
HAL Id: hal-00881779
https://hal.science/hal-00881779

Submitted on 28 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ILClass: Error-Driven Antecedent Learning For
Evolving Takagi-Sugeno Classification Systems

Abdullah Almaksour, Eric Anquetil

To cite this version:
Abdullah Almaksour, Eric Anquetil. ILClass: Error-Driven Antecedent Learning For Evolving Takagi-
Sugeno Classification Systems. Applied Soft Computing, 2013, pp.1-16. �10.1016/j.asoc.2013.10.007�.
�hal-00881779�

https://hal.science/hal-00881779
https://hal.archives-ouvertes.fr

ILClass: Error-Driven Antecedent Learning For Evolving Takagi-Sugeno
Classification Systems

Abdullah Almaksour Eric Anquetil

IRISA - Intuidoc Team
INSA de Rennes - France

{abdullah.almaksour, eric.anquetil}@irisa.fr

Abstract

The purpose of this research work is to go beyond the traditional classification systems in which the set of recognizable
categories is predefined at the conception phase and keeps unchanged during its operation. Motivated by the increasing
needs of flexible classifiers that can be continuously adapted to cope with dynamic environments, we propose a new
evolving classification system and an incremental learningalgorithm calledILClass. The classifier is learned in
incremental and lifelong manner and able to learn new classes from few samples. Our approach is based on first-order
Takagi-Sugeno (TS) system. The main contribution of this paper consists in proposing a global incremental learning
paradigm in which antecedent and consequent are learned in synergy, contrary to the existing approaches where they
are learned separately. Output feedback is used in controlled manner to bias antecedent adaptation toward difficult
data samples in order to improve system accuracy. Our systemis evaluated using different well-known benchmarks,
with a special focus on its capacity of learning new classes.

Keywords:
Evolving fuzzy classifiers, Online learning, Takagi-Sugeno, Classification

1. Introduction

Classification techniques represent a very active topic
in machine learning. They appear frequently in many
application areas, and become a basic tool for almost
any pattern recognition task. Several structural and sta-
tistical approaches have been proposed to build clas-
sification systems from data. Traditionally, a classifi-
cation system is trained using a learning dataset under
the supervision of an expert that controls and optimizes
the learning process. The system performance is funda-
mentally related to the learning algorithm and the used
learning dataset. The learning dataset contains labelled
samples from the different classes that must be recog-
nized by the system. In almost all learning algorithms,
the learning dataset is visited several times in order to
improve the classification performance which is usually
measured using a separated test dataset. The expert can
modify the settings of the learning algorithm and restart
the learning process until obtaining an acceptable per-
formance. Then, the classification system is delivered
to the final user to be used in real applicative contexts.
The role of the classifier is to suggest a label for each un-

labelled sample provided by the application. Typically,
no learning algorithms are available at the user side.

The main weakness in the above-mentioned concep-
tion paradigm is that the knowledge base is constrained
by the learning dataset available at expert side and can-
not be extended by the data provided at user side. These
drawbacks increase the need for new type of classifica-
tion systems that can learn, adapt and evolve in lifelong
continuous manner. As one can see from Figure 1, an
incremental learning algorithm is used to learn from the
data samples provided by the user after sending a valida-
tion or a correction signal in order to confirm or change
the label suggested by the classifier. Contrary to the tra-
ditional paradigm, there is no separation between the
learning phase and the operation phase in evolving clas-
sification systems. One of the key features in evolving
classifiers is that incoming samples may bring in new
unseen classes that are learned by the classifier without
destroying its knowledge base or forgetting the existing
classes.

We have proposed in a previous work [1] an evolving
Takagi-Sugeno (TS) classification system with an im-

Preprint submitted to Applied Soft Computing July 24, 2013

Figure 1: Simultaneous operation and learning (incremental)pro-
cesses in evolving classifiers

proved antecedent structure. It consists of a set of local
linear regression models defined in different sub-spaces
localized by the antecedent part of the rules. The rule-
based structure of this system allows more flexibility in
tuning its knowledge base, which makes it suitable for
incremental learning. Recursive antecedent adaptation
is coupled with a density-based incremental clustering
to build the antecedent structure in the system. Con-
sequent linear coefficients are estimated using recursive
least squares method. The proposed learning algorithm
has no problem-dependent parameters. In order to op-
timize the system performance for classification prob-
lems, a new method of antecedent learning in which out-
put feedback is employed to supervise the re-estimation
of prototype centers and covariance matrices. The goal
is to focus on learning critical points and to improve the
overall performance.

In this paper, we first reformulate and present in
details the output-based antecedent learning method
(calledILClass-feed). Performance analysis ofILClass-
feedis then discussed and compared to the classic statis-
tical antecedent learning (calledILClass-stat). Contrary
to ILClass-statthat behaves very well in the short term,
ILClass-feedhas relative poor performance in the short
term, yet offering much better performance on the long
term. Therefore, our effort in this paper is focused on
proposing a new solution that combines the advantages
of bothILClass-feedandILClass-stat. The main criteria
is to obtain the best possible performance for the short-
and the long-term of learning. One can take for exam-
ple the case of an evolving handwritten gesture classifier
in which user defines his set of gestures providing few
samples for each (short-term learning). It is very impor-
tant in this example context to have a classifier with fast
learning capacity. If user accepts the early system per-

formance, he would continue to use it providing more
and more data samples (long-term learning).

Besides the focus on both early and late stages, a
special emphasis is placed in this paper on the case of
adding new classes to an existing classification system.
The performance of our methods is studied in this con-
text. It is important to mention that, to the best of our
knowledge, it is the first work that evokes the problem of
late learning of new classes by an evolving classifier. It
can be also mentioned that very few works on evolving
TS systems handle multiclass classification problems.
Most of existing systems focus on prediction and regres-
sion problems.

Before presenting our new evolving TS classifica-
tion approach, we explain in Section 2 the global struc-
ture of TS systems and the different elements of most
used incremental learning algorithms. We cite in the
same section some known evolving TS systems. Our
new system, calledILClass-hybrid is detailed in Sec-
tion 3. Experimental validation of the proposed system
using well-known benchmark datasets is then presented
in Section 4. Both synchronized and unsynchronized
class learning is considered in our experiments.

