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ABSTRACT

This articles tackles the estimation of mode parameters in recorded sounds of resonant objects. High reso-
lution methods such as the ESPRIT method have already proved to be of great use for this sort of purpose.
However, these methods being model-sensitive, their application to real-life audio signals can lead to results
that are not satisfactory enough for a consistent re-synthesis. This is especially the case when the computa-
tional cost makes it impossible to analyse the signal in totality, or when the signal presents a high number
of components. Significant improvements have already been achieved by decomposing the signal into several
sub-band filtered versions, and by applying the ESPRIT algorithm on each of the resulting signals. It is
shown in this article that the ESPRIT algorithm can be efficiently applied on time-frequency representations
of the signal obtained using Gabor frames. Numerical tests that highlight the advantages of such an approach
are also detailed. In addition to the advantages offered by the sub-band approach, the solid Gabor frame
formalism combined with the ESPRIT method allows a flexible and sharp analysis on selected regions of the
time-frequency plane, and leads to re-synthesis which are perceptually very close to the original sounds.

1. INTRODUCTION

The context of this study is the identification of acousti-

cal modes which characterize a resonant object. This is

of great use when building an environmental sound syn-

thesizer (see [1] or [2] for an insight on such synthesiz-

ers). Practically, the analysis is made from recorded im-

pact sounds, where the resonant object is hit by another

solid object (e.g. a hammer). Assuming that the impact

sound is approximately the acoustical impulse response

of the resonant object, each mode corresponds to an ex-

ponentially damped sinusoid (EDS). The modal analy-

sis thus consists of estimating the parameters of each

sinusoidal component (amplitude, phase, frequency and

damping). These parameters will be stored, and eventu-

ally modified, before further re-synthesis. In this paper,

only the analysis part will be considered.

In the past decades, significant advances have been made

in the field of system identification, especially for esti-

mating EDS parameters in a background noise. Although

the so-called high-resolution methods or subspace meth-

ods (MUSIC, ESPRIT) [3, 4] were proved to be more ef-

ficient than spectral peak-picking and iterative analysis-

by-synthesis methods [5], few applications have been

proposed. One can suppose that the high computational

complexity of these methods is a major drawback to

their wide use: on a standard modern computer, high-

resolution methods can hardly analyse more than 104

samples, which corresponds roughly to 200 ms sampled

at 44100 Hz. This is usually too short for analysing prop-

erly impact sounds which can last up to 10 s. Sub-band

decomposition with critical sub-sampling in each band

seems to be a natural solution to overcome the complex-

ity problem, as it has already been shown in [6] and [7].

This can also be combined with a prior decomposition of

the original signal in the time domain as shown in [8].

Another drawback is that ESPRIT gives accurate esti-

mates when the background noise is white, which is usu-

ally not the case in practical situations. This problem can

be overcome by the use of whitening filters. The estima-

tion of the model order (i.e. the number of modes) is also

an important issue. Various methods have been proposed

for automatic estimation of the order, e.g. ESTER [9],

but this parameter is often deliberately over-estimated in

most practical situation.

In this paper, a novel method is proposed for estimat-

ing the modes with the ESPRIT algorithm, by apply-

ing it on a time-frequency representation of the orig-

inal sound. The time-frequency representation is here

computed within a Gabor frame, which forms a discrete

paving of the time-frequency plane. The transform ap-

plied to the signal in order to express it in a given Gabor

frame is called a Gabor transform (GT). Computing the
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GT, a straightforward time subsampling and sub-band

division of the signal is achieved. It is shown that an

EDS in the original sound is still an EDS inside each fre-

quency channel, and that ESPRIT can be applied in each

of these channels in order to recover the original parame-

ters. Furthermore, if the number of frequency sub-bands

is high enough, it is reasonable to assume that the noise is

white inside each sub-band, which renders the analysed

samples more conform to the underlying mathematical

model. A method to discard insignificant modes a poste-

riori is also proposed.

The paper is organised as follows: first, a brief state-of-

the-art covers the signal model, the ESPRIT algorithm

and the Gabor transform. Then, it is shown that original

EDS parameters can be recovered by applying the ES-

PRIT algorithm in each frequency channel of the Gabor

transform. The next part describes numerical tests that

have been conducted in order to test the robustness of the

method. Then, an experimentation on a real metal sound

is described, and shows the efficiency of the proposed

method. Further improvements are finally discussed.

