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Abstract

The purpose of this research work is to go beyond the trawditidassification systems in which the set of recognizable
categories is predefined at the conception phase and keelpsnged during its operation. Motivated by the increasing
needs of flexible classifiers that can be continuously adapteope with dynamic environments, we propose a new
evolving classification system and an incremental learmilggrithm called/LClass The classifier is learned in
incremental and lifelong manner and able to learn new cifssm few samples. Our approach is based on first-order
Takagi-Sugeno (TS) system. The main contribution of thjsgp&onsists in proposing a global incremental learning
paradigm in which antecedent and consequent are learngdengy, contrary to the existing approaches where they
are learned separately. Output feedback is used in coedratlanner to bias antecedent adaptation towdfitwalit
data samples in order to improve system accuracy. Our syistemaluated using ffierent well-known benchmarks,
with a special focus on its capacity of learning new classes.

Keywords:
Evolving fuzzy classifiers, Online learning, Takagi-Suge@lassification

1. Introduction labelled sample provided by the application. Typically,

o ) . _ no learning algorithms are available at the user side.
Classification techniques represent a very active topic

in machine learning. They appear frequently in many
application areas, and become a basic tool for almost
any pattern recognition task. Several structural and sta-
tistical approaches have been proposed to build clas-
sification systems from data. Traditionally, a classifi-
cation system is trained using a learning dataset under
the supervision of an expert that controls and optimizes . ) ) i
the learning process. The system performance is funda_mcremental Iearnlng algorithm is used to Iearn from the
mentally related to the learning algorithm and the used o_Iata samples pI’_OVIdl?d by _the user afters:_andlng avalida-
learning dataset. The learning dataset contains labelleg!ioN OF & correction signalin ordgr_ to confirm or change
samples from the dierent classes that must be recog- thg label sugggsted by th(_a classifier. C(_)ntrary to the tra-
nized by the system. In almost all learning algorithms, ditional paradigm, there is no separation between the
the learning dataset is visited several times in order to learning phase and the operation phase in evolving clas-

improve the classification performance which is usually sn‘lcafu_on systems_. One_of the key features n eyolvmg
measured using a separated test dataset. The expert caf@SSIfiers is that incoming samples may bring in new
modify the settings of the learning algorithm and restart unseen.cla.sses that are learned by the gla35|f|er V,V't_hOUt
the learning process until obtaining an acceptable per- destroying its knowledge base or forgetting the existing
formance. Then, the classification system is delivered classes.

to the final user to be used in real applicative contexts.  We have proposed in a previous work [1] an evolving
The role of the classifier is to suggest a label for each un- Takagi-Sugeno (TS) classification system with an im-

The main weakness in the above-mentioned concep-
tion paradigm is that the knowledge base is constrained
by the learning dataset available at expert side and can-
not be extended by the data provided at user side. These
drawbacks increase the need for new type of classifica-
tion systems that can learn, adapt and evolve in lifelong
continuous manner. As one can see from Figure 1, an
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Evolving classifier formance, he would continue to use it providing more
(x,y7) and more data samples (long-term learning).
Besides the focus on both early and late stages, a
special emphasis is placed in this paper on the case of
adding new classes to an existing classification system.
\/".\\ The performance of our methods is studied in this con-
text. It is important to mention that, to the best of our
knowledge, itis the first work that evokes the problem of
late learning of new classes by an evolving classifier. It
N ‘C’Z'r'::iﬁj”r{ can be also mentioned th_at very few y\{ork_s on evolving
learning alg. TS systen_‘ns_handle multiclass classm_cgnon problems.
Most of existing systems focus on prediction and regres-
sion problems.
Figure 1: Simultaneous operation and learning (incremeiutal) Before presenting our new evolving TS classifica-
cesses in evolving classifiers tion approach, we explain in Section 2 the global struc-
ture of TS systems and thefldirent elements of most
used incremental learning algorithms. We cite in the
proved antecedent structure. It consists of a set of local same section some known evolving TS systems. Our
linear regression models defined ifitdient sub-spaces  new system, calledl.Class-hybridis detailed in Sec-
localized by the antecedent part of the rules. The rule- tion 3. Experimental validation of the proposed system
based structure of this system allows more flexibility in  using well-known benchmark datasets is then presented
tuning its knowledge base, which makes it suitable for in Section 4. Both synchronized and unsynchronized
incremental learning. Recursive antecedent adaptationclass learning is considered in our experiments.
is coupled with a density-based incremental clustering
to build the antecedent structure in the system. Con-
sequent linear cdBcients are estimated using recursive 2. Evolving Takagi-Sugeno (TS) systems: Overview
least squares method. The proposed learning algorithm
has no problem-dependent parameters. In order to op- A Takagi-Sugeno system is defined by a set of fuzzy
timize the system performance for classification prob- rules in which the antecedent part represents a fuzzy
lems, a new method of antecedent learning in which out- partitioning or clustering of the input space, and the out-
put feedback is employed to supervise the re-estimation put is calculated using a regression polynomial model
of prototype centers and covariance matrices. The goalover the input vector weighted by the antecedent acti-
is to focus on learning critical points and to improve the vation degree. Existing TS systems vary by their struc-
overall performance. ture (antecedent and consequent) or by the learning al-
In this paper, we first reformulate and present in gorithms. A comparative table between several known
details the output-based antecedent learning methodTS systems is presented at the end of this section. In or-
(calledILClass-feedl Performance analysis 8fClass- der to facilitate understanding of this table, th&etient
feedis then discussed and compared to the classic statis-Structural and algorithmic elements used in TS systems
tical antecedent learning (calléidClass-sta). Contrary ~ are explained below.
to ILClass-statthat behaves very well in the short term,
ILClass-feechas relative poor performance in the short 2.1. TS architecture
term, yet dfering much better performance on the long
term. Therefore, ourfeort in this paper is focused on . X
proposing a new solution that combines the advantagesd!Vided into two parts: antecedent and consequent. We
of bothILClass-feecandILClass-stat The main criteria ~ ©XPlain below the possible variants used in these wo
is to obtain the best possible performance for the short- parts as well as the inference forward process in TS sys-
and the long-term of learning. One can take for exam- €MS
ple the case of an evolving handwritten gesture classifier
in which user defines his set of gestures providing few 2.1.1. Antecedent structure
samples for each (short-term learning). Itis very impor-  Different types of membership functions can be used
tant in this example context to have a classifier with fast in TS models. The conjunction of the membership func-
learning capacity. If user accepts the early system per- tions that are defined on the axes (features) of the input
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As aforementioned, the structure of a TS system is



