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The leaves of the Fatou set accumulate on the

leaves of the Julia set.

Nicolas Hussenot Desenonges

August 25, 2015

Abstract

In 2001, E. Ghys, X. Gómez-Mont and J. Saludes defined in [14] the
Fatou and Julia components of transversely holomorphic foliations on
compact manifolds. It is a partition of the manifold in two saturated
sets: the Fatou set which is open and represents the non-chaotic part
of the foliation and its complementary set, the Julia set. Using the
Brownian motion transverse to the leaves, it is proved that, if the
foliation is taut and if F is a wandering component of the Fatou set,
then almost every point of the topological boundary ∂F (almost for
any harmonic measure on ∂F ) is a limit point of each leaf of F .

1 Introduction

The theory of conformal dynamical systems on the Riemann sphere CP1

consists in two main subjects of study: the dynamics of Kleinian groups
and the dynamics of iteration of a rational map on the sphere. Each of
these theories leads to a partition of CP1 in two invariant sets: domain
of discontinuity/limit set for Kleinian groups and Fatou set/Julia set for
iteration of a rational map. The famous Sullivan’s dictionary brings light
links between these two theories. The density of orbits of the Julia set (resp.
limit set) is one of the first analogies. More precisely, we have:

1. if Γ is a non elementary Kleinian group, then for all x ∈ CP1, the orbit
Γ.x accumulates on every point of the limit set (see for example [17]).
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2. if f is a rational map of degree two or more, then for any z ∈ Julia(f),
the set of iterated pre-images of f is dense in Julia(f) (see for example
[18, Theorem3]).

In [14], Etienne Ghys, Xavier Gómez-Mont and Jordi Saludes consider
a compact manifold with a transversely holomorphic foliation and develop
a theory analoguous to the above mentioned theories. More precisely, they
manage to define dynamically a partition of the manifold in two saturated
sets called Julia set and Fatou set. By analogy with the properties cited
above concerning Kleinian groups and iteration of rational maps, the follow-
ing questions arise naturally: If L is a leaf contained in a connected compo-
nent J of the Julia set, do we have L = J? Does the Julia set play the role of
an attractor for the leaves of the Fatou set? Using probabilistic tools (Brow-
nian motion), we answer positively to the second question. More precisely,
we prove that if the foliation is taut and if F is a wandering component of
the Fatou set, then every leaf of F accumulates on almost every point of the
topological boundary ∂F ⊂ Julia. The term almost in the previous sentence
is with respect to the harmonic measure on ∂F (i.e. the exit measure of F
for a Brownian motion starting at an arbitrary point in F ).

The Brownian motion has already been used in order to study the dy-
namics of the leaves of foliations: this is Lucy Garnett’s theory of harmonic
measures [12]. B. Deroin and V. Kleptsin used this theory in the particular
case of transversely holomorphic foliations [9]. They proved that the follow-
ing dichotomy holds: either there exists an invariant transverse measure or
there exists a finite number of minimal sets M1, ...,Mk equipped with prob-
ability measures ν1, ..., νk such that for every point x in the manifold and
almost every leafwise Brownian path ω starting at x, the path ω tends to
one of the Mj and is distributed with respect to νj in the sense that:

lim
t→∞

1

t
ω∗leb[0,t] = νj ,

where leb[0,t] is the Lebesgue measure on the interval [0,t].
In Garnett’s theory, the Brownian motion is tangent to the leaves of the

foliation. In this paper, we use a totally different approach of the Brownian
motion in the sense that the Brownian motion is essantially transverse to the
foliation.

Fatou and Julia components of transversely holomorphic foliations.