2. STATE OF THE ART

2.1. The signal model and the ESPRIT algo-

rithm

The discrete signal to be analysed is written:

x[l] = s[l]+w[l] (1)

where the deterministic part s[l] is a sum of K damped

sinusoids:

s[l] =
K−1

∑
k=0

αkzl
k (2)

where the complex amplitudes are defined as αk = ak eiφk

(containing the initial amplitude ak and the phase φk),

and the poles are defined as zk = e−dk+2iπνk (containing

the damping dk and the frequency νk). The stochastic

part w[l] is a gaussian white noise of variance σ2.

The ESPRIT algorithm was originally described by Roy

et. al. [4], but many improvements have been proposed.

Here, the Total Least Square method by Van Huffel et. al

[10] will be used. The principle consists of performing

a SVD on an estimate of the signal correlation matrix.

The eigenvectors corresponding to the K highest eigen-

values correspond to the so called signal subspace, while

the remaining vectors correspond to the so called noise

subspace. The shift invariance property of the signal

subspace allows a simple solution for the optimal poles

values zk. Then, the amplitudes αk can be recovered by

solving a least square problem. The algorithm can be

described briefly as follows:

The signal vector is defined as:

x=
[

x[0] x[1] . . . x[L−1]
]T

, (3)

where L is the length of the signal to be analysed. The

Hankel signal matrix is defined as:

X =











x[0] x[1] . . . x[Q−1]
x[1] x[2] . . . x[Q]

...
...

...

x[R−1] x[R] . . . x[L−1],











(4)

where Q,R>K and Q+R−1= L. The amplitude vector

is defined as:

α=
[

α0 α1 . . . αK−1

]T
, (5)

and the Vandermonde matrix of the poles:

Z
L =











1 1 . . . 1

z0 z1 . . . zK−1

...
...

...
...

zL−1
0 zL−1

1 . . . zL−1
K−1











. (6)

Performing a SVD on X leads to:

X = [U1U2]

[

Σ1 0

0 Σ2

][

V1

V2

]

, (7)

where Σ1 and Σ2 are diagonal matrix containing respec-

tively the K largest singular values, and the smallest sin-

gular values; [U1U2] and [V1V2] are respectively the

corresponding left and right singular vectors. The shift-

invariance property of the signal space leads to:

U
↓
1Φ1 =U

↑
1 , V

↓
1 Φ2 = V

↑
1 , (8)

where the eigenvalues of Φ1 and Φ2 provide an estima-

tion of the poles zk. (.)↑ and (.)↓ respectively stand for

the operators discarding the first line and the last line of

a matrix. Thus, zk can be estimated by diagonalization of

matrix Φ1 or Φ2. The associated Vandermonde matrix

Z
L is computed. Finally, the optimal amplitudes with

respect to the least square criterion are obtained by:

α= (ZL)†
x, (9)
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where (.)† denotes the pseudoinverse operator.

2.2. The Gabor Transform

The Gabor transform allows the expression of x[l] in a

given Gabor frame. A Gabor frame {g,a,M} is char-

acterised by a window g, a time-step parameter a, and a

number of frequency channels M. The expression χ[m,n]
of x[l] in the Gabor frame {g,a,M} is written:

χ[m,n] =
L−1

∑
l=0

g[l −an]x[l] e−2iπl m
M , (10)

where (.) denotes the complex conjugate. m is a discrete

frequency index and n a discrete time-index. One can

see that this corresponds to a discretised version of the

standard short-time Fourier transform. For some frames,

this transform can be inverted (for more details, see for

instance [14]). The signal χ[m,n] for a fixed index m

can be seen as a sub-sampled and band-pass filtered ver-

sion of the signal x[l]. As the sub-sampling reduces the

length of the data by a factor a, the ESPRIT algorithm

can be applied to each frequency channel in order to anal-

yse longer signals.

3. ESPRIT IN A GABOR FRAME

This section covers the application of the ESPRIT algo-

rithm to a single channel in a Gabor frame. The analysed

signals are therefore composed of the GT coefficients at

a given frequency index m. As the GT is linear, the con-

tribution of the deterministic part s[l] can be separated

from the contribution of the noise w[l].

3.1. Deterministic part

c[m,n] denotes the GT of s[l] in channel m and time in-

dex n, whereas ck[m,n] denotes the GT of the signal zl
k

associated to the pole zk:

ck[m,n] =
L−1

∑
l=0

g[l −an]zl
k e−2iπl m

M . (11)

According to the signal model (2), is can be easily proved

that:

c[m,n] =
K−1

∑
k=0

α̃k,mz̃n
k,m, (12)

where the apparent pole z̃k,m can be written as:

z̃k,m = za
k e−2iπa m

M , (13)

and the apparent amplitude:

α̃k,m = αk ck[m,0]. (14)

In other words, the deterministic part of the signal in

each channel is still a sum of exponentially damped sinu-

soids. However, their poles and amplitudes are modified

according to the Gabor frame time-step and frequency

parameters.