space results in a hyper fuzzy zone of influence associ-
ated to the fuzzy rule. The form of this fuzzy zone is re-
lated to the used membership function of the antecedent
part.

Considering the case of Gaussian functions, one can
rewrite the fuzzy rules of TS models so that the an-
tecedent part is represented by a fuzzy zone of influence
with hyper-spherical shape. This zone of influence can
be characterized by a center and a radius value. In the
rest of this paper, the word “prototype” will be used to
refer to the fuzzy zone of influence of a fuzzy rule.

In data-driven design of TS models, the antecedent
of fuzzy rules are formed using batch or incremental

e Multivariate normal distribution: the activation is

calculated according to this distribution as follows:

1 7 - -
Bi(¥) = a7 exp(—z(z_ﬂi)tAi 1()?_”0)

_
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e Multivariate Cauchy distribution: the activation

here is defined as follows:

s [ -]

(4)

Bi(¥) =

fuzzy clustering methods over a learning data set. These After an experimental comparative study oiffelient
clustering methods aim at finding the prototypes’ cen- benchmark datasets, it had been concluded that mul-
ters and estimating the radius value in order to optimally tivariate Cauchy distribution slightly outperforms the

cover the input data cloud(s).

Normal distribution. However, the presented learning

The firing degree of the antecedent part can be ex- algorithm is independent of this choice, and the applied
pressed by a specific distance that represents the closedistribution has no féect on the manner of estimation
ness degree between the input vector and the fuzzy pro-of variancgcovariance matrices. Cauchy distribution is

totype (equation 1).

Rule; : IF Xis close to P THEN y! = I}(%), ..., ¥ = IX®)
1)

where P; represents the fuzzy prototype associated to

the rulei, k represents the number of classes HHd)

is the linear consequent function of the ruléor the

classm.

For hyper-spherical [2] or axes-parallel hyper-
elliptical [3] prototypes, the firing degree can be com-
puted depending on the prototype cenieand the ra-
dius valueo; (the same value in all the dimensions for
the former, and dierent values for the latter). In our
model [1], we went a step ahead in the structure of the
antecedent part of TS models. In addition to the use of
different variance values in the definition of the fuzzy
prototypes in the input data space, the covariance be-
tween the features is taken into consideration. There-
fore, the fuzzy influence zone of each rule is represented
by a prototype with a rotated hyper-elliptical form. Each
fuzzy prototype in our system is yet represented by a
centeng and a covariance matri;:

0'% Ci2 ... Cip
2
Cx O ... Con
A= : @
2
Ch1 Ch2 .. Op i

wherec; (= ¢y1) is the covariance betweeq andx,,
and so on.

Different multi-dimensional (multivariate) probabil-
ity density functions can be used to measure the activa-
tion degree of each prototype. The most used ones are:
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used in our experiments.

2.1.2. Inference process

When using TS models in a classification problem,
the inference process, applied to get the class of a given
input vectorX, consists of three steps:

e The activation (or firing) degree of each rylgXx)

in the model is calculated (using equation 4, for

example). It must then be normalized as follows:
Bi(X)

Z§=1ﬁj(>?)

where r represents the number of rules in the
model.

Bi(¥) = (5)

the sum-product inference is used to compute the
system output for each class:

Yy"() = > A (6)
i=1
wherey™" = I"(X) is the consequence part of the

rulei related to the class.