2. Evolving Takagi-Sugeno (TS) systems: Overview

A Takagi-Sugeno system is defined by a set of fuzzy
rules in which the antecedent part represents a fuzzy
partitioning or clustering of the input space, and the out-
put is calculated using a regression polynomial model
over the input vector weighted by the antecedent acti-
vation degree. Existing TS systems vary by their struc-
ture (antecedent and consequent) or by the learning al-
gorithms. A comparative table between several known
TS systems is presented at the end of this section. In or-
der to facilitate understanding of this table, the different
structural and algorithmic elements used in TS systems
are explained below.

2.1. TS architecture

As aforementioned, the structure of a TS system is
divided into two parts: antecedent and consequent. We
explain below the possible variants used in these two
parts as well as the inference forward process in TS sys-
tems.

2.1.1. Antecedent structure
Different types of membership functions can be used

in TS models. The conjunction of the membership func-
tions that are defined on the axes (features) of the input

2

space results in a hyper fuzzy zone of influence associ-
ated to the fuzzy rule. The form of this fuzzy zone is re-
lated to the used membership function of the antecedent
part.

Considering the case of Gaussian functions, one can
rewrite the fuzzy rules of TS models so that the an-
tecedent part is represented by a fuzzy zone of influence
with hyper-spherical shape. This zone of influence can
be characterized by a center and a radius value. In the
rest of this paper, the word “prototype” will be used to
refer to the fuzzy zone of influence of a fuzzy rule.

In data-driven design of TS models, the antecedent
of fuzzy rules are formed using batch or incremental
fuzzy clustering methods over a learning data set. These
clustering methods aim at finding the prototypes’ cen-
ters and estimating the radius value in order to optimally
cover the input data cloud(s).

The firing degree of the antecedent part can be ex-
pressed by a specific distance that represents the close-
ness degree between the input vector and the fuzzy pro-
totype (equation 1).

Rulei : IF ~x is close to Pi THEN y1
i = l1i (~x), ..., yk

i = lki (~x)
(1)

wherePi represents the fuzzy prototype associated to
the rulei, k represents the number of classes andlmi (~x)
is the linear consequent function of the rulei for the
classm.

For hyper-spherical [2] or axes-parallel hyper-
elliptical [3] prototypes, the firing degree can be com-
puted depending on the prototype center~µi and the ra-
dius valueσi (the same value in all the dimensions for
the former, and different values for the latter). In our
model [1], we went a step ahead in the structure of the
antecedent part of TS models. In addition to the use of
different variance values in the definition of the fuzzy
prototypes in the input data space, the covariance be-
tween the features is taken into consideration. There-
fore, the fuzzy influence zone of each rule is represented
by a prototype with a rotated hyper-elliptical form. Each
fuzzy prototype in our system is yet represented by a
center~µi and a covariance matrixAi :

Ai =





























σ2
1 c12 ... c1n

c21 σ2
2 ... c2n

...

cn1 cn2 ... σ2
n





























i

(2)

wherec12(= c21) is the covariance betweenx1 andx2,
and so on.

Different multi-dimensional (multivariate) probabil-
ity density functions can be used to measure the activa-
tion degree of each prototype. The most used ones are:

• Multivariate normal distribution: the activation is
calculated according to this distribution as follows:

βi(~x) =
1

(2π)n/2 |Ai |1/2
exp

(

−1
2

(~x− ~µi)
tA−1

i (~x− ~µi)

)

(3)

• Multivariate Cauchy distribution: the activation
here is defined as follows:

βi(~x) =
1

2π
√
|Ai |

[

1+ (~x− ~µi)
tA−1

i (~x− ~µi)
]− n+1

2

(4)

After an experimental comparative study on different
benchmark datasets, it had been concluded that mul-
tivariate Cauchy distribution slightly outperforms the
Normal distribution. However, the presented learning
algorithm is independent of this choice, and the applied
distribution has no effect on the manner of estimation
of variance/covariance matrices. Cauchy distribution is
used in our experiments.

2.1.2. Inference process
When using TS models in a classification problem,

the inference process, applied to get the class of a given
input vector~x, consists of three steps:

• The activation (or firing) degree of each ruleβi(~x)
in the model is calculated (using equation 4, for
example). It must then be normalized as follows:

β̄i(~x) =
βi(~x)

∑r
j=1 β j(~x)

(5)

where r represents the number of rules in the
model.

• the sum-product inference is used to compute the
system output for each class:

ym(~x) =
r

∑

i=1

β̄i(~x)ym
i (6)

whereym
i = lmi (~x) is the consequence part of the

rule i related to the classm.

• The winning class label is given by finding the
maximal output and taking the corresponding class
label as response:

class(~x) = y = argmax ym(~x) m= 1, .., k
(7)

3

2.1.3. Consequence variants
Three different consequent structures can be used in

TS models: binary, singleton [4] or polynomial [5] [2]
[6] [1]. The latter is the more sophisticated form used
in TS models in order to achieve higher precision. The
focus will be placed on first-degree linear consequent.
Models with such consequent structure are called “First-
order TS models”. Thus, the linear consequent function
is written as follows:

lmi (~x) = ~πm
i ~x = am

i0 + am
i1x1 + am

i2x2 + ... + am
inxn (8)

wherelmi (~x) is the linear consequent function of the rule
i for the classm.

It had been proved that zero-order TS models are
functionally equivalent to the well-Radial Basis Func-
tion Networks (RBFN) [7]. The structures of these two
models can be compared so that fuzzy prototypes in TS
models are equivalent to the hidden neurons in RBFN,
and singleton consequences in TS models are equivalent
to the weights in RBFN between the hidden and the out-
put layer. For the purpose of comparison between first-
order and zero-order TS, Figure 2 shows a first-order
TS model in the form of an RBF network with a second
hidden layer.

2.2. TS Incremental Learning

Let’s supposexi , i = 1,2, ..,n represent the learn-
ing data samples,M refers to the learned system, and
f refers to a given learning algorithm. Then, the dif-
ference between batch and incremental learning can be
simply defined as follows:

Batch:Mi = f (x1, x2, .., xi)
Incremental:Mi = f (Mi−1, xi)

We focus in this section (and all along the paper) on
incremental learning algorithms. Batch learning of TS
systems is beyond the scope of this paper.