3.2. Stochastic part

Assuming that the time-step a is close to M ensures that

the GT of the noise in each channel is approximately

white. Furthermore, it has been proved that the Gabor

transform of a gaussian noise is a complex gaussian noise

[11]. It his thereafter assumed that the GT of w[l] in each

channel is a complex white gaussian noise.

3.3. Recovering the signal parameters

As the signal model is still valid, it is reasonable to ap-

ply ESPRIT on c[m,n]. cm denotes the vector of GT

coefficients in the channel m and Sm the Hankel matrix

built from c[m,n]. Applying the ESPRIT algorithm to Sm

leads to the estimation of the apparent poles z̃k,m. Invert-

ing equation (13) leads to:

zk = e2iπ m
M (z̃k,m)

1
a . (15)

Because of the sub-sampling introduced by the GT, it

can be seen from equation (13) that aliasing will oc-

cur when the frequency of a pole is outside the interval
[

m
M
− 1

2a
,

m
M
+ 1

2a

]

. To avoid aliasing, the analysis win-

dow g[l] is chosen so that its bandwidth is smaller than
1
a
. That way, the possible aliasing components will be at-

tenuated by the band-pass effect of the Gabor transform.

Denoting Z̃
N
m the Vandermonde matrix of the apparent

poles z̃k,m (N is the time-length of signal c[m,n]), the least

square method for estimating the amplitudes leads to:

α=
(Z̃N

m )
†
cm

ck[m,0]
. (16)

Without noise, according to equation (12), each EDS

should be detected in each channel, which generates mul-

tiple estimations of the same modes. Theoretically, the

model order should be set to K in each channel. How-

ever, this is usually a large over-estimation. Because

each channel of the GT behaves like a band-pass filter, an

EDS with a frequency far from m
M

will be attenuated and
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considered as noise. Thus practically, the exact number

of detectable components in each channel is unknown.

The model order in each channel is therefore determined

using the ESTER criterion (see section 3.4 for implemen-

tation details).

3.4. Discarding multiple components

If the distance between a set of channels on which an

analysis has been performed is smaller than the band-

width of the analysis window g[l], the same components

are likely to appear in all of these channels. These multi-

ple estimations of the same component (hereafter named

replicas) have to be identified. The only one that will

be kept for the final re-synthesis is the one which fre-

quency is the closest to the central frequency of the chan-

nel where it has been detected. A component cr (with

frequency fr) is considered a replica of a component co

(with frequency fo) if the following conditions are ful-

filled:

| fr − fo| < ε f (17)

| fr − fo| < | fo − fi| (18)

Here ε f is a frequency confidence interval and fi is the

closest frequency to fr among the components detected

in the same channel as cr.

3.5. Discarding irrelevant components

Practical tests have shown that some of the modes de-

tected using the previously describes approach are not

relevant for they have an insignificant energy. An ex-

ample of such a situation is covered in section 4. In or-

der to produce satisfactory re-synthesis, it is important to

take psycho-acoustical considerations into account. It is

known that the human auditory system can be modelled

as a band-pass filter bank. The filters bandwidths, called

critical bands, are functions of the central frequency. In

order not to favour any frequency range over an other

in the discarding process, the idea is to keep only the

components that added one to the other form 99% of the

total energy in each of these filters. Therefore the fol-

lowing process is applied: first, the frequency domain

is segmented in critical bands centred around each com-

ponent. The energy of each critical band is then com-

puted considering all the components which frequency

falls into the given critical band. Finally, these compo-

nents are added one to another, until 99% of the critical

band energy is reached, and the remaining components

are definitely discarded of the final re-synthesis. At ev-

ery step of this process, the most energetic components

are considered in priority.