The winning class label is given by finding the
maximal output and taking the corresponding class
label as response:

m=1,.,k
(7)

clasgX) = y = argmax Y'(X)



2.1.3. Consequence variants Most of existing TS models use distance-based in-
Three diterent consequent structures can be used in cremental clustering [4] [5] [2]. In these methods, a
TS models: binary, singleton [4] or polynomial [5] [2] threshold value is directly or indirectly defined and used
[6] [1]. The latter is the more sophisticated form used to decide whether a new cluster must be created or not
in TS models in order to achieve higher precision. The depending on the minimum distance between the new
focus will be placed on first-degree linear consequent. data point and the existing cluster centers. Some exam-
Models with such consequent structure are called “First- ples of these methods are ART Networks [8], VQ and
order TS models”. Thus, the linear consequent function its extensions [9] [10], ECM [5], etc. The main draw-

is written as follows: back of these methods is the strong dependence on the
minimum inter-clusters threshold value. A bad setting
I"(X) = A"X = ag + aixg + ahXe + ... + X, (8) of this threshold may lead to either over-clustering (a

data cluster is divided into several small ones), or under-
clustering (diferent clusters are erroneously merged to
form one big cluster). Another major disadvantage of

I had been proved that zero-order_TS mc_)dels ar€ gistance-based incremental clustering is the sensibil-
functionally equivalent to the well-Radial Basis Func- ity to noise and outlier points. Therefore, we believe

tion Networks (RBFN) [7]. The structures of these .tWO that density-based techniques are much more suitable
models can be c_ompared S0 thgt fuzzy prototypes in TS for incremental clustering. Contrary to distance-based
models are equivalent to the hidden neurons in RBFN, density-based techniques do not depend on an ab-
and singl_eton consequences inTS quels are equivalengolut’e threshold distance to create new cluster. They
to the weights in RBFN between the hldden and the out- rely on density measures to make a global judgement on
put layer. For the purpose of comparison between first- the relative data distribution. The representativity of a

_(lj_rsder Zntlj.zerr]o—?rder ¥S’ l;gBlIJ:re 2 shclx(wg ﬁ flrst-ordgr given sample in a density-based clustering process can
model in the form of an network with a second  po o\ a1yated by itpotentialvalue. The potential of a

hidden layer.

wherel(X) is the linear consequent function of the rule
i for the classn.

sample is defined as inverse of the sum of distances be-

. I Il the oth les [11]:
2.2. TS Incremental Learning tween a data sample and all the other data samples [11]

Let's supposex,i = 1,2,..,n represent the learn- 1
ing data samplesyl refers to the learned system, and Pot(X(t)) = 1+ YL - xO)IP
f refers to a given learning algorithm. Then, the dif- =1
ference between batch and incremental learning can be A recursive method for the calculation of the poten-
simply defined as follows: tial of a new sample was introduced in [6] under the
name of eClustering method. The recursive formula
avoids memorizing the whole previous data but keeps -
using few variables - the density distribution in the fea-
We focus in this section (and all along the paper) on ture space based on previous data. The potential of each
incremental learning algorithms. Batch learning of TS hew instance is thus estimated as follows:
systems is beyond the scope of this paper. t-1

Pot(X(t)) =

2.2.1. Rule creation (t=Da®+y(O-20O+t-1
The focus is placed on incremental clustering be-
cause our classifier is based on fuzzy rule-based sys- n

tem, in which rule creation is usually considered as a(t) = ijz(t) (11)

a clustering problem. In incremental clustering, each j=1

new point may either reinforce an existing cluster, and

eventually changes its characteristics (i.e. its centdr an YO =yt-1D+at-1), »(1)=0 (12)
zone of influence), or trigger the creation of a new clus- n

ter. The main dference between incremental clustering s(t) = Z Xi(Oni), 7i(t) = nj(t=1)+x;(t-1), 7;(1)=0
methods is the criterion used to make the decision be- =

(9)

Batch: M = f(Xg, X2, .., Xj)
Incremental:M; = f(M;_1, %)

(10)

where

tween these two choices. According to this criterion, (13)
we can categorize incremental clustering methods into Introducing a new samplefacts the potential values of
distance-based and density-based methods. the centers of existing clusters, which can be recursively



Figure 2: First-order TS model presented as a neural network

updated by the following equation: panding in [4], radius update in [3], etc.). In our system
[1], prototype centers are shifted and their covariance
Pot(y) = (t — 1)Pot(ui) matrices are updated according to incoming samples.
t =2+ Pot(ui) + Pot(ui) X lli — X(t = 1)IF
(14)

2.2.3. Consequece learning

Weighted Recursive Least Squares method is used in
most TS systems for learning consequent parameters in
online manner. Itis explained below how this method is
used for TS consequent recursive estimation.

Codficient estimation of TS consequent functions
can be seen as a problem of solving a system of linear
equations expressed as follows:

If the potential of the new sample is higher than the po-
tential of the existing centers then this sample will be a
center of a new cluster. The potential value of such new
center is initialized by 1. This density-based method
had been first used for TS systems in [6]. Our system
in [1] uses eClustering. Given that our focus here is
placed on supervised incremental learning for classifi-
cation problems, we can suppose that the addition of
new classes can be explicitly pointed out by an external W +oDIT = Y, i=12 ..t (15)
signal. A new rule is automatically created in our sys-

tem for the first data sample from a new class. For the \yhereTT is the matrix of all the parameters of system
next samples, eClustering is used to detect the emer-j; gy consequences.

gence of new regions with relative high data density.