Let M be a compact, connected manifold of real dimension d+2 endowed
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with a transversely holomorphic foliation F . We can define a partition of the
manifold in two saturated sets: the Fatou set is defined as the set of points
x in M such that there exists a basic normal vector field (i.e. a section
of the normal bundle to the foliation constant along the leaves) which does
not vanish at x (we will come back later to the demanded regularity for
the vector field). The Fatou set is then an open set. Its complementary
set is a closed set called Julia set. Given a connected component F of the
Fatou set, it is easy to prove (integrating the basic normal vector fields),
that the group of homeomorphisms of M which preserve the foliation acts
transitively on F . Using this homogeneity property and by analogy with
Molino’s theory [19], Ghys, Gómez-Mont and Saludes proved that there are
only three exclusive cases for a connected component F of the Fatou set (cf
theorem 2.4): F is a wandering component (i.e. all the leaves of F|F are
closed in F ) or F is a dense component (all the leaves of F|F are dense in F )
or F is a semi-wandering component (the closure of the leaves of F|F form
a real codimension 1 foliation of F ). In [14], the authors give a complete
description of the Fatou set studying in details each of the three previous
cases. In particular, they prove that if F is a wandering component of the
Fatou set, then the leaf space F/F|F is a Hausdorff Riemann surface of finite
type (it is the analoguous of Ahlfors’ finiteness theorem [1]).

Let us mention that an alternative definition of the Fatou and Julia sets
of transversely holomorphic foliations has been given by T. Asuke in [2].

Statement of the theorem. Let M be a compact manifold endowed
with a transversely holomorphic foliation F . Endow M with a complete
Riemannian metric g. Then, we can define the Brownian motion on (M, g):
it is the diffusion process (Bt)t≥0 associated to the Laplace-Beltrami operator
on (M, g). It is defined on the family of probability spaces (Ωx,Px)x∈M . Let
F be a wandering connected component of the Fatou set. We define the
family of harmonic measures (νx)x∈F by:

νx(A) = Px(BT ∈ A),

where T = inf{t ∈ [0; +∞] s.t. Bt ∈ ∂F} is the hitting time of ∂F and A
is any Borel set in ∂F . The manifold M being compact, if we make another
choice for the metric or another choice for the point x, we get a new measure
on ∂F which is equivalent to the previous one. So, this makes sense to
talk about the class ν of harmonic measures on ∂F . We would like to push
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forward the Brownian motion (Bt)t∈[0;T [ in F on the leaf space F/F|F and get
a time-changed Brownian motion. For doing this, we will need the following
assumption on the manifold M .

Definition 1.1. A foliated manifold is said to be taut if there exists a metric
on M for which all the leaves are minimal submanifolds.

The main theorem of this paper is the following:

Theorem 1.2. Let M be a compact, connected manifold endowed with a
transversely holomorphic foliation F . Suppose that F is taut. Let F be a
wandering component of the Fatou set. Assume that ν(∂F ) = 1 (i.e. almost
every Brownian path starting in F hits the Julia set in finite time). Then,
each leaf of F accumulates on ν-almost every point of ∂F .

Remark. The tautness hypothesis is essantial in our proof but the theo-
rem may still be true without this hypothesis. Nevertheless, this hypothesis
is not so strong: for example a foliation without invariant transverse measure
is taut (see [22] or [6] for more details about taut foliations).

Analogy with Kleinian groups. Let Σ be a compact Riemann surface
and ρ : π1(Σ) → PSL(2,C) be a morphism from the fondamental group of Σ
to the group of biholomorphisms of the Riemann sphere CP1. Suspending the
representation ρ, one gets a compact manifold Mρ which fibers over Σ (fibers
are copies of CP1) and which is endowed with a transversely holomorphic
foliation. The dynamics of this foliation correspond to the dynamics of the
action of the monodromy group Γ := ρ(π1(Σ)) on a fiber. Basic normal
vector fields on Mρ correspond to Γ-invariant vector fields in the fiber.

From now on, assume Γ is a Kleinian group (i.e. a discret subgroup of
PSL(2,C)). Then we have the classical partition: CP1 = Ω(Γ) ∪ Λ(Γ). By
definition the domain of discontinity Ω(Γ) is the set of points z ∈ CP

1 such
that there exists an open set U containing z and satisfying the following:
γU ∩ U = ∅ for all but a finite number of γ ∈ Γ. And the limit set Λ(Γ) is
the complementary set of Ω(Γ). Assume for simplicity that Γ is torsion free
and Ω(Γ) 6= ∅. As it is explained in [14, example 8.4], the Julia set (resp.
the Fatou set) of the suspended foliation corresponds to the saturated set of
Λ(Γ) (resp. Ω(Γ)).