4. NUMERICAL TESTS

4.1. Robustness to noise

−14 −12 −10 −8 −6 −4 −2 0 2 4
SNR (dB)

10−4

10−3

10−2

10−1

100

E
rr
or

(H
z)

Standard ESPRIT

ESPRIT in Gabor frame

Fig. 1: Comparison of the frequency errors as a function

of the SNR, with the ESPRIT method applied in the full-

band time domain and with the ESPRIT method applied

in a Gabor frame. For each SNR, 150 realisations have

been computed.
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Fig. 2: Damping errors as a function of the SNR

This section compares the performances of the standard

ESPRIT method against the proposed method, as the
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Fig. 3: Initial amplitude errors as a function of the SNR.

signal-to-noise-ratio (SNR) increases. The test signal is

a sinusoid of frequency f = 5000 Hz, damping δ = 1,

initial amplitude A = 1 and length L = 70560 (1.6s at

44100 Hz). The noise in which the test signal is embed-

ded is a white noise of variance σ2. For each value of

σ2, the SNR is computed at time n = 0 by:

20log10

(

A√
2σ

)

(19)

At each SNR, 150 different realisations are computed.

The Gabor frame consists in a blackman-harris window

of length 2048, a time-parameter a = 32 and a number of

channels M = 2048. For the full-band standard ESPRIT

method, 2205 samples are analysed. For the Gabor frame

method, the totality of the signal is analysed. This en-

sures that the resulting computational cost is of the same

order in both cases (2205×a= L). Fig. 1 shows the error

committed in the frequency estimation of the test signal.

It shows that the frequency estimation error is signifi-

cantly smaller in the Gabor frame case. Fig. 2 shows the

estimated dampings for both methods. One can observe

that the standard deviation to the real damping value is

clearly higher in the full-band case. Similar observations

can be made on the errors committed in the initial am-

plitude estimations Fig. 3. These tests clearly highlight

the advantages of the Gabor frame approach; it is reason-

able to suppose that the better behaviour observed in the

Gabor frame case is due to the time sub-sampling, which

increases the time-equivalent length of the analysed sig-

nal.

4.2. Robustness to damping

In order to test the robustness of both methods when

the damping of the component increases, the follow-

ing test has been elaborated. The deterministic part of

the signal is an exponentially damped sinusoid of fre-

quency 5000 Hz which damping varies from 1 to 100.

The stochastic part is made of a white noise of variance

0.05, such that the SNR at the origin is 10 dB. This tests

show that the Gabor frame approach is only superior to

the full-band approach until a given damping threshold.

The threshold value is around 23 for the estimation of

the damping and the frequency (Fig. 4 and Fig. 5) and 15

for the initial amplitude estimation (Fig. 6). This corre-

sponds to components which spend 99% of their energy

in respectively 0.1 and 0.15 s. One can assume that for

high dampings, the number of time-frequency transform

coefficients which contains significant deterministic en-

ergy is too small for a correct estimation.

0 20 40 60 80 100
Damping

10−4

10−3

10−2

10−1

100

101

E
rr
or

(H
z)

Standard ESPRIT

ESPRIT in Gabor frame

Fig. 4: Frequency errors as a function of damping.

5. APPLICATION ON A REAL-LIFE SOUND

This section focuses on the analysis/synthesis of a real

sound s1 (which can be listened to at [15]). s1 corre-

sponds to the sound of a metal bowl. Observing its spec-

trogram Fig. 6, one can see that it presents a rich spectral

content and significant lasting energy up to 12 s.

5.0.1. Analysis with full-band ESPRIT method

Considering the size of the Hankel matrix correspond-

ing the whole sound (around 260000×260000), only

a part of the original signal can be analysed with the
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Fig. 5: Damping errors as a function of the damping.
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Fig. 6: Initial amplitude errors as a function of the damp-

ing.

full-band ESPRIT algorithm. Here, only the 10000

first samples of the initial signal are considered for the

analysis. The order of the analysis is roughly over-

estimated at 300. After applying the ESPRIT algo-

rithm, 8 EDS appear to have a negative damping, which

will form diverging components when re-synthesising.

Two different re-synthesis are proposed: the first ob-

tained by arbitrarily setting the negative dampings to

1 (s1 std esprit am 1.wav), and the other one by

discarding the components with a negative damping

(s1 std esprit am sup.wav). Their respective spec-

trograms are presented Fig. 8. The resulting synthesised

sounds ([15]) are both unsatisfactory from a perceptual

point of view. Fig. 8 shows that although some peak fre-

quencies where correctly estimated by the standard ES-

PRIT method, the damping behaviour of the partials does

not correspond to the one observed in the original sound

(Fig. 6), especially for the components below 4000 Hz.