The data poink; that triggered the creation of new rule ﬁi ﬁf f“&
(new class or new region of interest) is considered as 7 s .. 7
S N i M=

prototype centeri7i1 = %). An initial diagonal vari-

ancgcovariance matrix is associated to the new proto- Vel 7

type. The initial diagonal values are estimated as the )

average diagonal values of existing prototypes. k represents the number of classes atglthe number

of fuzzy rules,
2.2.2. Antecedent adaptation Fi = [BL(X)X, B2(X)X, .... B (%)X] is the input vector

The antecedent of each fuzzy rule in a FIS is repre- (a vector of real vaIu_es _representing the input features)
sented by a prototype in multidimensional space, and weighted by the activation degrees of prototypes, and

this prototype can have fierent shapes (hyper-boxes, Yiis thg ground_ Fruth output vector (a vector of binary
hyper-spheres, etc.). While creating new prototypes is \{alues in classification probllems). In ord.er tp stabi-
done using incremental clustering as explained in the lize and to smooth the solutlpn, a regularlzatlon term
precedent section, the parameters of prototype position‘S (knqwn as Ty_chonﬂS_ regulanzatlon_) Is added fco the
and shape should be continuously and incrementally equation. Solving this SySte”_‘ of_Ime_ar_ e_qgatlons by
re-estimated in evolving FIS in order to get an up-to- the least squares method consists in minimizing the next

date representation. Antecedent adaptation technique

depends on prototype shape. It can be generally di- 1itis worth mentioning that the tertin this paper has no temporal

vided into two steps: p.r0t0type pOSitiO_n di;placement, meaning. Given that the system is fed in discrete martrisrpnly
and prototype zone of influence re-estimation (box ex- incremented at the arrival of a new data.
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cost function:

¥ T — Yill? + |1 (16)

t
E=

i=1

wherew = 62 is a positive number called the regulariza-
tion parameter, andis the identity matrix. The solution

that minimizes the cost function of Equation 16 is:
t t
M= B +w)™. ) WY, (17)
i=1 i=1

We rewrite Equation 17 by replacing[_, ¥'¥T + wl)
and (!_; ¥Y;) by @ etZ, respectively:

I = o7t .z (18)
By isolating the term corresponding to= t, one can
rewrite ®; as follows:
-1

Z P + ol |+ PE] (19)
i=1

(Dt:

Thus, the matrixp is updated using the following recur-

sive formula:
Oy = Op_g + P/ (20)

The initialization of the algorithm consists in deter-
mine two quantities:

e Ilp : In practice, and when no prior knowledge is
available Iy is initialized by 0.

e O;1: Givend; = 3 WP + wl and by putting
equals 0, we find thab;* = w1, wherew is the
regularization parameter.

Large values ofu™! (between 19 and 10) are gener-
ally adopted when signal-to-noise ratio on input vec-
tor is high, which is the case in our system especially
at the beginning of learning where significant modifica-
tions are applied on the prototypes. The impaciof
value according to input noise level is discussed in [12].
When a new rule is created, its parameters are initialized
by the average of the parameters of other rules:

In the same way, a recursive formula to update the ma- where

trix Z can be deduced :
Zi = Z_ 1+ (21)

In order to calculatél; using Equation 18p;* need

to be calculated. This can be done using the following

lemma:
Lemmal:LetA=B"1+CDCT, the inverse oA
is given as follows:

Al=B-BC(D+C'BC)'C'B (22)

1 2 —k
ﬂ%(t_l) ﬂ%(t_l) ﬂ%(t_l)
-1 To-1) v Tog-n)
IT; = (25)
21 22 -k
ey e o Treen
-1 =2 -k
Tt Tt o Teean
r
7?((:r+1)t = Zﬂl ()?t)ﬁic(t_l) (26)
i=1
The matrix®d1 is extended as follows:
1
pl o | [ 0]
ot = ol .. o0 (27)
[ 0 ]
0o .. Qt

To apply Lemma 1 on Equation 20, we make the fol- wherep = (r2 + 1)/r%. This recursive least squares

lowing substitutions:

A=d,B1=d_,C=¥,D=1

Thus, the recursive formula of the inverse of the matrix

® can be obtained as follows:
oL w vl ot
(I)t_l — q)t—_ll _ t-1 -IE t_l t—-1 (23)
1+¥] 0% ¥
IT is then calculated as next:
I = @;'Z =M (Zy+ YD)
= O N (@eallig + ¥iY)
= O7H((D — VY1 + YY)
= L1 - (D{l‘{"t‘{’;rﬂt_l + @Fl‘Pth
= T — O P (Yo — ] Tig) (24)

(RLS) consequent learning is used in most TS systems.

We sum up the main features of the evolving TS sys-
tems mentioned in this section in Table 1.

It can be noticed that the antecedent is learned inde-
pendently from the consequent learning in the above-
mentioned systems. However, few other approaches
propose a global learning of fuzzy rule-based models.