If Γ is non elementary (i.e. if the limit set contains strictly more than
two points), a classical property of the theory of Kleinian groups is the fol-
lowing: every point of the domain of discontinuity accumulates on every
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point of the limit set. The proof of this fact is very easy (see for example
[17]). We are going to give an idea of an alternative proof of this fact using
conformal invariance of Brownian motion because it is this idea that will
be generalized in the proof of the main theorem 1.2. Let Γ be a Kleinian
group, torsion free, non elementary and with Ω(Γ) 6= ∅. Endow CP1 with
its spherical metric. Consider a Brownian motion Bt in CP1 starting at a
point x ∈ Ω(Γ). Let T := inf{t ≥ 0 s.t. Bt ∈ Λ(Γ)}. According to a theorem
of Myrberg [20] (see also [10]), the limit set of a non elementary Kleinian
group has positive logarithmic capacity. So, almost surely T < ∞. So, the
harmonic measure νx on Λ(Γ) defined by νx(A) = Px(BT ∈ A) is a probabilty
measure with supp(νx) = Λ(Γ). The natural projection p : Ω(Γ) → Ω(Γ)/Γ
is holomorphic. So, according to the celebrated Paul Lévy’s theorem, the
processus p(Bt)t∈[0;T [ is a changed-time Brownian motion. This means that
there is a time reparametrization σ (i.e. σ is a random strictly increasing

map from [0;T [ to R+) such that the process
{
p(Bσ−1(s)), s ∈ [0, lim

t→T
σ(t)[

}

is a Brownian motion starting at p(x). An easy topological argument (which
will be generalized to our context in the proof of the main theorem) shows
that necessarely lim

t→T
σ(t) = ∞. The Ahlfors’ finitness theorem asserts that

the quotient Ω(Γ)/Γ is a Riemann surface of finite type (i.e. a compact Rie-
mann surface with a finite number of points deleted) [1]. In particular, the
Brownian motion is recurrent on Ω(Γ)/Γ. So, if we take an arbitrary point
y in Ω(Γ) and Uy an arbitrarily small open neighborhood of y, there exists
arbitrarily large times s such that p(Bσ−1(s)) belongs to p(Uy). Pushing back-
ward by p, we deduce that there exist times t arbitrarily close to T such that
Bt belongs to p−1(p(Uy)) = Γ.Uy. So we have just proved that Γ.Uy accumu-
lates on νx-almost every point of Λ(Γ). The point y and neighborhood Uy

being arbitrarily choosen, and supp(νx) being equal to the entire Λ(Γ), one
concludes (with a little work) that every point of the domain of discontinuity
accumulates on every point of the limit set.

Questions. The following questions are not answered in this paper:

1. Is the class of harmonic measures non zero? In other words, does a
Brownian motion starting at a point x ∈ Fatou visits the Julia set?
If not, our theorem does not say anything. Nevertheless, by analogy
with the result of Makarov which asserts that the limit set of a non
elementary Kleinian group is visited by Brownian motion, we conjecture

5



that in presence of sufficiently rich dynamics for the foliation, the Julia
set is visited by the Brownian motion.

2. If the harmonic measure in ∂F is non zero, what can be said about
the support of the measure? Is it the full ∂F ? What are the dynamics
inside the Julia set?

Acknowledgements This paper comes from the first part of my Phd thesis
[15]. I am very grateful to my advisor Gaël Meigniez for his precious help
during all these years.

2 Fatou and Julia components.

In this first section, we are going to define the Fatou and Julia components
of a transversely holomorphic foliation following the presentation of [14].

Let M be a compact, connected manifold of real dimension d+2 endowed
with a transversely holomorphic foliation F . Such a foliation may be defined
by an atlas (Ui, ϕi, γij). The Ui are open sets in M covering M . The maps
ϕi : Ui → C are submersions with connected fibres and the maps γij :
ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are biholomorphisms and satisfy ϕi = γij ◦ ϕj.