2.2.1. Rule creation
The focus is placed on incremental clustering be-

cause our classifier is based on fuzzy rule-based sys-
tem, in which rule creation is usually considered as
a clustering problem. In incremental clustering, each
new point may either reinforce an existing cluster, and
eventually changes its characteristics (i.e. its center and
zone of influence), or trigger the creation of a new clus-
ter. The main difference between incremental clustering
methods is the criterion used to make the decision be-
tween these two choices. According to this criterion,
we can categorize incremental clustering methods into
distance-based and density-based methods.

Most of existing TS models use distance-based in-
cremental clustering [4] [5] [2]. In these methods, a
threshold value is directly or indirectly defined and used
to decide whether a new cluster must be created or not
depending on the minimum distance between the new
data point and the existing cluster centers. Some exam-
ples of these methods are ART Networks [8], VQ and
its extensions [9] [10], ECM [5], etc. The main draw-
back of these methods is the strong dependence on the
minimum inter-clusters threshold value. A bad setting
of this threshold may lead to either over-clustering (a
data cluster is divided into several small ones), or under-
clustering (different clusters are erroneously merged to
form one big cluster). Another major disadvantage of
distance-based incremental clustering is the sensibil-
ity to noise and outlier points. Therefore, we believe
that density-based techniques are much more suitable
for incremental clustering. Contrary to distance-based
ones, density-based techniques do not depend on an ab-
solute threshold distance to create new cluster. They
rely on density measures to make a global judgement on
the relative data distribution. The representativity of a
given sample in a density-based clustering process can
be evaluated by itspotentialvalue. The potential of a
sample is defined as inverse of the sum of distances be-
tween a data sample and all the other data samples [11]:

Pot(~x(t)) =
1

1+
∑t−1

i=1 ‖x(t) − x(i)‖2
(9)

A recursive method for the calculation of the poten-
tial of a new sample was introduced in [6] under the
name of eClustering method. The recursive formula
avoids memorizing the whole previous data but keeps -
using few variables - the density distribution in the fea-
ture space based on previous data. The potential of each
new instance is thus estimated as follows:

Pot(~x(t)) =
t − 1

(t − 1)α(t) + γ(t) − 2ζ(t) + t − 1
(10)

where

α(t) =
n

∑

j=1

x2
j (t) (11)

γ(t) = γ(t − 1)+ α(t − 1), γ(1) = 0 (12)

ζ(t) =
n

∑

j=1

x j(t)η j(t), η j(t) = η j(t−1)+x j(t−1), η j(1) = 0

(13)
Introducing a new sample affects the potential values of
the centers of existing clusters, which can be recursively

4

Figure 2: First-order TS model presented as a neural network

updated by the following equation:

Pot(µi) =
(t − 1)Pot(µi)

t − 2+ Pot(µi) + Pot(µi)
∑n

j=1 ‖µi − x(t − 1)‖2j
(14)

If the potential of the new sample is higher than the po-
tential of the existing centers then this sample will be a
center of a new cluster. The potential value of such new
center is initialized by 1. This density-based method
had been first used for TS systems in [6]. Our system
in [1] uses eClustering. Given that our focus here is
placed on supervised incremental learning for classifi-
cation problems, we can suppose that the addition of
new classes can be explicitly pointed out by an external
signal. A new rule is automatically created in our sys-
tem for the first data sample from a new class. For the
next samples, eClustering is used to detect the emer-
gence of new regions with relative high data density.
The data point~xt that triggered the creation of new rule
(new class or new region of interest) is considered as
prototype center (~µr+1 = ~xt). An initial diagonal vari-
ance/covariance matrix is associated to the new proto-
type. The initial diagonal values are estimated as the
average diagonal values of existing prototypes.

2.2.2. Antecedent adaptation
The antecedent of each fuzzy rule in a FIS is repre-

sented by a prototype in multidimensional space, and
this prototype can have different shapes (hyper-boxes,
hyper-spheres, etc.). While creating new prototypes is
done using incremental clustering as explained in the
precedent section, the parameters of prototype position
and shape should be continuously and incrementally
re-estimated in evolving FIS in order to get an up-to-
date representation. Antecedent adaptation technique
depends on prototype shape. It can be generally di-
vided into two steps: prototype position displacement,
and prototype zone of influence re-estimation (box ex-

panding in [4], radius update in [3], etc.). In our system
[1], prototype centers are shifted and their covariance
matrices are updated according to incoming samples.

2.2.3. Consequece learning
Weighted Recursive Least Squares method is used in

most TS systems for learning consequent parameters in
online manner. It is explained below how this method is
used for TS consequent recursive estimation.

Coefficient estimation of TS consequent functions
can be seen as a problem of solving a system of linear
equations expressed as follows:

(Ψi + δI)Π = Yi i = 1,2, ..., t1 (15)

whereΠ is the matrix of all the parameters of system
linear consequences.

Π =





























~π1
1 ~π2

1 ... ~πk
1

~π1
2 ~π2

2 ... ~πk
2

...

~π1
r ~π2

r ... ~πk
r





























k represents the number of classes andr is the number
of fuzzy rules,
Ψi = [β1(~xi)~xi , β2(~xi)~xi , ..., βr (~xi)~xi] is the input vector
(a vector of real values representing the input features)
weighted by the activation degrees of prototypes, and
Yi is the ground truth output vector (a vector of binary
values in classification problems). In order to stabi-
lize and to smooth the solution, a regularization term
δ (known as Tychonoff regularization) is added to the
equation. Solving this system of linear equations by
the least squares method consists in minimizing the next

1It is worth mentioning that the termt in this paper has no temporal
meaning. Given that the system is fed in discrete manner,t is only
incremented at the arrival of a new data.