The authors of [13] proposed an extension of the
classic neural networks error back-propagation method
based on the gradient descent called ANFIS (Adap-
tive Neuro-Fuzzy Inference Systems). In this exten-
sion, a hybrid learning method that combines the gradi-
ent method and the least squares method is used. Each



GFMM [4] DENFIS[5] | FLEXFIS [2] eClass [3] ILClass [1]

Antecedent structurg| hyper-boxes | hyper-boxes | hyper-spheres axis-parallel rotated
hyper-ellipses|  hyper-ellipses

Consequent structurg  binary 1-order 1-order 1-order 1-order

Rule creation distance-based distance-based distance-based density-based  density-based

Antecedent learning ||box expanding - - raduis update|  center shifting

cov. matrix update
Consequent learning RLS RLS RLS RLS RLS

Table 1: A comparison table between existing evolving T Sesyst

epoch of this hybrid learning procedure is composed of a one-step gradient descent method. Although EFUNN
a forward pass and a backward pass. In the forward structure has been presenteéeatiently, it is function-
pass, the parameters (weights) in the output layer areally equivalent to Mamdani fuzzy inference system. The
identified using the least squares estimation. Then, thedistance-based incremental clustering method used in
error rates propagate from the output toward the input EFUNN in both input and output space depends strongly
end and parameters in the hidden layer(s) are updatedon the sensitivity threshold.

the gradient descent method. Based on the functional

equivalence between adaptive networks and fuzzy in-

ference systems, the hybrid learning method is used to 3. Antecedent learning optimization in evolving
learn a fuzzy inference system of Takagi Sugeno’s type.  Takagi-Sugeno classifiers

Thus, consequent parameters are first estimated using

least squares, and premise parameters are then updated As mentioned before, we proposed in [1] an evolv-

using error-propagation gradient descent. Despite thej, g ¢jassification system with first-order consequent
wide use of ANFIS in dterent applications, we can  gu,ctyre. We used an enhanced antecedent structure so

note that it cannpt b.e used in an evolving Iearn!ng CON" that each prototype is represented by a center and a co-
text because of its fixed structure. However, itis still a | o .00 e matrix

robust learning algorithm for adaptive classification sys- Incremental learning of TS models is generally di-

tems. vided into two independent learning processes: an-
EFuNN (Evolving Fuzzy Neural Networks) [14] is tecedent learning and consequent learning. This work
a fuzzy rule-based classification system in which each focuses on finding an optimal antecedent structure that
rule represents an association between a hyperspher&an improve the overall system performance.
from the fuzzy input space and a hypersphere from the Antecedent learning can be simply done in straight-
fuzzy output space. The pair of fuzzy input-output data forward recursive statistical manner so that prototype
vectors §¢,ys) is allocated to a rule; if x; falls in center and covariance matrix are re-estimated after each
the input hypersphere and falls in the output hyper-  new data sample in order to give it the rotated hyper-
sphere. The former condition is directly verified using elliptical form. All samples have the same weight and
a local normalized fuzzy distance, whereas the latter is antecedent structure is built in unsupervised way; i.e.
indirectly verified by calculating the global output error.  System output is not considered in the learning pro-
EFuNN algorithm starts by evaluating the local normal- cess. Our system with this simple method will be called
ized fuzzy distance between the input vector and the ex- ILClass-statand presented in section 3.1.
isting rules in order to calculate the activations of the  Looking for new techniques that optimize antecedent
rule layer. The activation of the fuzzy output layer is structure and enhance system performance, we pre-
calculated based on the activations of input layer and sented in [1] a global learning paradigm for evolving TS
the centers of hyperspheres in output layer. The cen- classifiers. The core idea of this paradigm is to learn the
ters of input hyperspheres are adjusted depending on theantecedent and the consequent part in correlated man-
distance between the input vector and rule nodes, andner so that the output error is used to supervise the an-
centers of output hyperspheres are also adapted using decedent learning process. The goal of this supervision
gradient descent. However, a supervised adaptation ofis to focus learning on samples with high output error
the input hyperspheres centers is also possible based orand thus to reduce misclassification errors. To the best
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of our knowledge, this is the first system in which out-
put feedback is employed in antecedent learning. This
approach is calledl.Class-feedand explained in sec-
tion 3.2.

AlthoughlLClass-feechad shown good results [1] by
improving the long-term system accuracy for several in-
cremental classification problems, it had been system-
atically outperformed byl Class-statin the short-term
(at the beginning of learning process where only few
data are available). The main purpose of this paper is
to cope with this problem by proposing a new solution
that can be icient during the whole learning process,
i.e. good performance at the early learning stage cou-
pled with the best possible long-term performance. This
new solution will be explained in section 3.3 and called
ILClass-hybrid

3.1. ILClass-stat: statistical antecedent learning

For each new samplg, the center and the covariance
matrix of the prototype that has the highest activation
degree are updated.

The recursive estimation of the center can be found
as follows:

p=0-0) fra+ aX (28)

(29)

a=—-
t

wheret represents the number of updates that have been

applied so far on this prototype.
The covariance matrix can be recursively computed
as follows:

A=(1-0a) Acat a (X—d)(%-i&)"  (30)

All incoming samples are treated equitably in the above
formulas that are straightforward statistical mean and
covariance calculations.

3.2. ILClass-feed: antecedent learning driven by out-
put feedback

The fundamental idea of the novel approach is to use

an output error feedback in the antecedent adaptation (as

illustrated in Figure 3), contrary to existing approaches

where the antecedent is learned independently from the

consequent learning and the overall output. The pur-
pose of integrating the output signal in the antecedent
learning is to bias it towards the incoming points with

high output error so that the more the error is high the
more will be the influence of this point on the antecedent
adaptation. Thanks to this improvement, it becomes

data points that are misclassified by the system or hardly
well-classified, and to put less focus on non-problematic
points.