Look at (M,F) as a foliation of complex codimension 1. Denote TM the
tangent bundle, TF the subbundle of TM consisting of those vectors which
are tangent to the leaves and ν1,0 the quotient bundle TM/TF . One has the
following exact sequence:

0 −→ TF −→ TM −→ ν1,0 −→ 0 (1)

Let E be a vector bundle over M . We say that the germ of a section X
of E at a point x of M has modulus of continuity ǫ log ǫ if there is a positive
constant C, a coordinate chart U containing x, and a trivialization of the
bundle over U such that for x1, x2 in U , we have:

|X(x2)−X(x1)| < −C|x1 − x2| log |x1 − x2|

Denote Cǫ log ǫ(E) the sheaf of sections of the vector bundle E which have a
modulus of continuity ǫ log ǫ. The sheaves of sections of (1) of modulus of
continuity ǫ log ǫ give rise to the following exact sequence of fine sheaves:

0 −→ Cǫ log ǫ(TF) −→ Cǫ log ǫ(TM) −→ Cǫ log ǫ(ν1,0) −→ 0

6



The normal bundle ν1,0 is flat along the leaves. Indeed, it can be defined
by the cocycle: Ui ∩ Uj → C∗, p 7→ γ′

ji(ϕi(p)). These maps are constant
along the fibres of ϕi so they are constant along the leaves. Any time that
we have a bundle which is flat along the leaves, we can define the sections of
this bundle which are constant along the leaves. We call these sections basic
sections.

Likely as ν1,0, the bundle ν1,0 ⊗ ν0,1∗ is flat along the leaves. Denote
L∞
F (ν1,0 ⊗ ν0,1∗) the sheave of basic sections of this bundle which are essen-

tialy bounded. Denote also CF(ν
1,0) the sheaf of continuous basic sections

of the bundle ν1,0 satisfying: ∀σ ∈ CF (ν
1,0), ∂σ ∈ L∞

F (ν1,0 ⊗ ν0,1∗). Denote
Cǫ log ǫ
F (TM) := π−1(CF(ν

1,0)) (where π is the projection π : Cǫ log ǫ(TM) −→
Cǫ log ǫ(ν1,0)). We have the following exact sequence:

0 −→ Cǫ log ǫ(TF) −→ Cǫ log ǫ
F (TM) −→ CF (ν

1,0) −→ 0

The first sheaf is a fine one. So, H1(M, Cǫ log ǫ(TF)) = 0, which gives rise
to the following exact sequence of global sections:

0 → H0(M, Cǫ log ǫ(TF)) → H0(M, Cǫ log ǫ
F (TM)) → H0(M, CF(ν

1,0)) → 0

This implies that we can lift any basic normal vector fieldX ∈ H0(M, CF(ν
1,0))

to a vector field in M with modulus of continuity ǫ log ǫ. Such vector fields
have the property to be uniquely integrable in the sense that the equation
x′ = X(x) has a unique solution for a given initial condition, and so defines
a local flow [21].

Summarizing, we have the following:

Lemma 2.1. [14]

1. Any basic normal vector field X ∈ H0(M, CF(ν
1,0)) can be lifted to a

vector field in H0(M, Cǫ log ǫ
F (TM)).

2. Any vector field X ∈ H0(M, Cǫ log ǫ
F (TM)) gives rise to a global 1-

parameter flow φ : M × R → M preserving the foliation.

We can now define the Fatou and Julia sets of a transversely holomorphic
foliated compact manifold (M,F):

Definition 2.2. • The Julia set of (M,F) is the closed saturated set
where all the elements of H0(M, CF(ν

1,0)) vanish :

Julia(F) =
{
x ∈ M s.t. X(x) = 0 ∀X ∈ H0(M, CF (ν

1,0))
}
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• The Fatou set of (M,F) is the open and saturated set defined as the
complement of the Julia set:

Fatou(F) = M − Julia(F)

Using the existence of non trivial basic normal vector fields at every point
of the Fatou set, the authors prove the following homogeneity property:

Proposition 2.3. [14] Let Fk be a connected component of the Fatou set.
Given x1 and x2 two points in Fk, there is a F-preserving homeomorphism
of M sending x1 to x2.

