′)− UT,h(nx/(1 + η)kx|x) =

UT (∞|x)− UT (nx/kx|x)
(1 + η)γT (x)

(1 + o(1)) as n → ∞.Therefore, Ix,x′,η is indeed well-de�ned for all n large enough and x′ ∈ B(x, h). Moreover,de�ning εn(x) := UT (∞|x) − UT (nx/kx|x) whi
h 
onverges to 0 as n → ∞, this yields for nlarge enough and every x′ ∈ B(x, h)

Ix,x′,η ⊂ [(1− εn(x))UT (nx/(1 + η)kx|x), UT (∞|x′)]whi
h may be used together with (8) to show that there exists some 
onstant η′ > 0 su
h thatfor n large enough
∀x′ ∈ B(x, h), t ∈ Ix,x′,η ⇒ (UT (∞|x′)− t)−1 ∈ Jx,η′ =

[
1− η′

UT (∞|x)− UT (nx/kx|x)
,∞
)
.This proves that for n large enough

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′) ≤ sup
z∈Jx,η′

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(z|x′)|.33



Conditions (11) and (14) then entail
sup

x′∈B(x,h)
sup

t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′)− t)−1|x′)

= O

(
hα log nx ∨ sup

z∈Jx,η′
|bY (z|x)| ∨ sup

z∈Jx,η′
|bC(z|x)|

)
.We 
on
lude by using Potter bounds for the regularly varying fun
tions |bY (·|x)| and |bC(·|x)|to get

lim sup
n→∞

sup
t∈Jx,η′

|bY (t|x)|
|bY ((UT (∞|x)− UT (nx/kx|x))−1|x)| < ∞and lim sup

n→∞
sup

t∈Jx,η′

|bC(t|x)|
|bC((UT (∞|x)− UT (nx/kx|x))−1|x)| < ∞of whi
h (28) is a dire
t 
onsequen
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Situation Moment estimator γ̂YModel 1
ρ = −0.5 0.177 [0.0138, 0.550]

ρ = −1 0.0639 [0.0139, 0.170]

ρ = −1.5 0.0491 [0.00563, 0.146]Model 2
c = 0.1 0.0451 [0.00956, 0.138]

c = 0.2 0.0505 [0.0146, 0.165]

c = 0.3 0.0494 [0.0125, 0.137]Model 3 0.0840 [0.0172, 0.334]Table 1: MSEs asso
iated to the estimator γ̂Y in all 
ases. Between bra
kets: minimal andmaximal squared error re
orded.
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Figure 1: Model 1, 
ase ρ = −1: the true fun
tion γY (solid line) and its estimator γ̂Y (dashedline) 
orresponding to the median of the MSE.36
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Figure 2: Model 2, 
ase c = 0.1: the true fun
tion γY (solid line) and its estimator γ̂Y (dashedline) 
orresponding to the median of the MSE.
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Figure 3: Model 3: the true fun
tion γY (solid line) and its estimator γ̂Y (dashed line) 
orre-sponding to the median of the MSE. 37



0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

Figure 4: S
atterplot of the AIDS data: x−axis: age of the patient at the time of diagnosis,
y−axis: survival time (in years).
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Figure 5: AIDS data: estimator γ̂Y . x−axis: age of the patient at the time of diagnosis.38
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Figure 6: AIDS data: estimation of the 
onditional extreme quantile of the survival time. Fullline: level ε = 0.01, dashed line: level ε = 0.005, dashed-dotted line: ε = 0.002, dotted line:level ε = 0.001. x−axis: age of the patient at the time of diagnosis, y−axis: survival time (inyears).
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