5

cost function:

E =
t

∑

i=1

‖Ψi Π − Yi‖2 + ω ‖Π‖2 (16)

whereω = δ2 is a positive number called the regulariza-
tion parameter, andI is the identity matrix. The solution
that minimizes the cost function of Equation 16 is:

Πt = (
t

∑

i=1

ΨiΨ
T
i + ωI)−1 .

t
∑

i=1

ΨiYi (17)

We rewrite Equation 17 by replacing (
∑t

i=1ΨiΨ
T
i + ωI)

and (
∑t

i=1ΨiYi) byΦt etZt, respectively:

Πt = Φ
−1
t .Zt (18)

By isolating the term corresponding toi = t, one can
rewriteΦt as follows:

Φt =

















t−1
∑

i=1

ΨiΨ
T
i + ωI

















+ ΨtΨ
T
t (19)

Thus, the matrixΦ is updated using the following recur-
sive formula:

Φt = Φt−1 + ΨtΨ
T
t (20)

In the same way, a recursive formula to update the ma-
trix Z can be deduced :

Zt = Zt−1 + ΨtYt (21)

In order to calculateΠt using Equation 18,Φ−1
t need

to be calculated. This can be done using the following
lemma:

Lemma 1 : Let A = B−1 +CD−1CT , the inverse ofA
is given as follows:

A−1 = B− BC(D +CT BC)−1CT B (22)

To apply Lemma 1 on Equation 20, we make the fol-
lowing substitutions:

A = Φt, B
−1 = Φt−1,C = Ψt,D = 1

Thus, the recursive formula of the inverse of the matrix
Φ can be obtained as follows:

Φ−1
t = Φ

−1
t−1 −

Φ−1
t−1 Ψt Ψ

T
t Φ

−1
t−1

1+ ΨT
t Φ

−1
t−1 Ψt

(23)

Π is then calculated as next:

Πt = Φ−1
t Zt = Φ

−1
t (Zt−1 + ΨtYt)

= Φ−1
t (Φt−1Πt−1 + ΨtYt)

= Φ−1
t ((Φt − ΨtΨ

T
t)Πt−1 + ΨtYt)

= Πt−1 − Φ−1
t ΨtΨ

T
t Πt−1 + Φ

−1
t ΨtYt

= Πt−1 − Φ−1
t Ψt (Yt − ΨT

t Πt−1) (24)

The initialization of the algorithm consists in deter-
mine two quantities:

• Π0 : In practice, and when no prior knowledge is
available,Π0 is initialized by 0.

• Φ−1
0 : GivenΦt =

∑t
i=1ΨiΨ

T
i + ωI and by puttingt

equals 0, we find thatΦ−1
0 = ω

−1I , whereω is the
regularization parameter.

Large values ofω−1 (between 102 and 104) are gener-
ally adopted when signal-to-noise ratio on input vec-
tor is high, which is the case in our system especially
at the beginning of learning where significant modifica-
tions are applied on the prototypes. The impact ofω−1

value according to input noise level is discussed in [12].
When a new rule is created, its parameters are initialized
by the average of the parameters of other rules:

Πt =











































~π1
1(t−1) ~π

2
1(t−1) ... ~π

k
1(t−1)

~π1
2(t−1) ~π

2
2(t−1) ... ~π

k
2(t−1)

...

~π1
r(t−1) ~π

2
r(t−1) ... ~π

k
r(t−1)

~π1
(r+1)t ~π

2
(r+1)t ... ~π

k
(r+1)t











































(25)

where

~πc
(r+1)t =

r
∑

i=1

βi(~xt)~π
c
i(t−1) (26)

The matrixΦ−1 is extended as follows:

Φ−1
t =











































ρ
[

Φ−1
t−1

] [

0
]

[

0
]





















Ω−1 ... 0
...

0 ... Ω−1































































(27)

whereρ = (r2 + 1)/r2. This recursive least squares
(RLS) consequent learning is used in most TS systems.

We sum up the main features of the evolving TS sys-
tems mentioned in this section in Table 1.

It can be noticed that the antecedent is learned inde-
pendently from the consequent learning in the above-
mentioned systems. However, few other approaches
propose a global learning of fuzzy rule-based models.

The authors of [13] proposed an extension of the
classic neural networks error back-propagation method
based on the gradient descent called ANFIS (Adap-
tive Neuro-Fuzzy Inference Systems). In this exten-
sion, a hybrid learning method that combines the gradi-
ent method and the least squares method is used. Each

6

GFMM [4] DENFIS [5] FLEXFIS [2] eClass [3] ILClass [1]
Antecedent structure hyper-boxes hyper-boxes hyper-spheres axis-parallel rotated

hyper-ellipses hyper-ellipses
Consequent structure binary 1-order 1-order 1-order 1-order
Rule creation distance-based distance-based distance-based density-based density-based
Antecedent learning box expanding - - raduis update center shifting

cov. matrix update
Consequent learning RLS RLS RLS RLS RLS

Table 1: A comparison table between existing evolving TS systems

epoch of this hybrid learning procedure is composed of
a forward pass and a backward pass. In the forward
pass, the parameters (weights) in the output layer are
identified using the least squares estimation. Then, the
error rates propagate from the output toward the input
end and parameters in the hidden layer(s) are updated
the gradient descent method. Based on the functional
equivalence between adaptive networks and fuzzy in-
ference systems, the hybrid learning method is used to
learn a fuzzy inference system of Takagi Sugeno’s type.
Thus, consequent parameters are first estimated using
least squares, and premise parameters are then updated
using error-propagation gradient descent. Despite the
wide use of ANFIS in different applications, we can
note that it cannot be used in an evolving learning con-
text because of its fixed structure. However, it is still a
robust learning algorithm for adaptive classification sys-
tems.

EFuNN (Evolving Fuzzy Neural Networks) [14] is
a fuzzy rule-based classification system in which each
rule represents an association between a hypersphere
from the fuzzy input space and a hypersphere from the
fuzzy output space. The pair of fuzzy input-output data
vectors (xf , yf) is allocated to a ruler i if xf falls in
the input hypersphere andyf falls in the output hyper-
sphere. The former condition is directly verified using
a local normalized fuzzy distance, whereas the latter is
indirectly verified by calculating the global output error.
EFuNN algorithm starts by evaluating the local normal-
ized fuzzy distance between the input vector and the ex-
isting rules in order to calculate the activations of the
rule layer. The activation of the fuzzy output layer is
calculated based on the activations of input layer and
the centers of hyperspheres in output layer. The cen-
ters of input hyperspheres are adjusted depending on the
distance between the input vector and rule nodes, and
centers of output hyperspheres are also adapted using a
gradient descent. However, a supervised adaptation of
the input hyperspheres centers is also possible based on

a one-step gradient descent method. Although EFuNN
structure has been presented differently, it is function-
ally equivalent to Mamdani fuzzy inference system. The
distance-based incremental clustering method used in
EFuNN in both input and output space depends strongly
on the sensitivity threshold.