To formulate this concept, we introduce in the an-
tecedent adaptation formulas a weight value calculated
for each sample so thatis calculated as follows:

Wi

(31)

Weumul

t
Weumul = Z Wi
i=1

wherew represents the “weight” associated to the data
point X;. The value ofw is related to the output error
committed by the system for the current pafht

In classification problem, the quality is perceived
by the user from the number of misclassification er-
rors committed by the system. The valuevotan be
calculated so that it becomes higher for points with a
high risk of misclassification. The risk of misclassifi-
cation of each sample is estimated by its confusion de-
gree. The confusion degree is inversely proportional to
the diterence between the score of the true classg, of
and the highest score within the other (wrong) classes.
The confusion-driven antecedent learning is then imple-
mented by calculatingv for each incoming sample as
follows:

(32)

W=(1-[ye=Ynd)/2 we][0,1] (33)
wherey: is the system output correspondingddhat

represents the true classxf and

Ync=argmax ¥ ; c¢c=1.k & c#¢C (34)
The value ofw tends toward O wherx; is “strongly”
recognized, and toward 1 when it is misrecognized. The
risk of misclassification associated Xpis proportional
to the confusion degree estimated by the valus.dkee

Figure 4)
low confusion high confusion
0< [yf - y'n,c] [y( - ync] <0

well-classified ‘ misclassified

Figure 4: Confusion degree estimatioi for error samples is greater
than 0.5, and less than 0.5 for recognized ones)

System quality in regression and time-series predic-
tion problems is related to theftBrence between sys-

possible in the antecedent adaptation to focus on thetem output vector and real output vector, and can be

8
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lated in these cases by the distance between system out-
put vectory and ground truth vectagr(contains 1 for the

true class and Os for the rest). Thus, the value/gin

be estimated as follows:

Misclassification rate (%)
IS

k

W= 19~ vel (35) :

c=1 500 1000 1500 2000 2500 3000 3500 4000

wherek is the number of classes. The proposed idea Humber offeaming samples
can be implemented usingftirent quality measures, @
like R-squared adjusted [2], non-dimensional error in- 7\ | Evove.stat
dex (NDEI) [5], or normalized RMSE [6]. However, ¢ \ Desired solufion
the focus in this paper is placed on classification prob-
lems and the confusion-based calculation (Equation 33)
will be employed all along the experimental section.

Misclassification rate (%)
IS

3.3. ILClass-hybrid: ILClass-stét Class-feed error-

based Slldlng ! 500 1000 1500 2000 25‘00 3000 3500 4000
As explained abovdl Class-feeduses system scores Number of learning samples
to estimate the weight of each sample. Antecedent (b)

structure is then hlg_hly m,ﬂuenced by system perfor- Figure 5: (a) Performance curve intersection betwketlass-stat
mance. When experimenting It.Class-feedwvas able andlILClass-feedb) The optimal looked-for performance

to outperformlLClass-statafter a specific period of in-

cremental learning. Nevertheless, results have shown

the relatively poor performance dif Class-feedat the performance stagnates for the long term. It is worth re-
early phase of learning so that it is always beaten minding that achieving acceptable early performance is
by ILClass-statmethod. Figure 5(a) (using PenDigits mandatory in many applications where user is involved
dataset) illustrates this phenomenon and the intersectionin the learning cycle.

point of the two curves. These results can be explained An ideal solution consists then in proposing a new
by the system instability at the beginning of learning method that profits of the advantagelb€lass-statfor
where only few data samples are learned and importantthe short term, and that df.Class-feedfor the long
fluctuations appear at system output during this early term. The objective is to get the performance illustrated
stage. Therefore, antecedent learnindli€@lass-feed by the black curve in Figure 5(b).

will suffer from this instability and need a period of time To cope with this problem, we propose a new ap-
to reach its expected good performance. The more sys-proach, callediLClass-hybrid that allows a gradual
tem output gets stable, the mditeClass-feedcan en- sliding betweenlLClass-statand ILClass-feed It is
hance its performance, as shown in Figure 5(a). On the worth reminding that one of the main criteria in the
other hand|LClass-statcopes well at the early stage al- learning algorithm is to be completely free of problem-
lowing a stable statistical prototype initialization, list depended parameters. Thus, the sliding mechanism



from ILClass-statto ILClass-feeds automatically con-
trolled by a system stability measure represented,by
as follows:

1 Wi
=1-+(1-2 36
« t ( )Wcumul (36)
A= MPET c0.1] 37)

wherenbErr is the accumulated number of misclassifi-
cation committed on the incoming samples. Early val-
ues ofA are close to 1 because of the high number of
error at the beginning of incremental learning process.
Then, its value tends more-or-less rapidly towards small
values close to 0. Using Equation 36Class-hybrid
automatically adjusts the combination fClass-stat
and ILClass-feedaccording to the relative error level
observed at system output.