Proof. First, for the tangent direction, given a point x in M , it is easy to find
F preserving homeomorphisms sending x to any point located in the same
leaf as x (we just have to integrate vector fields tangent to the leaves).

For the transversal direction, we use the fact that if x is in the Fatou
set, then there exists X ∈ H0(M, CF(ν

1,0)) with X(x) 6= 0. Let X̃ and Ỹ in
H0(M, Cǫ log ǫ

F (TM)) lifting X and iX and consider the map:

φ : C×M → M
(teiθ, x) 7→ φ(teiθ, x)

which associates to (teiθ, x) the point φ(teiθ, x) of M obtained by integrating
the vector field X̃θ := X̃ cos θ+Ỹ sin θ at time t. As X̃θ is a basic vector field,
if we fix teiθ, the map φ(., teiθ) preserves F . With this method, we get F
preserving homeomorphisms sending x to any point located in a transverse
topological disc centered in x.

A composition of maps of both types prove the assertion. �

The last proposition is the key to prove the following theorem:

Theorem 2.4. [14] Let (M,F) be a transversely holomorphic foliated com-
pact manifold. Let Fk be the restriction of F to a connected component Fk

of Fatou(F). Then, there are 3 exclusive cases:

1. Wandering component: the leaves of Fk are closed in Fk.

2. Semi-wandering component: the closure of the leaves of Fk form a real
codimension 1 foliation of Fk which has a structure of a fibre bundle
over a 1-dimensional manifold.
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3. Dense component: all the leaves of Fk are dense in Fk.

The transversely holomorphic structure of the foliation naturally endows
the leaf space with a conformal structure. In general, this space is non
Hausdorff. But, if one restricts the leaf space to a wandering component,
one can prove the following anologuous of Ahlfors’ finiteness theorem:

Theorem 2.5. [14] Let Fk be a wandering component of the Fatou set. Then,
the leaf space Σk := Fk/Fk is a finite Riemann surface (Hausdorff). In
other words, Σk is a compact Riemann surface with a finite number of points
deleted.

Examples 2.6. The most basic examples are the linear flows of the torus
T
3 = R

3/Z3: the foliation in R
3 given by parallel lines is invariant by the

action of Z3. So it defines a foliation of T3 which is transversely affine and
so transversely holomorphic. Changing the slope of the parallel lines, one gets
a foliation with one wandering component or one semi-wandering component
or one dense component. These examples are not very interesting because
the Julia set is vacuous but it illustrates the three types of Fatou components
of theorem 2.4.

Another class of examples are the suspensions of representations ρ :
π1(S) → PSL(2,C) where S is a compact Riemann surface. These examples
have already been studied in the introduction.

Many interesting examples can be found in [14, section 8]. The authors
exhibit examples of transversely holomorphic foliations whose Fatou set con-
sists of an arbitrary number of connected components and whose Julia set is
the disjoint union of codimension 1 submanifolds. They also exhibit examples
with a Julia set having non empty interior without being the whole manifold.

3 Harmonic morphisms are Brownian path

preserving.

Harmonic morphisms. We start with some basic facts about harmonic
morphisms. The reader who wants to learn more about this theory could
refer, for example, to the survey of John C.Wood [24] or to the book of
H.Urakawa [23].

Let (M, g) and (N, h) be two C∞ Riemannian manifolds whose dimensions
are respectively m and n. Denote ∆ the Laplace-Beltrami operator in M . A
C∞ map f : M → R satisfying ∆f = 0 is called a harmonic map.
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Definition 3.1. A C∞ map Φ : (M, g) → (N, h) is a harmonic morphism if
for any any open set V ⊂ N with Φ−1(V ) 6= ∅ and for any harmonic map
f : V → R, the map f ◦ Φ is a harmonic map on Φ−1(V ).