3. Antecedent learning optimization in evolving
Takagi-Sugeno classifiers

As mentioned before, we proposed in [1] an evolv-
ing TS classification system with first-order consequent
structure. We used an enhanced antecedent structure so
that each prototype is represented by a center and a co-
variance matrix.

Incremental learning of TS models is generally di-
vided into two independent learning processes: an-
tecedent learning and consequent learning. This work
focuses on finding an optimal antecedent structure that
can improve the overall system performance.

Antecedent learning can be simply done in straight-
forward recursive statistical manner so that prototype
center and covariance matrix are re-estimated after each
new data sample in order to give it the rotated hyper-
elliptical form. All samples have the same weight and
antecedent structure is built in unsupervised way; i.e.
system output is not considered in the learning pro-
cess. Our system with this simple method will be called
ILClass-statand presented in section 3.1.

Looking for new techniques that optimize antecedent
structure and enhance system performance, we pre-
sented in [1] a global learning paradigm for evolving TS
classifiers. The core idea of this paradigm is to learn the
antecedent and the consequent part in correlated man-
ner so that the output error is used to supervise the an-
tecedent learning process. The goal of this supervision
is to focus learning on samples with high output error
and thus to reduce misclassification errors. To the best

7

of our knowledge, this is the first system in which out-
put feedback is employed in antecedent learning. This
approach is calledILClass-feedand explained in sec-
tion 3.2.

AlthoughILClass-feedhad shown good results [1] by
improving the long-term system accuracy for several in-
cremental classification problems, it had been system-
atically outperformed byILClass-statin the short-term
(at the beginning of learning process where only few
data are available). The main purpose of this paper is
to cope with this problem by proposing a new solution
that can be efficient during the whole learning process,
i.e. good performance at the early learning stage cou-
pled with the best possible long-term performance. This
new solution will be explained in section 3.3 and called
ILClass-hybrid.

3.1. ILClass-stat: statistical antecedent learning

For each new sample~xt, the center and the covariance
matrix of the prototype that has the highest activation
degree are updated.

The recursive estimation of the center can be found
as follows:

~µt = (1− α) ~µt−1 + α ~xt (28)

α =
1
t

(29)

wheret represents the number of updates that have been
applied so far on this prototype.

The covariance matrix can be recursively computed
as follows:

At = (1− α) At−1 + α (~xt − ~µt)(~xt − ~µt)
T (30)

All incoming samples are treated equitably in the above
formulas that are straightforward statistical mean and
covariance calculations.

3.2. ILClass-feed: antecedent learning driven by out-
put feedback

The fundamental idea of the novel approach is to use
an output error feedback in the antecedent adaptation (as
illustrated in Figure 3), contrary to existing approaches
where the antecedent is learned independently from the
consequent learning and the overall output. The pur-
pose of integrating the output signal in the antecedent
learning is to bias it towards the incoming points with
high output error so that the more the error is high the
more will be the influence of this point on the antecedent
adaptation. Thanks to this improvement, it becomes
possible in the antecedent adaptation to focus on the

data points that are misclassified by the system or hardly
well-classified, and to put less focus on non-problematic
points.

To formulate this concept, we introduce in the an-
tecedent adaptation formulas a weight value calculated
for each sample so thatα is calculated as follows:

α =
wt

wcumul
(31)

wcumul=

t
∑

i=1

wi (32)

wherew represents the “weight” associated to the data
point ~xt. The value ofw is related to the output error
committed by the system for the current point~xt.

In classification problem, the quality is perceived
by the user from the number of misclassification er-
rors committed by the system. The value ofw can be
calculated so that it becomes higher for points with a
high risk of misclassification. The risk of misclassifi-
cation of each sample is estimated by its confusion de-
gree. The confusion degree is inversely proportional to
the difference between the score of the true class of~x,
and the highest score within the other (wrong) classes.
The confusion-driven antecedent learning is then imple-
mented by calculatingw for each incoming sample as
follows:

w = (1− [yĉ − ync])/2 w ∈ [0,1] (33)

whereyĉ is the system output corresponding to ˆc that
represents the true class of~xt, and

ync = argmax yc ; c = 1...k & c , ĉ (34)

The value ofw tends toward 0 when~xt is “strongly”
recognized, and toward 1 when it is misrecognized. The
risk of misclassification associated to~xt is proportional
to the confusion degree estimated by the value ofw. (see
Figure 4)

Figure 4: Confusion degree estimation (W for error samples is greater
than 0.5, and less than 0.5 for recognized ones)

System quality in regression and time-series predic-
tion problems is related to the difference between sys-
tem output vector and real output vector, and can be

8

Figure 3: ILClass-feed learning paradigm: antecedent adaptation driven by output feedback

measured using different indications.w can be calcu-
lated in these cases by the distance between system out-
put vector~y and ground truth vector̂~y (contains 1 for the
true class and 0s for the rest). Thus, the value ofw can
be estimated as follows:

w =
1
2

k
∑

c=1

| ŷc − yc | (35)

wherek is the number of classes. The proposed idea
can be implemented using different quality measures,
like R-squared adjusted [2], non-dimensional error in-
dex (NDEI) [5], or normalized RMSE [6]. However,
the focus in this paper is placed on classification prob-
lems and the confusion-based calculation (Equation 33)
will be employed all along the experimental section.

3.3. ILClass-hybrid: ILClass-stat/ILClass-feed error-
based sliding

As explained above,ILClass-feeduses system scores
to estimate the weight of each sample. Antecedent
structure is then highly influenced by system perfor-
mance. When experimenting it,ILClass-feedwas able
to outperformILClass-statafter a specific period of in-
cremental learning. Nevertheless, results have shown
the relatively poor performance ofILClass-feedat the
early phase of learning so that it is always beaten
by ILClass-statmethod. Figure 5(a) (using PenDigits
dataset) illustrates this phenomenon and the intersection
point of the two curves. These results can be explained
by the system instability at the beginning of learning
where only few data samples are learned and important
fluctuations appear at system output during this early
stage. Therefore, antecedent learning inILClass-feed
will suffer from this instability and need a period of time
to reach its expected good performance. The more sys-
tem output gets stable, the moreILClass-feedcan en-
hance its performance, as shown in Figure 5(a). On the
other hand,ILClass-statcopes well at the early stage al-
lowing a stable statistical prototype initialization, butits

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 2500 3000 3500 4000

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

(a)

 1

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 2500 3000 3500 4000

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

Desired solution

(b)

Figure 5: (a) Performance curve intersection betweenILClass-stat
andILClass-feed(b) The optimal looked-for performance

performance stagnates for the long term. It is worth re-
minding that achieving acceptable early performance is
mandatory in many applications where user is involved
in the learning cycle.