Thus, the formulas used ilh.Class-hybridcan be
summed up as follows:

B=0A-a) i+ aX
A=1-a) Aci+ a (% — @)% - )"

1

a=AT 41—
t Weumul
bE

1= 0.1

W= (1-[¥e—Yncl)/2 we[0,1]
Yac=argmax ¥ ; c=1.k & c#¢

t
Weumul = Z Wi
i=1

4. Experimental Validation

Experiments in this paper will be mainly focused on
studying the performance ofClass-hybridas an op-
timal compromise betweeh.Class-statand ILClass-
feed The three models are evaluated foffetient
incremental classification problems using benchmark
datasets. Short- and long-term performance compar-
isons between the three models are presented in this sec
tion.

In addition to the validation ofLClass-hybrid we
present in this section another original point of this pa-
per that consists in studying the behaviour of an evolv-
ing TS classifier when adding new unseen classes to the
system. In this novel evaluation scenario, the aim is
to examin the system reaction to the addition of new
classes, and to test its performance recovery speed.

10

The benchmark datasets used in our tests are first pre-
sented, then some details about our experimental proto-
col are given. Results are then presented and divided
into two parts: results for synchronized class learning,
and results for unsynchronized class adding.

4.1. Classification datasets

We evaluate our algorithms on several well-known
classification benchmarks form the UCI machine learn-
ing repository [15]. We followed two criteria in select-
ing the datasets :

e They should represent multiclass problems. Our
learning algorithms are optimized for classification
problem with more than two classes.

The number of samples per class in each dataset
should be large enough for two reasons. The firstis
to have a large learning dataset that allows contin-
uing the incremental learning as far as possible and
to examine the behaviour of the algorithms in the
long term. The second reason is to have a large test
dataset to be able to correctly evaluate the classi-
fier during the incremental learning process as seen
later. The large size of the test dataset helps as well
to neutralize as much as possible the ordkaa on

the results.

Respecting the last two criteria, the next datasets had
been chosen from UCI machine learning repository to
be used in our experiments:

e CoverType: The aim of this problem is to predict
forest cover type from 12 cartographical variables.
Seven classes of forest cover types are considered
in this dataset. A subset of 2100 instances is used
in our experiments.

PenDigits The objective is to classify the ten dig-
its represented by their handwriting information
from pressure sensitive tablet PC. Each digits is
represented by 16 features. The dataset contains
about 11000 instances.

e Segment Each instance in the dataset represents
a 3x3 region from 7 outdoor images. The aim is
to find the image from which the region was taken.
Each region is characterized by 19 numerical at-
tributes. There are 2310 instances in the dataset.

e Letters: The objective is to identify each of a large
number of black-and-white rectangular pixel dis-
plays as one of the 26 capital letters in the English

alphabet. Each letter is represented by 16 primitive



Dataset # Classes| # Features | # Instances 4.3. Results for synchronized classes
CoverType 7 54 2100
PenDigits 10 16 10992 -

g We present in Figure 7 the results of the three mod-
segment ! 19 2310 Is for five diferent benchmark datasets. In these f
Letters 26 16 20000 €S Orth"’e le[_e” fet”hc mar ";‘.ast.e s- Iese.f. '9-
JapaneseVowels 9 14 10000 ures, the evolution of the generalization misclassifica-

tion rate of the three models is presented, from the very
Table 2: Characteristics of learning datasets beginning of the incremental learning process (few sam-

ples per class), until a relatively advanced learning state

(limited by the size of the used datasets). We show

in the same figures the relative reduction of misclassi-

fication rate achieved biLClass-hybridcompared to

e JapaneseVowels The goal is to distinguish nine  ILClass-statandILClass-feed All classes in this first
male speakers by their utterances of two Japanesepart of experiments are introduced to the system in
vowels. Each vector is characterized by 14 values. quasi-synchronized manner (random sample orders are
The dataset contains 10000 samples. applied without any constraint on sample classes).

The characteristics of the five datasets are summa- The obtained results are'also synthesized in Ta}bles 3-
fized in Table 2. The five datasets used in our exper- / Where the performance is measured at fodiecent

iments vary by both the number of features (number Moments of incremental learning (i.e. figrent num-
of data space dimensions), and the number of classes ber of learned samples) that represent short-term and

numerical attributes. The dataset contains 20000
instances.

which allows testing our algorithms onftérent multi- long-term viewpoints. In addition to thk:Class-stat
class problems. IL_CIass—feedand ILC}Iass—hybnd the performancg op—
tained by the evolving TS approach eClass [3] is given
4.2. Experimental protocol in the tables. Besides, we present in the same tables the
misclassification rates obtained by two batch classifiers:
Learning subsets radial basis function (RBF) classifier and multilayer per-

| | i ceptron (MLP, one hidden layer with 10 neurons). The
vV o test1 VY testz2 vV tests