Definition 3.2. A C∞ map Φ : (M, g) → (N, h) is said to be horizontally
weakly conformal if for any point p in M such that DΦp 6= 0, the differential
DΦp sends conformally the horizontal space ker(DΦp)

⊥ on the tangent space
TΦ(p)N , in other words DΦp is onto and there exists a real λ(p) 6= 0 such
that for all X, Y ∈ ker(DΦp)

⊥:

hφ(p)(DΦp(X), DΦp(Y )) = λ(p)2gp(X, Y )

The following caracterisation of harmonic morphisms will be useful later:

Theorem 3.3. [5] Suppose that the dimension of N is n = 2. Let Φ :
(M, g) → (N, h) be a horizontally weakly conformal map. Then Φ is a
harmonic morphism if and only if the fibre of Φ over any regular point is
minimal.

Brownian motion. Consider a connected Riemannian manifold (M, g)
with bounded geometry. We denote (Bt)t≥0 the Brownian motion on M ,
i.e. the diffusion process associated to the Laplace-Beltrami operator ∆ on
(M, g). The Brownian motion is defined on the family of probability spaces
(Ωx,Px)x∈M where Ωx is the space of continuous paths ω : [0,∞[→ M such
that ω(0) = x and Px is the so-called Wiener measure on Ωx. The reader
could refer to [7] for a construction of the Brownian motion on manifolds and
basic facts on the subject.

In 1940, Paul Lévy proved that a conformal map is Brownian path pre-
serving (see [16]). The following result is a generalisation of Paul Lévy’s
theorem. It asserts that the maps between Riemannian manifolds which are
Brownian path preserving are the harmonic morphisms. This property has
been proved in the case of harmonic morphisms between Euclidean spaces in
[4]. The general case of harmonic morphisms between Riemannian manifolds
has been proved later in [8]. Before enonciate this theorem, let us give a
definition of a Brownian path preserving map.

Definition 3.4. Let (M, g) and (N, h) be two complete Riemannian man-
ifolds and let U ⊂ M be an open set. A map Φ : U −→ N is said to be
Brownian path preserving if the following are satisfied for all x ∈ U and
every Brownian motion (Bt)t≥0 starting at x:
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1. There is a mapping ω 7→ σω such that for every ω, the map σω : [0, T [→
[0;∞[ is a continuous and strictly increasing function (where T :=
inf{t ∈ [0;∞] s.t. Bt /∈ U} is the exit time of U).

2. There is a Brownian motion (B′
s)s≥0 starting at Φ(x) such that:

Φ ◦Bt = B′
σ(t).

The theorem is:

Theorem 3.5. [8, Theorem C] Let (M, g) and (N, h) be two C∞ Riemannian
manifolds and Φ : M −→ N be a C∞ map. The map Φ is a harmonic
morphism if and only if Φ is Brownian path preserving.

Remark: if Φ : (M, g) → (N, h) is a harmonic morphism, then one can
prove that Φ is horizontally weakly conformal [11]. So, by definition we have
a dilatation coefficient p ∈ M 7→ λp ∈ R. And we have an explicit formula
for the time changed scale σ of the previous theorem:

σ(t) =

∫ t

0

λ2(Bu)du.

4 Proof of theorem 1.2.

Let (M,F) be a transversely holomorphic foliation on a compact manifold.
Suppose that the foliation is taut. Let F be a wandering component of the
Fatou set and denote Σ = F/F the leaf space, which is a finite Riemann
surface by theorem 2.5.

Step 1: choose a good metric on M . Endow Σ with a complete metric
h with constant curvature +1, 0 or −1 in its conformal class. We have the
following:

Lemma 4.1. There exists a metric g on M satisfying:

1. the fibres of p : (F, g|F ) −→ (Σ, h) are minimal.