An ideal solution consists then in proposing a new
method that profits of the advantage ofILClass-statfor
the short term, and that ofILClass-feedfor the long
term. The objective is to get the performance illustrated
by the black curve in Figure 5(b).

To cope with this problem, we propose a new ap-
proach, calledILClass-hybrid, that allows a gradual
sliding betweenILClass-statand ILClass-feed. It is
worth reminding that one of the main criteria in the
learning algorithm is to be completely free of problem-
depended parameters. Thus, the sliding mechanism

9

from ILClass-statto ILClass-feedis automatically con-
trolled by a system stability measure represented byλ,
as follows:

α = λ
1
t
+ (1− λ) wt

wcumul
(36)

λ =
nbErr

t
λ ∈ [0,1] (37)

wherenbErr is the accumulated number of misclassifi-
cation committed on the incoming samples. Early val-
ues ofλ are close to 1 because of the high number of
error at the beginning of incremental learning process.
Then, its value tends more-or-less rapidly towards small
values close to 0. Using Equation 36,ILClass-hybrid
automatically adjusts the combination ofILClass-stat
and ILClass-feedaccording to the relative error level
observed at system output.

Thus, the formulas used inILClass-hybridcan be
summed up as follows:

~µt = (1− α) ~µt−1 + α ~xt

At = (1− α) At−1 + α (~xt − ~µt)(~xt − ~µt)
T

α = λ
1
t
+ (1− λ) wt

wcumul

λ =
nbErr

t
λ ∈ [0,1]

wt = (1− [yĉ − ync])/2 w ∈ [0,1]

ync = argmax yc ; c = 1...k & c , ĉ

wcumul=

t
∑

i=1

wi

4. Experimental Validation

Experiments in this paper will be mainly focused on
studying the performance ofILClass-hybridas an op-
timal compromise betweenILClass-statand ILClass-
feed. The three models are evaluated for different
incremental classification problems using benchmark
datasets. Short- and long-term performance compar-
isons between the three models are presented in this sec-
tion.

In addition to the validation ofILClass-hybrid, we
present in this section another original point of this pa-
per that consists in studying the behaviour of an evolv-
ing TS classifier when adding new unseen classes to the
system. In this novel evaluation scenario, the aim is
to examin the system reaction to the addition of new
classes, and to test its performance recovery speed.

The benchmark datasets used in our tests are first pre-
sented, then some details about our experimental proto-
col are given. Results are then presented and divided
into two parts: results for synchronized class learning,
and results for unsynchronized class adding.

4.1. Classification datasets

We evaluate our algorithms on several well-known
classification benchmarks form the UCI machine learn-
ing repository [15]. We followed two criteria in select-
ing the datasets :

• They should represent multiclass problems. Our
learning algorithms are optimized for classification
problem with more than two classes.

• The number of samples per class in each dataset
should be large enough for two reasons. The first is
to have a large learning dataset that allows contin-
uing the incremental learning as far as possible and
to examine the behaviour of the algorithms in the
long term. The second reason is to have a large test
dataset to be able to correctly evaluate the classi-
fier during the incremental learning process as seen
later. The large size of the test dataset helps as well
to neutralize as much as possible the order effect on
the results.

Respecting the last two criteria, the next datasets had
been chosen from UCI machine learning repository to
be used in our experiments:

• CoverType: The aim of this problem is to predict
forest cover type from 12 cartographical variables.
Seven classes of forest cover types are considered
in this dataset. A subset of 2100 instances is used
in our experiments.

• PenDigits: The objective is to classify the ten dig-
its represented by their handwriting information
from pressure sensitive tablet PC. Each digits is
represented by 16 features. The dataset contains
about 11000 instances.

• Segment: Each instance in the dataset represents
a 3x3 region from 7 outdoor images. The aim is
to find the image from which the region was taken.
Each region is characterized by 19 numerical at-
tributes. There are 2310 instances in the dataset.

• Letters: The objective is to identify each of a large
number of black-and-white rectangular pixel dis-
plays as one of the 26 capital letters in the English
alphabet. Each letter is represented by 16 primitive

10

Dataset # Classes # Features # Instances
CoverType 7 54 2100
PenDigits 10 16 10992
Segment 7 19 2310
Letters 26 16 20000
JapaneseVowels 9 14 10000

Table 2: Characteristics of learning datasets

numerical attributes. The dataset contains 20000
instances.

• JapaneseVowels: The goal is to distinguish nine
male speakers by their utterances of two Japanese
vowels. Each vector is characterized by 14 values.
The dataset contains 10000 samples.

The characteristics of the five datasets are summa-
rized in Table 2. The five datasets used in our exper-
iments vary by both the number of features (number
of data space dimensions), and the number of classes,
which allows testing our algorithms on different multi-
class problems.

4.2. Experimental protocol

Figure 6: Periodic held-out evaluation protocol

A repeated 10-folds cross-validation (CV) data parti-
tioning protocol is employed in our experiments. For
each CV, the samples of training subset (90% of en-
tire dataset) are sequentially introduced to the system
in 10 different random orders. Thus, experiment for
each dataset is repeated 100 times and average results
are presented in the figures below. The test subset is
used to estimate the recognition rate achieved by the
classifier during the incremental learning process. The
term “learning subset” is used to identify the group of
instances learned by the system between each two con-
secutive tests. When a new class appears in a given
learning subsetSi , test samples of the same class are
added to the test subsetStest. After learning each new
Si , a new evaluation point is estimated usingStest and
the curves drawn in the next figures represent an inter-
polation of these points. This incremental learning pro-
tocol is called periodic held-out protocol. (Figure 6)

4.3. Results for synchronized classes

We present in Figure 7 the results of the three mod-
els for five different benchmark datasets. In these fig-
ures, the evolution of the generalization misclassifica-
tion rate of the three models is presented, from the very
beginning of the incremental learning process (few sam-
ples per class), until a relatively advanced learning state
(limited by the size of the used datasets). We show
in the same figures the relative reduction of misclassi-
fication rate achieved byILClass-hybridcompared to
ILClass-statand ILClass-feed. All classes in this first
part of experiments are introduced to the system in
quasi-synchronized manner (random sample orders are
applied without any constraint on sample classes).