5.0.2. Analysis with ESPRIT in a Gabor trans-

form

The chosen Gabor frame consists in a Blackman-Harris

window of length 2048, a time-step parameter a = 64,

and a number of channels M = 2048. It is unnecessary

to apply the ESPRIT algorithm over regions of the time-

frequency plane that only contain noise. Since the most

important deterministic information is contained in the

channels of high energy, these channels can be identified

using a peak detection algorithm over the energy pro-

file of the Gabor transform as shown in Fig. 9. In a

software environment, the choice of which channels will

be analysed could be left to the user. It is reasonable

to think that the noise whitening induced by the sub-

band division of the spectrum makes the ESTER crite-

ria more reliable than in the full-band case, therefore the

analysis order is computed for each of the selected chan-

nels, and set to the maximum of the ESTER criteria cost

function. Doing so and after discarding the components

which have a negative damping, a total number of 650

modes is obtained. Rejecting the irrelevant components

as described in section 3.5, the number of components

used for the final re-synthesis drops to 144. The damping

of the components before and after applying the discard-

ing process are shown Fig. 10, their amplitudes Fig. 11.

The resulting re-synthesis s1 esprit gabor 650.wav

and s1 esprit gabor 144.wav can be listened to

at ([15]). The spectrogram of the final re-synthesis

s1 esprit gabor 144.wav is plotted Fig. 12. It can

be noted that although peaks are missing in the final re-

synthesis, it is much more satisfactory from a perceptual

point of view than in the full-band case. It can be also ob-

served that the global damping behaviour of the partials

is much more similar to the original sound (Fig. 6).

6. FURTHER IMPROVEMENTS

One of the advantages provided by the use of time-

frequency representations is the existence of efficient sta-

tistical estimators for the background noise. As it can be

seen on Fig. 6, a significant number of Gabor coefficients

describing an impact sound correspond to noise, and can

therefore be used to estimate the variance of the stochas-

tic part of the signal (see [11]). If the additive noise is
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Fig. 7: Waveform of s1.wav on the left, and the corresponding spectrogram in dB on the right.
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Fig. 8: Spectrograms of the the re-synthesised sounds after a standard ESPRIT analysis. The left figure corre-

sponds to a re-synthesis after arbitrarily setting the negative dampings to 1 (s1 std esprit am 1.wav), and the

right figure to a re-synthesis where the components presenting a negative damping have simply been discarded

(s1 std esprit am sup.wav).

coloured, it is even possible to estimate the variance in

several selected frequency bands. Knowing the variance

of the noise for each frequency channel offers the possi-

bility to use noise masking properties of the human hear-

ing to discard inaudible components, and possibly lead

to a more selective criteria than the rejecting process de-

scribed in section 3.5.

The concept of nonstationary Gabor frames ([13]) makes

it also possible to adapt the resolution of the Gabor trans-

form so as to get an optimal compromise between pre-

cision and computational cost. It would allow, for in-

stance, to take into account the logarithmical frequency

resolution of the human hearing when applying the Ga-

bor transform. Furthermore, it can be observed that the

damping usually decreases with frequency; nonstation-

ary Gabor frames would allow to adapt the time-step pa-

rameter of the Gabor frame along the frequency scale, so

that computational cost is saved while a sufficient num-

ber of coefficients are taken for the analysis.

7. CONCLUSION

It has been shown that using ESPRIT in time-frequency

representations allows a better estimation of poles and

amplitudes, except for very high dampings. The better

robustness to noise of the Gabor frame approach has also

been clearly highlighted. The consistency of the pro-
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Fig. 9: Energy of the Gabor transform of s1.wav com-

puted for each of its channels. The dots correspond to

the 112 channels identified as peaks.
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Fig. 10: Damping of the components obtained after

analysing s1.wav. The dotted components are the one

which are kept after applying the discarding process de-

scribed in section 3.5.

posed method has been illustrated by an convincing re-

synthesis of a metallic sound. The Gabor frame approach

has the same benefits as the sub-band analysis: it allows

an extension of the analysis horizon, and it diminishes

the complexity of the problem by only considering suc-

cessive regions in the frequency domain; but on top of

that, the information given by the time-frequency repre-

sentation is of great use for targeting the analysis on the

time-frequency intervals that contain the desired infor-
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Fig. 11: Initial amplitudes of the components obtained

after analysing s1.wav. The dotted components are the

one which are kept after applying the discarding process

described in section 3.5.
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Fig. 12: Spectrogram of the re-synthesised sound

s1 esprit gabor 144 (in black) resulting from an ES-

PRIT analysis within a Gabor frame, after discarding the

irrelevant components.

mation. This avoids unnecessary analysis and reduces

the global computational cost.
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