2. p : (F, g|F ) −→ (Σ, h) is horizontally conformal. In other words, for
any point x in M , the differential Dpx sends conformally the horizontal
space ker(Dpx)

⊥ on the tangent space Tp(x)N .
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Proof. Let g0 be a metric on M such that all the leaves of F are minimal.
This metric has no reasons to satisfy the second item. So, we are going to
modify the metric orthogonally to the leaves. For this, let A be an atlas with
a finite number of foliated charts φα : Uα → Vα ⊂ C and with transition
functions γαβ : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ). Let uα be a partition of unity
associated to this atlas. By definition, the complex structure on Σ = F/F is
the one induced by the transversely holomorphic structure of the foliation.
This means that Σ is defined by the family of open sets φα(Uα ∩ F ) ⊂ C

which are glued together by the transition functions γαβ. So, in restriction
to a chart φα(Uα∩F ), the metric h is conformally equivalent to the Euclidean
metric. Now, let e1 and e2 be two vector fields in Uα satisfying:

• (φα)∗(ei) =
∂
∂xi

, for i = 1, 2

• ei ∈ TF⊥, for i = 1, 2

Complete (e1, e2) with sections of TF|Uα
so that, for all x ∈ Uα, b(x) =

(e1(x), e2(x), e3(x), ..., ed+2(x)) is a basis of TxM . We have:

matb(x)g0(x) =

(
A 0
0 B

)

with A =

(
a b
b d

)
. Define the metric gα0 in Uα by:

matb(x)g
α
0 (x) =

(
C 0
0 B

)

with C =

(
1 0
0 1

)
. Then, write g =

∑
α

uαg
α
0 . The metric g satisfies all the

wanted properties: indeed we defined g so that the projection p is horizontally
conformal. A modification of the metric transversely to the fibres does not
change the fact that these fibres are minimal. �

Step 2: project the Brownian motion on the leaf space. From
now on, the Brownian motion in M (resp. Σ) is with respect to the metric
g (resp. h) defined in the previous lemma. We have just proved that the
projection p : (F, g|F ) −→ (Σ, h) is horizontally conformal and that the fibres
of p are minimal. So, according to theorem 3.3, p is a harmonic morphism.

12



Consequently, using theorem 3.5, the map p is Brownian path preserving.
So, if (Bt)t≥0 is the Brownian motion starting at a point x0 in F and stopped
at the exit time T = inf {t ≥ 0 s.t. Bt ∈ ∂F} of F , the process p(Bσ−1(s)) is
a Brownian motion in Σ starting at p(x0) and stopped at time lim

t→T
σ(t). We

are going to prove that lim
t→T

σ(t) = ∞. It will be an easy consequence of the

following:

Lemma 4.2. Let γ : [0,+∞[→ M be a continuous path such that γ(0) ∈ F
and γ hits ∂F in finite time. Denote t0 := inf{t ∈ [0,+∞[ s.t. γ(t) ∈ ∂F}.
Then p ◦ γ does not have limit when t goes to t0.

Proof. Suppose on the contrary that lim
t→t0

p ◦ γ(t) = z0 ∈ Σ. Let U be a

foliated chart defined in a neighborhood of γ(t0): the open set U is then
identified with A× B where A is an open set in Rd and B is an open set in
C such that the plaques of the foliation are the sets A × {z}. There exists
t1 < t0 such that for all t ≥ t1, we have γ(t) ∈ U . Let x0 be a point in
p−1({z0}) and let X be a basic normal vector field such that X(x0) 6= 0. Let

X̃ and Ỹ in H0(M,Cǫ log ǫ
F (TM)) lifting X and iX . and consider the map:

φ : C×M → M
(teiθ, x) 7→ φ(teiθ, x)

which associates to (teiθ, x) the point φ(teiθ, x) of M obtained by integrating
the vector field X̃θ := X̃ cos θ + Ỹ sin θ at time t. Denoting Lx0

the leaf
through x0, we have two cases:

• Lx0
∩ U 6= ∅. Then denoting Vr = φ(D(0, r) × Lx0

) and using the
previous identification of U and A× B, we have for r small enough:

Vr ∩ U =
∐

i∈I

A× Vi

where the Vi are closed topological discs pairwise disjoints. Remark
that the

∐
i∈I A × Vi does not meet the Julia set. If Wr = p(Vr),

then Wr is a neighborhood of z0. So, there exists t2 > t1 such that
for all t ∈ [t2, t0[, we have p ◦ γ(t) ∈ Wr. So, for t ∈ [t2, t0[, γ(t) ∈
p−1(Wr) ∩ U = Vr ∩ U =

∐
i∈I A× Vi. So, there is i ∈ I such that for

all t ∈ [t2, t0[, we have γ(t) ∈ A× Vi. So γ(t0) ∈ A× Vi = A× Vi ⊂ F
which contradicts the fact that γ(t0) belongs to the Julia set.
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• Lx0
∩ U = ∅. Using the same notations as in the previous case, one

gets that for r small enough, Vr ∩ U = ∅. So, for t ∈ [t2, t0[, γ(t) ∈
p−1(Wr) ∩ U = Vr ∩ U = ∅, which is absurd.

�

Corollary 4.3. Almost surely lim
t→T

σ(t) = ∞

Proof. Almost surely,
B : [0, T [ → M

t 7→ Bt

is continuous. So, according to the previous lemma, almost surely p ◦ Bt

does not have limit when t tends to T . As p is Brownian path preserving,
there is a brownian motion B′

s in Σ such that for all t ∈ [0, T [, we have:
p ◦Bt = B′

σ(t). So, almost surely, B′
σ(t) does not have limit when t goes to T .

So, lim
t→T

σ(t) = ∞ �

Step 3: Conclude. Denote νx0
the harmonic measure: νx0

(A) = Px0
(BT ∈

A) for any Borel set A in ∂F . Recall that we assumed that νx0
(∂F ) = 1. We

have to prove that for νx0
-almost every y ∈ ∂F , for all x ∈ F , y ∈ Lx.

As Σ is a Riemann surface of finite type, B′
s := (p(Bσ−1(s)))0≤s≤σ(T )=+∞

is recurrent in Σ [13]. Take x ∈ F , a neighborhood Ux of x, a point y ∈
supp(νx0

) and a neighborhood Vy of y in M . We are going to prove that
sat(Ux) ∩ Vy 6= ∅. As y belongs to the support of νx0

, we have νx0
(Vy) 6= 0.

Denote A = {ω ∈ Ωx0
s.t. BT (ω)(ω) ∈ Vy}, we have Px0

(A) = νx0
(Vy) > 0.

And so, for all ω ∈ A, Bt(ω) ∈ Vy for t close enough to T (ω). As B′
s is

recurrent in Σ, for almost every ω ∈ Ωx0
, there is a sequence sn tending to

infinity such that B′
sn
(ω) ∈ p(Ux). So, for almost every ω ∈ Ωx0

, there is a
sequence tn converging to T (ω) such that Btn(ω) ∈ p−1(p(Ux)) = sat(Ux).
So, for almost every ω ∈ A (i.e. in a set with strictly positive probability),
there is a sequence tn converging to T (ω) such that Btn(ω) ∈ sat(Ux) ∩ Vy.
So, sat(Ux) ∩ Vy 6= ∅.

Why does this imply that y ∈ Lx? We have just proven that for any
neighborhood Ux of x and any neighborhood Vy of y, we have: sat(Ux)∩Vy 6=
∅. So, there is a sequence xn with xn → x and a sequence yn ∈ Lxn

with yn →
y. Let Xn be a sequence of basic normal vector fields in H0(M,CF(ν

1,0))
with Xn(xn) 6= 0 and X̃n in H0(M,Cǫ log ǫ

F (TM)) lifting Xn and satisfying
Φn(1, xn) = x where Φn : R × M −→ M is the flow associated to the

14



vector field X̃n. As yn → y ∈ Julia, X̃n(yn) → 0. So Φn(1, yn) → y. As
Φn(1, .) : M −→ M preserves the foliation, we have that Φn(1, yn) ∈ Lx. So,
we have proved that y ∈ Lx.
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