The obtained results are also synthesized in Tables 3-
7 where the performance is measured at four different
moments of incremental learning (i.e. different num-
ber of learned samples) that represent short-term and
long-term viewpoints. In addition to theILClass-stat,
ILClass-feedand ILClass-hybrid, the performance ob-
tained by the evolving TS approach eClass [3] is given
in the tables. Besides, we present in the same tables the
misclassification rates obtained by two batch classifiers:
radial basis function (RBF) classifier and multilayer per-
ceptron (MLP, one hidden layer with 10 neurons). The
implementation of these two classifiers is provided by
Tanagra software.

The obtained results confirm the analysis given in
Section 3.3 about the difficulties that faceILClass-feed
in the early learning phases due to high perturbation of
antecedent learning. Nonetheless, they approve the con-
siderable gain of performance that can be achieved by
ILClass-feedin the long term, compared toILClass-stat
method.

More importantly, results show the very good per-
formance ofILClass-hybridthat almost covers the op-
timal combined performance obtained byILClass-stat
endILClass-feedat both short- and long-term learning
moments. It can be noted thatILClass-hybridallows in
average about 15% of error reduction when compared
to ILClass-feedat the early stage of learning. This size-
able gain is very important in many application con-
texts in which online incremental learning is required
to be sufficiently fast. The short-term performance can
play a key role in user acceptance of evolving classi-
fiers. The short-term enhancement inILClass-hybrid
does not sacrifice the good performance of the output
feedback model (ILClass-feed) andILClass-hybridalso
achieves about 15% of error reduction when compared
to ILClass-statafter a long-term incremental learning.

11

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid

(a) PenDigits

-10

 0

 10

 20

 30

 40

 50

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples

Evolve-hybrid vs. Evolve-stat
Evolve-hybrid vs. Evolve-feed

(b) PenDigits

 10

 12

 14

 16

 18

 20

 2000 3000 4000 5000 6000 7000 8000

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid

(c) Letters

-10

-5

 0

 5

 10

 15

 20

 25

 2000 3000 4000 5000 6000 7000 8000

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples

Evolve-hybrid vs. Evolve-stat
Evolve-hybrid vs. Evolve-feed

(d) Letters

 14

 16

 18

 20

 22

 24

 26

 28

 30

 200 400 600 800 1000 1200 1400 1600

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid

(e) Cover

-30

-20

-10

 0

 10

 20

 30

 200 400 600 800 1000 1200 1400 1600

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples

Evolve-hybrid vs. Evolve-stat
Evolve-hybrid vs. Evolve-feed

(f) Cover

12

 2

 3

 4

 5

 6

 7

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid

(g) JapaneseVowels

-30

-20

-10

 0

 10

 20

 30

 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples

Evolve-hybrid vs. Evolve-stat
Evolve-hybrid vs. Evolve-feed

(h) JapaneseVowels

 5

 6

 7

 8

 9

 10

 11

 12

 13

 200 400 600 800 1000 1200 1400

M
is

cl
as

si
fic

at
io

n
ra

te
 (

%
)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid

(i) Segment

-10

-5

 0

 5

 10

 15

 20

 25

 30

 200 400 600 800 1000 1200 1400

E
rr

or
 r

ed
uc

tio
n

(%
)

Number of learning samples

Evolve-hybrid vs. Evolve-stat
Evolve-hybrid vs. Evolve-feed

(j) Segment

Figure 7: (a)(c)(e)(g)(i) Evolution of performance during the incremental learning process and (b)(d)(f)(h)(j) Evolution of relative reduction in
misclassification rates usingILClass-hybridcompared to bothILClass-statandILClass-feed

PenDigits Number of learning samples
500 1000 2000 10000

eClass 5.23 4.53 3.8 3.03
ILClass-stat 3.76 3.04 2.35 1.67
ILClass-feed 5.60 3.60 2.15 1.06
ILClass-hybrid 3.42 2.58 1.91 1.07
RBF (offline) 8.11 6.76 5.13 4.10
MLP (offline) 6.38 3.41 2.74 2.13

Table 3: Misclassification rates at different moments of learning (PenDigits)

Letters Number of learning samples
1200 2400 6000 16000

eClass 24.81 22.79 21.91 19.02
ILClass-stat 19.30 14.28 11.51 10.25
ILClass-feed 23.87 15.19 10.64 9.03
ILClass-hybrid 19.73 14.13 10.70 9.19
RBF (offline) 24.55 22.83 20.65 20.01
MLP (offline) 22.07 13.12 11.67 8.21

Table 4: Misclassification rates at different moments of learning (Letters)

13

JapVowels Number of learning samples
300 1500 3000 9000

eClass 12.32 8.44 6.06 4.98
ILClass-stat 9.37 3.97 3.45 3.10
ILClass-feed 12.28 4.15 3.08 2.59
ILClass-hybrid 9.98 3.93 3.10 2.59
RBF (offline) 12.87 7.39 5.24 3.90
MLP (offline) 9.11 3.31 2.63 1.34

Table 5: Misclassification rates at different moments of learning (JapVowels)

Segment Number of learning samples
200 600 1000 2000

eClass 13.40 9.32 8.93 8.04
ILClass-stat 10.92 7.54 6.81 6.17
ILClass-feed 14.93 7.63 6.60 5.26
ILClass-hybrid 11.05 7.20 6.44 5.38
RBF (offline) 11.16 9.59 9.32 9.05
MLP (offline) 9.51 6.71 6.03 4.66

Table 6: Misclassification rates at different moments of learning (Segment)

Cover Number of learning samples
200 600 1200 1900

eClass 28.19 23.77 21.14 20.06
ILClass-stat 26.89 21.20 19.02 17.79
ILClass-feed 30.68 21.44 17.32 15.2
ILClass-hybrid 27.21 20.58 17.41 15.8
RBF (offline) 27.76 23.12 20.31 18.19
MLP (offline) 29.21 22.15 19.92 17.40