1 < < implementation of these two classifiers is provided by
Classifier Tanagra software.
time The obtained results confirm the analysis given in
(o | Section 3.3 about the fiiculties that faceLClass-feed
) in the early learning phases due to high perturbation of
Figure 6: Periodic held-out evaluation protocol antecedent learning. Nonetheless, they approve the con-

siderable gain of performance that can be achieved by

A repeated 10-folds cross-validation (CV) data parti- ILClass-feedn the long term, compared thClass-stat
tioning protocol is employed in our experiments. For Mmethod.
each CV, the samples of training subset (90% of en- More importantly, results show the very good per-
tire dataset) are sequentially introduced to the systemformance oflLClass-hybridthat almost covers the op-
in 10 different random orders. Thus, experiment for timal combined performance obtained hyClass-stat
each dataset is repeated 100 times and average resultendILClass-feedat both short- and long-term learning
are presented in the figures below. The test subset ismoments. It can be noted thaiClass-hybridallows in
used to estimate the recognition rate achieved by the average about 15% of error reduction when compared
classifier during the incremental learning process. The to ILClass-feecht the early stage of learning. This size-
term “learning subset” is used to identify the group of able gain is very important in many application con-
instances learned by the system between each two contexts in which online incremental learning is required
secutive tests. When a new class appears in a givento be stficiently fast. The short-term performance can
learning subse§;, test samples of the same class are play a key role in user acceptance of evolving classi-
added to the test subs8f.: After learning each new  fiers. The short-term enhancementlirClass-hybrid
Si, a new evaluation point is estimated usifgs; and does not sacrifice the good performance of the output
the curves drawn in the next figures represent an inter- feedback modellClass-feeflandILClass-hybridalso
polation of these points. This incremental learning pro- achieves about 15% of error reduction when compared
tocol is called periodic held-out protocol. (Figure 6) to ILClass-statafter a long-term incremental learning.
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Number of learning samples
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PenDigits Number of learning samples
500 | 1000 | 2000| 10000
eClass 5.23| 453 | 3.8 3.03
ILClass-stat 3.76 | 3.04 | 2.35 1.67
ILClass-feed 5.60| 3.60 | 2.15 1.06
ILClass-hybrid |[3.42 | 2.58 | 1.91 1.07
RBF (offline) 8.11| 6.76 | 5.13 4.10
MLP (offiine) [/6.38| 3.41 | 2.74| 213

Table 3: Misclassification rates atfiéirent moments of learning (PenDigits)

Letters Number of learning samples
1200 | 2400 | 6000 | 16000
eClass 24.81| 22.79| 21.91| 19.02
ILClass-stat 19.30| 14.28 | 11.51| 10.25
ILClass-feed 23.87| 15.19| 10.64| 9.03
ILClass-hybrid |{19.73 | 14.13| 10.70| 9.19
RBF (offline) 24.55| 22.83| 20.65| 20.01
MLP (offline) 22.07| 13.12| 11.67| 8.21

Table 4: Misclassification rates atfiirent moments of learning (Letters)
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JapVowels Number of learning samples
300 | 1500 | 3000 | 9000
eClass 12.32| 8.44 | 6.06 | 4.98
ILClass-stat 937 | 3.97| 3.45| 3.10
ILClass-feed 12.28| 4.15| 3.08| 2.59
ILClass-hybrid || 9.98 | 3.93 | 3.10 2.59
RBF (ofline) 12.87| 7.39 | 524 | 3.90
MLP (offline) 9.11 | 331 | 263 | 134

Table 5: Misclassification rates aftfidirent moments of learning (JapVowels)

Segment Number of learning samples
200 | 600 | 1000 | 2000
eClass 13.40| 9.32| 8.93 8.04

I[Class-stat _ ||10.92| 7.54| 6.81 | 6.17
ILClass-feed ||14.93| 7.63| 6.60 | 5.26
ILClass-hybrid ||11.05| 7.20| 6.44 | 5.38
RBF (ofline)  ||11.16] 9.59| 9.32 | 9.05
MLP (offiine) || 9.51 | 6.71| 6.03 | 4.66

Table 6: Misclassification rates atfidirent moments of learning (Segment)

Cover Number of learning samples
200 600 | 1200 | 1900
eClass 28.19| 23.77| 21.14| 20.06

ILClass-stat 26.89| 21.20| 19.02| 17.79
ILClass-feed 30.68| 21.44| 17.32| 15.2
ILClass-hybrid [|27.21| 20.58 | 17.41| 15.8
RBF (offline) 27.76| 23.12| 20.31| 18.19
MLP (offline) [[29.21] 22.15| 19.92| 17.40

Table 7: Misclassification rates atfiéirent moments of learning (Cover)
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4.4. Results for unsynchronized classes incrementally learned in parallel so that they can play
complementary roles is fiierent situation (adding new
classes, deleting existing classes, long-term stability,
etc.). We believe that this track is very promising and
can lead to interesting new evolving classification ap-
proaches.

The experiments presented so far represent a simple
and straightforward incremental learning scenario, in
which all the classes are presented to the classifier to-
gether from the beginning of the incremental learning
process. In addition to the continuous refinement of its
knowledge base, one of the main features of an evolv-
ing classification system is the capacity of learning new References
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the experimental part using several benchmark datasets.
Inspired by the idea ofLClass-hybrid we have

started to work on anfgcient dynamic combination of

a set of evolving classifiers. Error-feedback can be an

important criterion and could play a key role in any dy-

namic vote mechanism. Classifiers fronfféient sub-

spaces, learned starting fronffdrent moments can be
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Figure 8: Performance stability and recovery when introdgciew classes
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