Table 7: Misclassification rates at different moments of learning (Cover)

14

4.4. Results for unsynchronized classes

The experiments presented so far represent a simple
and straightforward incremental learning scenario, in
which all the classes are presented to the classifier to-
gether from the beginning of the incremental learning
process. In addition to the continuous refinement of its
knowledge base, one of the main features of an evolv-
ing classification system is the capacity of learning new
unseen classes without suffering from the “catastrophic
forgetting” phenomenon. This feature might be manda-
tory in several real application areas. Therefore, we
present a second experiment that imitates this real con-
text so that the system starts with a subset of classes, and
the rest of them are introduced after a specific while of
learning. We aim at studying the behaviour of the dif-
ferent evolving systems and their ability to learn new
class of data without fully destroying the knowledge
learned from old data. We maintain the repeated 10-
fold cross-validation data partitioning for this experi-
ment. For each CV, we introduce the first half of the
training subset with only 60% of the classes, then all
the classes are learned during the second half. Evi-
dently, samples from unseen classes are not considered
in the test subset during the first learning phase. Fig-
ure 8 shows the results of the experiment (It is useful
to remind that these results represent the average of 100
runs). We note thatILClass-hybridresists better when
introducing new classes. Concentrating the antecedent
learning on confusing samples results in faster fall in
misclassification curve.

5. Conclusion

Looking for an efficient evolving classification sys-
tem, we go a step forward in our TS system by
proposing a new incremental learning algorithm, called
ILClass-hybrid. This algorithm leads to mush better
antecedent learning and lower error rates at both the
short and the long term of incremental learning process.
Moreover, the proposed solution have shown high re-
sistance and fast recovery when adding new classes in
progressive (unsynchronized) scenario. The presented
algorithm is completely free of any problem-dependent
parameters. All these advantages have been validated in
the experimental part using several benchmark datasets.

Inspired by the idea ofILClass-hybrid, we have
started to work on an efficient dynamic combination of
a set of evolving classifiers. Error-feedback can be an
important criterion and could play a key role in any dy-
namic vote mechanism. Classifiers from different sub-
spaces, learned starting from different moments can be

incrementally learned in parallel so that they can play
complementary roles is different situation (adding new
classes, deleting existing classes, long-term stability,
etc.). We believe that this track is very promising and
can lead to interesting new evolving classification ap-
proaches.

References

[1] A. Almaksour, E. Anquetil, Improving premise structure in
evolving Takagi-Sugeno neuro-fuzzy classifiers, EvolvingSys-
tems 2 (2011) 25–33.

[2] E. Lughofer, FLEXFIS: A Robust Incremental Learning Ap-
proach for Evolving Takagi-Sugeno Fuzzy Models, IEEE Trans-
actions on Fuzzy Systems 16 (6) (2008) 1393–1410.

[3] P. Angelov, X. Zhou, Evolving Fuzzy-Rule-Based Classifiers
From Data Streams, IEEE Transactions on Fuzzy Systems 16 (6)
(2008) 1462 –1475.

[4] B. Gabrys, A. Bargiela, General fuzzy min-max neural network
for clustering and classification, IEEE Transactions on Neural
Networks 11 (3) (2000) 769 –783.

[5] N. Kasabov, Q. Song, DENFIS: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction,
IEEE Transactions on Fuzzy Systems 10 (2) (2002) 144 –154.

[6] P. Angelov, D. Filev, An approach to online identification of
Takagi-Sugeno fuzzy models, IEEE Transactions on Systems,
Man, and Cybernetics 34 (1) (2004) 484–498.

[7] J. S. R. Jang, C. T. Sun, Functional equivalence between ra-
dial basis function networks and fuzzy inference systems, IEEE
Transactions on Neural Networks 4 (1) (1993) 156–159, doi:
10.1109/72.182710.

[8] G. A. Carpenter, S. Grossberg, D. B. Rosen, ART 2-A: An adap-
tive resonance algorithm for rapid category learning and recog-
nition, Neural Networks 4 (1991) 493–504.

[9] T. Kohonen, The self-organizing map, Proceedings of the IEEE
78 (9) (1990) 1464 –1480.

[10] T. Martinetz, K. Schulten, et al., A” neural-gas” network learns
topologies, University of Illinois at Urbana-Champaign, 1991.

[11] R. R. Yager, D. P. Filev, Learning of fuzzy rules by moun-
tain clustering, in: Optical Tools for Manufacturing and Ad-
vanced Automation, International Society for Optics and Pho-
tonics, 246–254, 1993.

[12] G. Moustakides, Study of the transient phase of the forgetting
factor RLS, IEEE Transactions on Signal Processing 45 (10)
(1997) 2468 –2476.

[13] J. S. R. Jang, ANFIS: adaptive-network-based fuzzy inference
system, IEE Transactions On Systems Man And Cybernetics
23 (3) (1993) 665–685.

[14] N. Kasabov, Evolving Fuzzy Neural Networks: Theory andAp-
plications for On-line Adaptive Prediction, Decision Making
and Control, in: Control. Australian Journal of Intelligent In-
formation Processing Systems 5, 154–160, 1998.

[15] A. Frank, A. Asuncion, UCI Machine Learning Repository,
URL http://archive.ics.uci.edu/ml, 2010.

15

0

0.5

1

1.5

2

2.5

3

3.5

4

1000 2000 3000 4000 5000 6000 7000 8000 9000

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid# classes = 6

classes = 10

(a) PenDigits

0

1

2

3

4

5

6

1000 2000 3000 4000 5000 6000 7000 8000

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid
classes = 5

classes = 9

(b) JapaneseVowels

6

8

10

12

14

16

18

2000 4000 6000 8000 10000 12000 14000 16000 18000

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid
classes = 16

classes = 26

(c) Letters

14

16

18

20

22

24

26

28

30

200 400 600 800 1000 1200 1400 1600 1800

M
is

c
la

s
s
if
ic

a
ti
o
n
 r

a
te

 (
%

)

Number of learning samples

Evolve-stat
Evolve-feed

Evolve-hybrid# classes = 4

classes = 7

(d) Cover

Figure 8: Performance stability and recovery when introducing new classes

16

